In Vitro Schistosomicidal Activity and Molecular Modeling of Quercitrin and Afzelin Isolated from the Leaves of Copaifera oblongifolia
Abstract
1. Introduction
2. Results and Discussion
2.1. Compounds Isolated
2.2. Schistosomicidal Activity
2.3. Molecular Docking
3. Experimental
3.1. Instrument Specifications
3.2. Collection and Extraction of Plant Material
3.3. Isolation of Compounds 1 and 2 of Copaifera oblongifolia Hydroalcoholic Extract
3.4. HPLC Analysis of the Compounds Obtained
3.5. Assessment of Schistosomicidal Activity
3.6. Theoretical Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PZQ | Oxamniquine or praziquantel |
TGR | Thioredoxin glutathione |
HPLC | High-performance liquid chromatography |
NMR | Nuclear magnetic resonance |
DMSO | Dimethyl sulfoxide |
RPMI | Roswell Park Memorial Institute medium |
FAD | Flavin adenine dinucleotide |
References
- Vaz, S.M.S.; Cristina, C.B.A.; Tozzati, M.G.; Magalhães, L.G.; Silva, M.L.A.E.; Januário, A.H.; Pauletti, P.M.; Crotti, A.E.M.; dos Passos, A.V.; de Jesus, E.G.; et al. Evaluation of the in vitro schistosomicidal, leishmanicidal, and trypanocidal activities of the capsaicin metabolite, Capsicum frutescens, and Capsicum baccatum extracts and of their analysis of the main constituents by HPLC/UV and CG/MS. Nat. Prod. Res. 2023, 38, 679–684. [Google Scholar] [CrossRef]
- Mitra, A.; Mawson, A. Neglected tropical diseases: Epidemiology and global burden. Trop. Med. Infect. Dis. 2017, 2, 36. [Google Scholar] [CrossRef]
- Hotez, P.J.; Lo, N. Neglected tropical diseases. Elsevier eBooks 2014, 44, 597–603. [Google Scholar] [CrossRef]
- Santos, S.S.; de Araújo, R.V.; Giarolla, J.; Seoud, O.E.; Ferreira, E.I. Searching for drugs for Chagas disease, leishmaniasis and schistosomiasis: A review. Int. J. Antimicrob. Agents 2020, 55, 105906. [Google Scholar] [CrossRef]
- Vale, N.; Gouveia, M.J.; Rinaldi, G.; Brindley, P.J.; Gärtner, F.; da Costa, J.M.C. Praziquantel for schistosomiasis: Single-drug metabolism revisited, mode of action, and resistance. Antimicrob. Agents Chemother. 2017, 61, e01012–16. [Google Scholar] [CrossRef]
- Montagnini, D.L.; Katchborian-Neto, A.; Tahan, M.P.; Oliveira, N.D.; Magalhães, L.G.; Januário, A.H.; Pauletti, P.M.; Cavallari, P.S.S.R.; Cunha, W.R.; Araujo, O.P.; et al. The schistosomicidal activity of ethanolic extracts from branches, leaves, flowers and fruits of Handroanthus impetiginosus (Mart. ex DC.) Mattos (Bignoniaceae) plant and metabolic profile characterization by UPLC-ESI-QTOF analysis. Braz. J. Biol. 2023, 83, e275824. [Google Scholar] [CrossRef]
- Alger, H.M.; Williams, D.L. The disulfide redox system of Schistosoma mansoni and the importance of a multifunctional enzyme, thioredoxin glutathione reductase. Mol. Biochem. Parasitol. 2002, 121, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Kuntz, A.N.; Davioud-Charvet, E.; Sayed, A.A.; Califf, L.L.; Dessolin, J.; Arnér, E.S.J.; Williams, D.L. Thioredoxin glutathione reductase from Schistosoma mansoni: An essential parasite enzyme and a key drug target. PLoS Med. 2007, 4, e206. [Google Scholar] [CrossRef]
- Sharma, M.; Khanna, S.; Bulusu, G.; Mitra, A. Comparative modeling of thioredoxin glutathione reductase from Schistosoma mansoni: A multifunctional target for antischistosomal therapy. J. Mol. Graph. Model. 2009, 27, 665–675. [Google Scholar] [CrossRef]
- Petukhova, V.Z.; Aboagye, S.Y.; Ardini, M.; Lullo, R.P.; Fata, F.; Byrne, M.E.; Gabriele, F.; Martin, L.M.; Harding, L.N.M.; Gone, V.; et al. Non-covalent inhibitors of thioredoxin glutathione reductase with schistosomicidal activity in vivo. Nat. Commun. 2023, 14, 3737. [Google Scholar] [CrossRef] [PubMed]
