Previous Issue
Volume 6, September
 
 

Hydrogen, Volume 6, Issue 4 (December 2025) – 35 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
21 pages, 4242 KB  
Article
Structural and Phase Evolution in the Mg-Al System Leading to Lower Hydrogen Desorption Temperature
by Arman Z. Miniyazov, Nuriya M. Mukhamedova, Igor A. Sokolov, Timur R. Tulenbergenov, Zhanna N. Ospanova, Gulzhaz K. Uazyrkhanova, Balzhan Y. Bekmagambetova, Ospan Oken and Riza Y. Zhakiya
Hydrogen 2025, 6(4), 108; https://doi.org/10.3390/hydrogen6040108 - 14 Nov 2025
Viewed by 291
Abstract
A comprehensive study of the structural–phase transformations and hydrogen desorption kinetics in the Mg56Al44 system was conducted using a multistage approach combining thermodynamic modeling CALPHAD, Thermo-Calc 2025a, mechanical synthesis (MS), spark plasma sintering (SPS), and subsequent dispersion treatment. Thermodynamic modeling [...] Read more.
A comprehensive study of the structural–phase transformations and hydrogen desorption kinetics in the Mg56Al44 system was conducted using a multistage approach combining thermodynamic modeling CALPHAD, Thermo-Calc 2025a, mechanical synthesis (MS), spark plasma sintering (SPS), and subsequent dispersion treatment. Thermodynamic modeling revealed a stable existence region of the intermetallic compound Mg17Al12, exhibiting Cp-T anomalies at 303 and 351 °C that closely corresponded to the experimental DSC/TGA results. Microstructural analysis showed that varying the ball-to-powder ratio BPR 20:1 and BPR 30:1 determines the defect density, crystallite size 25–45 nm, and lattice strain 1.5–3.0 × 10−3, all of which directly influence the hydrogen desorption kinetics. For the samples synthesized at BPR 30:1, the onset temperature of hydrogen release decreased to 180–200 °C while maintaining a hydrogen storage capacity of 4.9 wt.%, accompanied by a reduction in the apparent activation energy of desorption from 92 to 74 kJ·mol−1 according to the Kissinger method. The dispersion stage partially disrupted and redistributed the surface MgO layer, leading to a reduction in its overall contribution and improvement in structural homogeneity, rather than complete oxide removal. The combined MS-SPS-dispersion processing route enabled controlled nanostructure formation, reduced the hydrogen desorption temperature by approximately 100 °C compared to conventional MgH2-based materials, and significantly enhanced the thermokinetic performance. These findings demonstrate that Mg-Al alloys are promising candidates for solid-state hydrogen storage systems with improved desorption kinetics and reduced activation barriers. Full article
Show Figures

Figure 1

15 pages, 4941 KB  
Article
Dispersion of High-Pressure Hydrogen Jets in Open-Top and Indoor Environments: Effects of Leak Geometry and Pressure
by Yang Li, Shourui Zhang, Meng Yu, Yang Wu, Jiake Wu and Long Jiang
Hydrogen 2025, 6(4), 107; https://doi.org/10.3390/hydrogen6040107 - 13 Nov 2025
Viewed by 185
Abstract
Hydrogen leakage is a critical safety concern for high-pressure storage systems, where orifice geometry significantly influences dispersion and risk. Previous studies on leakage and diffusion have mostly focused on closed or semi-closed environments, while thorough exploration has been conducted on open and unshielded [...] Read more.
Hydrogen leakage is a critical safety concern for high-pressure storage systems, where orifice geometry significantly influences dispersion and risk. Previous studies on leakage and diffusion have mostly focused on closed or semi-closed environments, while thorough exploration has been conducted on open and unshielded environments. This work compares three typical orifice types—circular, slit, and Y-type—through controlled experiments. Results show that circular orifices generate directional jets with steep gradients but relatively low concentrations, with a 1 mm case reaching only 0.725% at the jet core. Slit orifices exhibit more uniform diffusion; at 1 mm, concentrations ranged from 2.125% to 2.625%. Y-type orifices presented the highest hazard, with 0.5 mm leaks producing 2.9% and 1 mm cases approaching the 4% lower flammability limit within 375 s. Equilibrium times increased with orifice size, from 400–800 s for circular and slit leaks to up to 900 s for Y-type leaks, some of which failed to stabilize. Response behavior also varied: Y-type leaks achieved rapid multi-point responses (as short as 10 s), while circular and slit leaks responded more slowly away from the jet core. Overall risk ranking was circular < slit < Y-type, underscoring the urgent need for geometry-specific monitoring strategies, sensor layouts, and emergency thresholds to ensure safe hydrogen storage. Full article
Show Figures