- Onile, O.S.; Raji, O.; Omoboyede, V.; Fadahunsi, A.I.; Onile, T.A.; Momoh, A.O.; Olukunle, S.; Nour, H.; Chtita, S. Structure-Based Discovery of Phytocompounds from Azadirachta indica as Potential Inhibitors of Thioredoxin Glutathione Reductase in Schistosoma mansoni. Cell Biochem. Biophys. 2025, 83, 1677–1688. [Google Scholar] [CrossRef] [PubMed]
- Silvestri, I.; Lyu, H.; Fata, F.; Banta, P.R.; Mattei, B.; Ippoliti, R.; Bellelli, A.; Pitari, G.; Ardini, M.; Petukhova, V.; et al. Ectopic suicide inhibition of thioredoxin glutathione reductase. Free Radic. Biol. Med. 2020, 147, 200–211. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lyu, H.; Petukhov, P.A.; Banta, P.R.; Jadhav, A.; Lea, W.A.; Cheng, Q.; Arnér, E.S.J.; Simeonov, A.; Thatcher, G.R.J.; Angelucci, F.; et al. Characterization of Lead Compounds Targeting the Selenoprotein Thioredoxin Glutathione Reductase for Treatment of Schistosomiasis. ACS Infect. Dis. 2020, 6, 393–405. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de Souza, N.L.R.; Montoya, B.O.; Brandão-Neto, J.; Verma, A.; Bowyer, S.; Moreira-Filho, J.T.; Dantas, R.F.; Neves, B.J.; Andrade, C.H.; von Delft, F.; et al. Fragment library screening by X-ray crystallography and binding site analysis on thioredoxin glutathione reductase of Schistosoma mansoni. Sci. Rep. 2024, 14, 1582. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.C.; Porto, T.S.; Junior, A.H.C.; Santos, M.F.C.; Ramos, H.P.; Braun, G.H.; de Lima Paula, L.A.; Bastos, J.K.; Furtado, N.A.J.C.; Parreira, R.L.T.; et al. Schistosomicidal activity of kaurane, labdane and clerodane-type diterpenes obtained by fungal transformation. Process Biochem. 2020, 98, 34–40. [Google Scholar] [CrossRef]
- Carneiro, L.; Tasso, T.; Santos, M.; Goulart, M.; dos Santos, R.; Bastos, J.; da Silva, J.; Crotti, A.; Parreira, R.; Orenha, R.; et al. Copaifera multijuga, Copaifera pubiflora and Copaifera trapezifolia oleoresins: Chemical characterization and in vitro cytotoxic potential against tumoral cell lines. J. Braz. Chem. Soc. 2020, 31, 1679–1689. [Google Scholar] [CrossRef]
- Carneiro, L.J.; Bastos, J.K.; Veneziani, R.C.S.; Santos, M.F.C.; Ambrósio, S.R. A reliable validated high-performance liquid chromatography-photodiode array detection method for quantification of terpenes in Copaifera pubiflora, Copaifera trapezifolia, and Copaifera langsdorffii oleoresins. Nat. Prod. Res. 2022, 38, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Angelucci, F.; Basso, A.; Bellelli, A.; Brunori, M.; Mattoccia, L.P.; Valle, C. The anti-schistosomal drug praziquantel is an adenosine antagonist. Parasitology 2007, 134, 1215–1221. [Google Scholar] [CrossRef]
- Nugroho, A.; Choi, J.K.; Park, J.H.; Lee, K.T.; Cha, B.C.; Park, H.J. Two new flavonol glycosides from Lamium amplexicaule L. and their in vitro free radical scavenging and tyrosinase inhibitory activities. Planta Med. 2009, 75, 364–366. [Google Scholar] [CrossRef]
- Zhang, Z.; Elsohly, H.N.; Li, X.C.; Khan, S.I.; Broedel, S.E.; Raulli, R.E.; Cihlar, R.L.; Burandt, C.; Walker, L.A. Phenolic compounds from Nymphaea odorata. J. Nat. Prod. 2003, 66, 548–550. [Google Scholar] [CrossRef]
- Diantini, A.; Subarnas, A.; Lestari, K.; Halimah, E.; Susilawati, Y.; Supriyatna, N.; Julaeha, E.; Achmad, T.H.; Suradji, E.W.; Yamazaki, C.; et al. Kaempferol-3-O-rhamnoside isolated from the leaves of Schima wallichii Korth. inhibits MCF-7 breast cancer cell proliferation through activation of the caspase cascade pathway. Oncol. Lett. 2012, 3, 1069–1072. [Google Scholar] [CrossRef]
- Shin, S.W.; Jung, E.; Kim, S.; Kim, J.H.; Kim, E.G.; Lee, J.; Park, D. Antagonizing effects and mechanisms of afzelin against UVB-induced cell damage. PLoS ONE 2013, 8, e61971. [Google Scholar] [CrossRef]