Figure 1

19 pages, 3974 KB  
Article
First-Principles Investigation of Structural, Electronic, Thermoelectric, and Hydrogen Storage Properties of MgXH3 (X = Cr, Mn, Fe, Co, Ni, Cu) Perovskite Hydrides
by Ayoub Koufi, Younes Ziat and Hamza Belkhanchi
Hydrogen 2025, 6(4), 106; https://doi.org/10.3390/hydrogen6040106 - 11 Nov 2025
Viewed by 326
Abstract
This paper is based on the BoltzTrap package implemented in the Wien2k code to theoretically analyze and predict the structural, electronic, thermoelectric, and hydrogen storage properties of MgXH3 hydride perovskites (X = Cr, Mn, Fe, Co, Ni, and Cu). The [...] Read more.
This paper is based on the BoltzTrap package implemented in the Wien2k code to theoretically analyze and predict the structural, electronic, thermoelectric, and hydrogen storage properties of MgXH3 hydride perovskites (X = Cr, Mn, Fe, Co, Ni, and Cu). The study explores the dual functional potential of these compounds, highlighting how their hydrogen storage capability relates to their temperature-dependent thermoelectric performance. Analysis of band structures and densities of electronic states (DOS) reveals that all the compounds studied exhibit metallic behavior, characterized by an overlap between the valence band and the conduction band, indicating a zero electronic gap. Thermal properties show great variability depending on the transition metal involved. In particular, electrical conductivity and thermal conductivity evolve differently with temperature, directly influencing the figure of merit (Zt) of thermoelectric materials. The results suggest that although most MgXH3 compounds are not promising candidates for thermoelectric applications due to their high thermal conductivity and low density of states near the EF, MgNiH3 and MgCuH3 stand out with attractive thermoelectric potential. These properties make them attractive for energy conversion, waste heat recovery and solid-state cooling applications. This theoretical study highlights the potential of magnesium-based perovskite hydrides in energy conversion technologies, including thermoelectricity and hydrogen storage. Full article
(This article belongs to the Special Issue Advances in Solid-State Hydrogen and Energy Storage)
Show Figures

Figure 1

29 pages, 4056 KB  
Review
Green Hydrogen in Europe: Where Are We Now?
by Maria Giovanna Buonomenna and Aliaksei Patonia
Hydrogen 2025, 6(4), 105; https://doi.org/10.3390/hydrogen6040105 - 8 Nov 2025
Viewed by 950
Abstract
As global efforts to decarbonize intensify, hydrogen produced via renewable electricity has emerged as a pivotal energy vector for a sustainable industrial future. This commentary provides a critical analysis of the current state of the hydrogen economy in Europe, detailing the core principles, [...] Read more.
As global efforts to decarbonize intensify, hydrogen produced via renewable electricity has emerged as a pivotal energy vector for a sustainable industrial future. This commentary provides a critical analysis of the current state of the hydrogen economy in Europe, detailing the core principles, operational mechanisms, and industrial status of four primary water electrolysis technologies: alkaline (ALK), proton exchange membrane (PEM), solid oxide (SOEC), and anion exchange membrane (AEM). Furthermore, it explores the significant socio-political challenges inherent in producing green hydrogen in non-EU nations for subsequent import into the European market. Full article
Show Figures

Figure 1

24 pages, 2549 KB  
Article
Techno-Economic Assessment of Hydrogen Integration for Decarbonizing the Steel Industry: A Case Study
by Farhan Haider Joyo, Daniele Groppi, Lorenzo Villani, Irfan and Davide Astiaso Garcia
Hydrogen 2025, 6(4), 104; https://doi.org/10.3390/hydrogen6040104 - 7 Nov 2025
Viewed by 549
Abstract
The iron and steel industry is one of the largest industrial sources of greenhouse gas emissions. This paper examines the potential of green hydrogen as a reducing agent for decarbonizing primary steel production, focusing on the Taranto integrated steelworks in southern Italy. Producing [...] Read more.
The iron and steel industry is one of the largest industrial sources of greenhouse gas emissions. This paper examines the potential of green hydrogen as a reducing agent for decarbonizing primary steel production, focusing on the Taranto integrated steelworks in southern Italy. Producing about 3.5 Mt of crude steel annually, the plant is also among the country’s biggest emitters, with CO2 emissions of roughly 8 Mt per year at typical blast furnace intensity (2.2 tCO2/t steel). The analysis quantifies the hydrogen demand required to replace fossil fuels in iron ore reduction and evaluates the techno-economic feasibility of meeting it with green hydrogen. Using DWSIM (open-source chemical process simulation software, v9.0.2) for water electrolysis powered by renewables, the study estimates both the CO2 emission reductions and cost impacts of hydrogen-based steelmaking. Results show that integrating green hydrogen at Taranto could achieve deep decarbonization by cutting emissions by over 90%, with a base-case levelized hydrogen cost (LCOH) of 3.6 EUR/kg and green steel production cost 653 EUR/t. With optimistic assumptions (renewable electricity at 40 EUR/MWh and electrolyzer CAPEX halved to 500 EUR/kW), hydrogen cost could be reduced to 2.3 EUR/kg, making green steel cost-competitive with conventional steel and implying a breakeven carbon price of under 60 EUR/t. Sensitivity analyses highlight that falling renewable electricity prices, supportive carbon policies, and successful demonstration projects are key enablers for economic viability. The findings underscore that renewable hydrogen can be a viable decarbonization pathway for steel when coupled with continued technological improvements and policy support. Full article
Show Figures

Figure 1

31 pages, 6989 KB  
Article
Feasibility and Sensitivity Analysis of an Off-Grid PV/Wind Hybrid Energy System Integrated with Green Hydrogen Production: A Case Study of Algeria
by Ayoub Boutaghane, Mounir Aksas, Djafar Chabane and Nadhir Lebaal
Hydrogen 2025, 6(4), 103; https://doi.org/10.3390/hydrogen6040103 - 6 Nov 2025
Viewed by 397
Abstract
Algeria’s transition toward sustainable energy requires the exploitation of its abundant solar and wind resources for green hydrogen production. This study assesses the techno-economic feasibility of an off-grid PV/wind hybrid system integrated with a hydrogen subsystem (electrolyzer, fuel cell, and hydrogen storage) to [...] Read more.
Algeria’s transition toward sustainable energy requires the exploitation of its abundant solar and wind resources for green hydrogen production. This study assesses the techno-economic feasibility of an off-grid PV/wind hybrid system integrated with a hydrogen subsystem (electrolyzer, fuel cell, and hydrogen storage) to supply both electricity and hydrogen to decentralized sites in Algeria. Using HOMER Pro, five representative Algerian regions were analyzed, accounting for variations in solar irradiation, wind speed, and groundwater availability. A deferrable water-extraction and treatment load was incorporated to model the water requirements of the electrolyzer. In addition, a comprehensive sensitivity analysis was conducted on solar irradiation, wind speed, and the capital costs of PV panels and wind turbines to capture the effects of renewable resource and investment cost fluctuations. The results indicate significant regional variation, with the levelized cost of energy (LCOE) ranging from 0.514 to 0.868 $/kWh, the levelized cost of hydrogen (LCOH) between 8.31 and 12.4 $/kg, and the net present cost (NPC) between 10.28 M$ and 17.7 M$, demonstrating that all cost metrics are highly sensitive to these variations. Full article
Show Figures