- Zhou, W.; Nie, X. Afzelin attenuates asthma phenotypes by downregulation of GATA3 in a murine model of asthma. Mol. Med. Rep. 2015, 12, 71–76. [Google Scholar] [CrossRef]
- Zhu, K.C.; Sun, J.M.; Shen, J.G.; Jin, J.Z.; Liu, F.; Xu, X.L.; Chen, L.; Liu, L.T.; Lv, J.J. Afzelin exhibits anti-cancer activity against androgen-sensitive LNCaP and androgen-independent PC-3 prostate cancer cells through the inhibition of LIM domain kinase 1. Oncol. Lett. 2015, 10, 2359–2365. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, Y.; Wang, M.; Dong, H.; Zhang, J.; Zhang, L. Quercetrin from Toona sinensis leaves induces cell cycle arrest and apoptosis via enhancement of oxidative stress in human colorectal cancer SW620 cells. Oncol. Rep. 2017, 38, 3319–3326. [Google Scholar] [CrossRef]
- Tasdemir, D.; Kaiser, M.; Brun, R.; Yardley, V.; Schmidt, T.J.; Tosun, F.; Rüedi, P. Antitrypanosomal and antileishmanial activities of flavonoids and their analogues: In vitro, in vivo, structure-activity relationship, and quantitative structure-activity relationship studies. Antimicrob. Agents Chemother. 2006, 50, 1352–1364. [Google Scholar] [CrossRef]
- Johnson, J.L.; Rupasinghe, S.G.; Stefani, F.; Schuler, M.A.; de Mejia, G.E. Citrus flavonoids luteolin, apigenin, and quercetin inhibit glycogen synthase kinase-3β enzymatic activity by lowering the interaction energy within the binding cavity. J. Med. Food 2011, 14, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Muchtaridi, M.; Fauzi, M.; Khairul Ikram, N.K.; Mohd Gazzali, A.; Wahab, H.A. Natural flavonoids as potential angiotensin-converting enzyme 2 inhibitors for anti-SARS-CoV-2. Molecules 2020, 25, 3980. [Google Scholar] [CrossRef] [PubMed]
- Awang, M.A.; Chua, L.S.; Abdullah, L.C. Solid-phase extraction and characterization of quercetrin-rich fraction from Melastoma malabathricum leaves. Separations 2022, 9, 373. [Google Scholar] [CrossRef]
- Kuhn, I.; Kellenberger, E.; Said-Hassane, F.; Villa, P.; Rognan, D.; Lobstein, A.; Haiech, J.; Hibert, M.; Schuber, F.; Muller-Steffner, H. Identification by high-throughput screening of inhibitors of Schistosoma mansoni NAD+ catabolizing enzyme. Bioorg. Med. Chem. 2010, 18, 7900–7910. [Google Scholar] [CrossRef]
- Hoffman, W.A.; Pons, J.A.; Janer, J.L. The Sedimentation Concentration Method in Schistosomiasis Mansoni. Puerto Rico J. Public Health Trop. Med. 1934, 9, 283–289. [Google Scholar]
- Smithers, S.R.; Terry, R.J. The infection of laboratory hosts with cercariae of Schistosoma mansoni and the recovery of the adult worms. Parasitology 1965, 55, 695–700. [Google Scholar] [CrossRef]
- Pica-Mattoccia, L.; Cioli, D. Sex- and stage-related sensitivity of Schistosoma mansoni to in vivo and in vitro praziquantel treatment. Int. J. Parasitol. 2004, 34, 527–533. [Google Scholar] [CrossRef]
- Magalhães, L.G.; Machado, C.B.; Morais, E.R.; Bueno de Carvalho Moreira, É.; Soares, C.S.; da Silva, S.H.; da Silva Filho, A.A.; Rodrigues, V. In vitro schistosomicidal activity of curcumin against Schistosoma mansoni adult worms. Parasitol. Res. 2008, 104, 1197–1201. [Google Scholar] [CrossRef]
- Angelucci, F.; Miele, A.E.; Boumis, G.; Dimastrogiovanni, D.; Brunori, M.; Bellelli, A. Glutathione reductase and thioredoxin reductase at the crossroad: The structure of Schistosoma mansoni thioredoxin glutathione reductase. Proteins 2008, 72, 936–945. [Google Scholar] [CrossRef]
- BIOVIA Discovery Studio. Discovery Studio Modeling Environment; Version 4.0; Dassault Systemes: Woodland Hills, CA, USA, 2015; Available online: https://www.3ds.com/products/biovia/discovery-studio (accessed on 2 July 2023).