Graphical abstract

17 pages, 2513 KB  
Article
Bio-Aerodynamic Flow Field Optimization in PEM Fuel Cells: A Peregrine Falcon-Inspired Flow Field Approach
by Mohamed-Amine Babay, Mustapha Adar, Mohamed Essam El Messoussi, Ahmed Chebak and Mustapha Mabrouki
Hydrogen 2025, 6(4), 102; https://doi.org/10.3390/hydrogen6040102 - 5 Nov 2025
Viewed by 322
Abstract
To simultaneously improve mass transfer and minimize pressure drop in proton exchange membrane fuel cells (PEMFCs), this study proposes a novel bionic flow field inspired by the streamlined abdominal structure of the peregrine falcon. A three-dimensional channel geometry is developed from this biological [...] Read more.
To simultaneously improve mass transfer and minimize pressure drop in proton exchange membrane fuel cells (PEMFCs), this study proposes a novel bionic flow field inspired by the streamlined abdominal structure of the peregrine falcon. A three-dimensional channel geometry is developed from this biological prototype and integrated into a single-channel PEMFC model for numerical simulation. A series of computational fluid dynamics (CFD) analyses compare the new design against conventional straight, trapezoidal, and sinusoidal flow fields. The results demonstrate that the falcon-inspired configuration enhances oxygen delivery, optimizes water management, and achieves a more uniform current density distribution. Remarkably, the design delivers a 9.45% increase in peak power density while significantly reducing pressure drop compared to the straight channel. These findings confirm that biologically optimized aerodynamic structures can provide tangible benefits in PEMFC flow field design by boosting electrochemical performance and lowering parasitic losses. Beyond fuel cells, this bio-inspired approach offers a transferable methodology for advanced energy conversion systems where efficient fluid transport is essential. Full article
Show Figures

Figure 1

25 pages, 3922 KB  
Article
Hydrogen Blending as a Transitional Solution for Decarbonizing the Jordanian Electricity Generation Sector
by Hani Muhsen and Rashed Tarawneh
Hydrogen 2025, 6(4), 101; https://doi.org/10.3390/hydrogen6040101 - 4 Nov 2025
Viewed by 433
Abstract
While renewable energy deployment has accelerated in recent years, fossil fuels continue to play a dominant role in electricity generation worldwide. This necessitates the development of transitional strategies to mitigate greenhouse gas emissions from this sector while gradually reducing reliance on fossil fuels. [...] Read more.
While renewable energy deployment has accelerated in recent years, fossil fuels continue to play a dominant role in electricity generation worldwide. This necessitates the development of transitional strategies to mitigate greenhouse gas emissions from this sector while gradually reducing reliance on fossil fuels. This study investigates the potential of blending green hydrogen with natural gas as a transitional solution to decarbonize Jordan’s electricity sector. The research presents a comprehensive techno-economic and environmental assessment evaluating the compatibility of the Arab Gas Pipeline and major power plants with hydrogen–natural gas mixtures, considering blending limits, energy needs, environmental impacts, and economic feasibility under Jordan’s 2030 energy scenario. The findings reveal that hydrogen blending between 5 and 20 percent can be technically achieved without major infrastructure modifications. The total hydrogen demand is estimated at 24.75 million kilograms per year, with a reduction of 152.7 thousand tons of carbon dioxide per annum. This requires 296,980 cubic meters of water per year, equivalent to only 0.1 percent of the National Water Carrier’s capacity, indicating a negligible impact on national water resources. Although technically and environmentally feasible, the project remains economically constrained, requiring a carbon price of $1835.8 per ton of carbon dioxide for economic neutrality. Full article
Show Figures

Figure 1

13 pages, 2346 KB  
Article
Hydrogen Diffusivity and Hydrogen Traps Behavior of a Tempered and Untempered Martensitic Steel
by Edgar López-Martínez, Samuel Eduardo Salud-Ordon, Octavio Vázquez-Gómez, Miguel Iván Dávila-Pérez, Julio C. Villalobos and Jesus Israel Barraza-Fierro
Hydrogen 2025, 6(4), 100; https://doi.org/10.3390/hydrogen6040100 - 4 Nov 2025
Viewed by 467
Abstract
The effect of tempering temperature and tempering time on the density of hydrogen traps, hydrogen diffusivity, and microhardness in a vanadium-modified AISI 4140 martensitic steel was determined. Tempering parameters were selected to activate the second, third, and fourth tempering stages. These conditions were [...] Read more.
The effect of tempering temperature and tempering time on the density of hydrogen traps, hydrogen diffusivity, and microhardness in a vanadium-modified AISI 4140 martensitic steel was determined. Tempering parameters were selected to activate the second, third, and fourth tempering stages. These conditions were intended to promote specific microstructural transformations. Permeability tests were performed using the electrochemical method developed by Devanathan and Stachurski, and microhardness was measured before and after these tests. It was observed that hydrogen diffusivity is inversely proportional to microhardness, while the density of hydrogen traps is directly proportional to microhardness. The lowest hydrogen diffusivity, the highest trap density, and the highest microhardness were obtained in the as-quenched condition and the tempering at 286 °C for 0.25 h. In contrast, tempering at a temperature corresponding to the fourth tempering stage increases hydrogen diffusivity and decreases the density of hydrogen traps and microhardness. However, as the tempering time or temperature increases, the opposite occurs, which is attributed to the formation of alloy carbides. Finally, hydrogen has a softening effect for tempering temperatures corresponding to the fourth tempering stage, tempering times of 0.25 h, and in the as-quenched condition. However, with increasing tempering time, hydrogen has a hardening effect. Full article
Show Figures

Figure 1

21 pages, 2611 KB  
Article
Hydrogen-Rich Gaseous Mixture for Enhanced Combustion in a Flex-Fuel Engine: An Experimental Analysis
by Lucimar Venancio Amaral, Augusto César Teixeira Malaquias, Gabriel Heleno de Paula Araújo, Marcos de Carvalho Torres Filho, Marco André Fraga, Ricardo Belchior Torres, Rita de Cássia de Oliveira Sebastião and Fabricio José Pacheco Pujatti
Hydrogen 2025, 6(4), 99; https://doi.org/10.3390/hydrogen6040099 - 3 Nov 2025
Viewed by 265
Abstract
This experimental study examines the effect of adding a hydrogen-enriched synthetic gaseous mixture (HGM’) on the combustion and fuel conversion efficiency of a single-cylinder research engine (SCRE). The work assesses the viability of using this mixture as a supplemental fuel for flex-fuel engines [...] Read more.
This experimental study examines the effect of adding a hydrogen-enriched synthetic gaseous mixture (HGM’) on the combustion and fuel conversion efficiency of a single-cylinder research engine (SCRE). The work assesses the viability of using this mixture as a supplemental fuel for flex-fuel engines operating under urban driving cycling conditions. An SCRE, the AVL 5405 model, was employed, operating with ethanol and gasoline as primary fuels through direct injection (DI) and a volumetric compression ratio of 11.5:1. The HGM’ was added in the engine’s intake via fumigation (FS), with volumetric proportions ranging from 5% to 20%. The tests were executed at 1900 rpm and 2500 rpm engine speeds, with indicated mean effective pressures (IMEPs) of 3 and 5 bar. When HGM’s 5% v/v was applied at 2500 rpm, the mean indicated effective pressure of 3 bar was observed. A decrease of 21% and 16.5% in the ISFC was observed when using gasoline and ethanol as primary fuels, respectively. The usage of an HGM’ combined with gasoline or ethanol, proved to be a relevant and economically accessible strategy in the improvement of the conversion efficiency of combustion fuels, once this gaseous mixture could be obtained through the vapor-catalytic reforming of ethanol, giving up the use of turbochargers or lean and ultra-lean burn strategies. These results demonstrated the potential of using HGM’ as an effective alternative to increase the efficiency of flex-fuel engines. Full article
(This article belongs to the Special Issue Hydrogen for a Clean Energy Future)
Show Figures

Figure 1

19 pages, 1791 KB  
Article
Cost-Optimal Design of a Stand-Alone PV-Driven Hydrogen Production and Refueling Station Using Genetic Algorithms
by Domenico Vizza, Roberta Caponi, Umberto Di Matteo and Enrico Bocci
Hydrogen 2025, 6(4), 98; https://doi.org/10.3390/hydrogen6040098 - 3 Nov 2025
Viewed by 509
Abstract
Driven by the growing availability of funding opportunities, electrolyzers have become increasingly accessible, unlocking significant potential for large-scale green hydrogen production. The goal of this investigation is to develop a techno-economic optimization framework for the design of a stand-alone photovoltaic (PV)-driven hydrogen production [...] Read more.
Driven by the growing availability of funding opportunities, electrolyzers have become increasingly accessible, unlocking significant potential for large-scale green hydrogen production. The goal of this investigation is to develop a techno-economic optimization framework for the design of a stand-alone photovoltaic (PV)-driven hydrogen production and refueling station, with the explicit objective of minimizing the levelized cost of hydrogen (LCOH). The system integrates PV generation, a proton-exchange-membrane electrolyzer, battery energy storage, compression, and high-pressure hydrogen storage to meet the daily demand of a fleet of fuel cell buses. Results show that the optimal configuration achieves an LCOH of 11 €/kg when only fleet demand is considered, whereas if surplus hydrogen sales are accounted for, the LCOH reduces to 7.98 €/kg. The analysis highlights that more than 75% of total investment costs are attributable to PV and electrolysis, underscoring the importance of capital incentives. Financial modeling indicates that a subsidy of about 58.4% of initial CAPEX is required to ensure a 10% internal rate of return under EU market conditions. The proposed methodology provides a reproducible decision-support tool for optimizing off-grid hydrogen refueling infrastructure and assessing policy instruments to accelerate hydrogen adoption in heavy-duty transport. Full article
Show Figures