- Jones, G.; Willett, P.; Glen, R.C. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J. Mol. Biol. 1995, 245, 43–53. [Google Scholar] [CrossRef]
- Available online: https://www.ccdc.cam.ac.uk/solutions/software/gold/ (accessed on 16 December 2024).
- Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 1997, 267, 727–748. [Google Scholar] [CrossRef] [PubMed]
- Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D. Improved protein–ligand docking using GOLD. Proteins 2003, 52, 609–623. [Google Scholar] [CrossRef] [PubMed]
Samples | Incubation Time (h) | % Dead Worms * | Motor Activity | |
---|---|---|---|---|
Not Significant (%) | Significant (%) | |||
Negative control | 24 | 0 | 0 | 0 |
48 | 0 | 0 | 0 | |
72 | 0 | 0 | 0 | |
Positive Control | 24 | 100 | 0 | 0 |
48 | 100 | - | - | |
72 | 100 | 0 | 0 | |
Crude extract (50 µg/mL) | 24 | 0 | 0 | 0 |
48 | 0 | 0 | 0 | |
72 | 25 | 0 | 0 | |
Crude extract (100 µg/mL) | 24 | 25 | 0 | 0 |
48 | 50 | 25 | 25 | |
72 | 75 | 0 | 25 |
Concentration | Time in Incubation (H) | % Dead Worms * | % Reduction in Motor Activity | |
---|---|---|---|---|
Not Significant | Significant | |||
Control * | 24 | - | - | - |
48 | - | - | - | |
72 | - | - | - | |
12.5 µM | 24 | - | 75 | 25 |
48 | 75 | - | 25 | |
72 | 75 | - | 25 | |
25 µM | 24 | 25 | 50 | 25 |
48 | 75 | 25 | - | |
72 | 75 | 25 | - | |
50 µM | 24 | 25 | 25 | 50 |
48 | 75 | - | 25 | |
72 | 100 | - | - | |
100 µM | 24 | 25 | 25 | 50 |
48 | 50 | 50 | - | |
72 | 50 | 50 | - | |
200 µM | 24 | 50 | 25 | 25 |
48 | 75 | - | 25 | |
72 | 75 | - | 25 |
Concentration | Time in Incubation (H) | Dead Worms (%) * | % Reduction in Motor Activity | |
---|---|---|---|---|
Not Significant | Significant | |||
Control * | 24 | - | - | - |
48 | - | - | - | |
72 | - | - | - | |
12.5 µM | 24 | 50 | 25 | 25 |
48 | 50 | 25 | 25 | |
72 | 75 | - | 25 | |
25 µM | 24 | 50 | 25 | 25 |
48 | 50 | - | 50 | |
72 | 75 | - | 25 | |
50 µM | 24 | 50 | - | 50 |
48 | 50 | - | 50 | |
72 | 75 | - | 25 | |
100 µM | 24 | 50 | - | 50 |
48 | 50 | - | 50 | |
72 | 75 | - | 25 | |
200 µM | 24 | 75 | - | 25 |
48 | 75 | - | 25 | |
72 | 100 | - | - |
Amino Acid | PZQ-TGR |
Cys154 | Hydrophobic Interaction (C-S....Ring Center) |
Cys159 | Hydrophobic Interaction (C-S....Ring Center) |
Gly432 | Hydrogen Bonds (2x HC-H....O=C) |
Ala445 | Hydrophobic Interaction (H3C....Ring Center) |
Amino Acid | A3-TGR |
Ser117 | Hydrogen Bond (HC-H....O-H) |
Cys159 | Hydrogen Bond (C-H....O=C) and Hydrophobic Interaction (C-S....CH3) |
Lys162 | Hydrogen Bond (H2N-H....O=C) |
Val297 | Hydrophobic Interaction (HC....Aromatic Ring) |
Asp433 | Hydrogen Bond (C=O....H-O) |
Thr442 | Hydrogen Bond (O-H....OCC) |
Pro443 | Hydrophobic Interaction (H2C....CH3) |