Figure 1

21 pages, 2454 KB  
Article
Techno-Economic Analysis of Green Hydrogen Energy Production in West Africa
by Kokoutse Gawou, Obindah Gershon, Joseph Kwasi Asafo and Sonia Agbonjaru
Hydrogen 2025, 6(4), 97; https://doi.org/10.3390/hydrogen6040097 - 3 Nov 2025
Viewed by 640
Abstract
The United Nations has set a global vision towards emissions reduction and green growth through the Sustainable Development Goals (SDGs). Towards the realisation of SDGS 7, 9, and 13, we focus on green hydrogen production as a potential pathway to achievement. Green hydrogen, [...] Read more.
The United Nations has set a global vision towards emissions reduction and green growth through the Sustainable Development Goals (SDGs). Towards the realisation of SDGS 7, 9, and 13, we focus on green hydrogen production as a potential pathway to achievement. Green hydrogen, produced via water electrolysis powered by renewable energy sources, represents a pivotal solution towards climate change mitigation. Energy access in West Africa remains a challenge, and dependency on fossil fuels persists. So, green hydrogen offers an opportunity to harness abundant solar resources, reduce carbon emissions, and foster economic development. This study evaluates the techno-economic feasibility of green hydrogen production in five West African countries: Ghana, Nigeria, Mali, Niger, and Senegal. The analyses cover the solar energy potential, hydrogen production capacities, and economic viability using the Levelised Cost of Hydrogen (LCOH) and Net Present Value (NPV). Results indicate substantial annual hydrogen production potential with LCOH values competitive with global benchmarks amidst the EU’s Carbon Border Adjustment Mechanism (CBAM). Despite this potential, several barriers exist, including high initial capital costs, policy and regulatory gaps, limited technical capacity, and water resource constraints. We recommend targeted strategies for strengthening policy frameworks, fostering international partnerships, enhancing regional infrastructure integration, and investing in capacity-building initiatives. By addressing these barriers, West Africa can be a key player in the global green hydrogen market. Full article
Show Figures

Figure 1

22 pages, 2082 KB  
Review
A Systematic Analysis of Life Cycle Assessments in Hydrogen Energy Systems
by Miguel Simão Coelho, Pedro Jorge Coelho, Ana Filipa Ferreira and Elena Surra
Hydrogen 2025, 6(4), 96; https://doi.org/10.3390/hydrogen6040096 - 2 Nov 2025
Viewed by 497
Abstract
Hydrogen plays a central role in ensuring the fulfillment of the climate and energy goals established in the Paris Agreement. To implement sustainable and resilient hydrogen economies, it is essential to analyze the entire hydrogen value chain, following a Life Cycle Assessment (LCA) [...] Read more.
Hydrogen plays a central role in ensuring the fulfillment of the climate and energy goals established in the Paris Agreement. To implement sustainable and resilient hydrogen economies, it is essential to analyze the entire hydrogen value chain, following a Life Cycle Assessment (LCA) methodology. To determine the current methodologies, approaches, and research tendencies adopted when performing LCA of hydrogen energy systems, a systematic literature analysis is carried out in the present study. The choices regarding the “goal and scope definition”, “life cycle inventory analysis”, and “life cycle impact assessment” in 70 scientific papers were assessed. Based on the collected information, it was concluded that there are no similar LCA studies, since specificities introduced in the system boundaries, functional unit, production, storage, transportation, end-use technologies, geographical specifications, and LCA methodological approaches, among others, introduce differences among studies. This lack of harmonization triggers the need to define harmonization protocols that allow for a fair comparison between studies; otherwise, the decision-making process in the hydrogen energy sector may be influenced by methodological choices. Although initial efforts have been made, their adoption remains limited, and greater promotion is needed to encourage wider implementation. Full article
Show Figures