Amino Acid | A4-TGR |
Ser117 | Hydrogen Bond (HC-H....O-H) |
Cys154 | Hydrophobic Interaction (C-S....Aromatic Ring) |
Cys159 | Hydrogen Bond (C-H....O=C) |
Lys162 | Hydrogen Bond (H2N-H....O=C) |
Tyr296 | Hydrogen Bond (O-H....OCC) |
Val297 | Hydrophobic Interaction (HC....Aromatic Ring) |
Glu300 | Hydrogen Bond (C=O....H-O) |
Leu441 | Hydrophobic Interaction (HC....CH3) |
Pro443 | Hydrophobic Interaction (H2C....CH3) |
Enzyme....Ligand (dG kcal mol−1) | 1 | 2 | PZQ |
---|---|---|---|
TGR | −23.44 | −28.90 | −22.03 |
Fraction | Solvents | Volume (L) | Mass Obtained (g) |
---|---|---|---|
FH | n-hexane | 1.5 | 2.7464 |
FD | Dichloromethane | 0.9 | 5.6294 |
FA | Ethyl acetate | 1.2 | 8.9900 |
FB | n-butanol | 1.2 | 7.0400 |
Fraction | Eluent | Volume (L) |
---|---|---|
1–15 | n-Hexane | 0.6 |
16–21 | n-Hexane/AcOEt (9:1) | 0.3 |
22–35 | n-Hexane/AcOEt (7:3) | 1.1 |
36–59 | n-Hexane/AcOEt (1:1) | 1.2 |
60–76 | AcOEt | 0.9 |
77–95 | AcOEt/EtOH (8:2) | 0.9 |
96–102 | AcOEt/EtOH (1:1) | 0.3 |
103–110 | EtOH | 0.3 |
111 | EtOH | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, R.C.; Magalhães, L.G.; Veneziani, R.C.S.; Ambrósio, S.R.; Orenha, R.P.; Parreira, R.L.T.; Silva, M.L.A.e.; Bastos, J.K.; Souza, M.d.O.; Caprini, H.O.G.; et al. In Vitro Schistosomicidal Activity and Molecular Modeling of Quercitrin and Afzelin Isolated from the Leaves of Copaifera oblongifolia. Compounds 2025, 5, 30. https://doi.org/10.3390/compounds5030030
Ramos RC, Magalhães LG, Veneziani RCS, Ambrósio SR, Orenha RP, Parreira RLT, Silva MLAe, Bastos JK, Souza MdO, Caprini HOG, et al. In Vitro Schistosomicidal Activity and Molecular Modeling of Quercitrin and Afzelin Isolated from the Leaves of Copaifera oblongifolia. Compounds. 2025; 5(3):30. https://doi.org/10.3390/compounds5030030
Chicago/Turabian StyleRamos, Rafael Corrêa, Lizandra G. Magalhães, Rodrigo C. S. Veneziani, Sérgio R. Ambrósio, Renato Pereira Orenha, Renato Luis Tame Parreira, Márcio L. Andrade e Silva, Jairo K. Bastos, Murilo de Oliveira Souza, Híllary Ozorio Gobeti Caprini, and et al. 2025. "In Vitro Schistosomicidal Activity and Molecular Modeling of Quercitrin and Afzelin Isolated from the Leaves of Copaifera oblongifolia" Compounds 5, no. 3: 30. https://doi.org/10.3390/compounds5030030
APA StyleRamos, R. C., Magalhães, L. G., Veneziani, R. C. S., Ambrósio, S. R., Orenha, R. P., Parreira, R. L. T., Silva, M. L. A. e., Bastos, J. K., Souza, M. d. O., Caprini, H. O. G., Rosa, A. C. R., Cosme, W. Z., Santos, M. F. C., & Cunha, W. R. (2025). In Vitro Schistosomicidal Activity and Molecular Modeling of Quercitrin and Afzelin Isolated from the Leaves of Copaifera oblongifolia. Compounds, 5(3), 30. https://doi.org/10.3390/compounds5030030