Figure 1

16 pages, 1654 KB  
Article
Computational Fluid Dynamic Modeling and Parametric Optimization of Hydrogen Adsorption in Stationary Hydrogen Tanks
by A. Ousegui and B. Marcos
Hydrogen 2025, 6(4), 95; https://doi.org/10.3390/hydrogen6040095 - 1 Nov 2025
Viewed by 260
Abstract
This study investigates hydrogen storage enhancement through adsorption in porous materials by coupling the Dubinin–Astakhov (D-A) adsorption model with H2 conservation equations (mass, momentum, and energy). The resulting system of partial differential equations (PDEs) was solved numerically using the finite element method [...] Read more.
This study investigates hydrogen storage enhancement through adsorption in porous materials by coupling the Dubinin–Astakhov (D-A) adsorption model with H2 conservation equations (mass, momentum, and energy). The resulting system of partial differential equations (PDEs) was solved numerically using the finite element method (FEM). Experimental work using activated carbon as an adsorbent was carried out to validate the model. The comparison showed good agreement in terms of temperature distribution, average pressure of the system, and the amount of adsorbed hydrogen (H2). Further simulations with different adsorbents indicated that compact metal–organic framework 5 (MOF-5) is the most effective material in terms of H2 adsorption. Additionally, the pair (273 K, 800 s) remains the optimal combination of injection temperature and time. The findings underscore the prospective advantages of optimized MOF-5-based systems for enhanced hydrogen storage. These systems offer increased capacity and safety compared to traditional adsorbents. Subsequent research should investigate multi-objective optimization of material properties and system geometry, along with evaluating dynamic cycling performance in practical operating conditions. Additionally, experimental validation on MOF-5-based storage prototypes would further reinforce the model’s predictive capabilities for industrial applications. Full article
Show Figures

Figure 1

17 pages, 1620 KB  
Article
Integrated Modeling of Steam Methane Reforming and Carbon Capture for Blue Hydrogen Production
by Kubilay Bayramoğlu and Tolga Bayramoğlu
Hydrogen 2025, 6(4), 94; https://doi.org/10.3390/hydrogen6040094 - 1 Nov 2025
Viewed by 615
Abstract
The increasing global demand for clean energy highlights hydrogen as a strategic energy carrier due to its high energy density and carbon-free utilization. Currently, steam methane reforming (SMR) is the most widely applied method for hydrogen production; however, its high CO2 emissions [...] Read more.
The increasing global demand for clean energy highlights hydrogen as a strategic energy carrier due to its high energy density and carbon-free utilization. Currently, steam methane reforming (SMR) is the most widely applied method for hydrogen production; however, its high CO2 emissions undermine the environmental benefits of hydrogen. Blue hydrogen production integrates carbon capture and storage (CCS) technologies to overcome this drawback in the SMR process, significantly reducing greenhouse gas emissions. This study integrated a MATLAB-R2025b-based plug flow reactor (PFR) model for SMR kinetics with an Aspen HYSYS-based CCS system. The effects of reformer temperature (600–1000 °C) and steam-to-carbon (S/C) ratio (1–5) on hydrogen yield and CO2 emission intensity were investigated. Results show that hydrogen production increases with temperature, reaching maximum conversion at 850–1000 °C, while the optimum performance is achieved at S/C ratios of 2.5–3.0, balancing high hydrogen yield and minimized methane slip. Conventional SMR generates 9–12 kgCO2/kgH2 emissions, whereas SMR + CCS reduces this to 2–3 kgCO2/kgH2, achieving more than 75% reduction. The findings demonstrate that SMR + CCS integration effectively mitigates emissions and provides a sustainable bridging technology for blue hydrogen production, supporting the transition toward low-carbon energy systems. Full article
Show Figures

Figure 1

26 pages, 4657 KB  
Article
Robust Optimisation of an Online Energy and Power Management Strategy for a Hybrid Fuel Cell Battery Shunting Locomotive
by Thomas Maugis, Jérémy Ziliani, Samuel Hibon, Didier Chamagne and David Bouquain
Hydrogen 2025, 6(4), 93; https://doi.org/10.3390/hydrogen6040093 - 1 Nov 2025
Viewed by 216
Abstract
Shunting locomotives exhibit a wide and unpredictable range of power profiles. This unpredictability makes it impossible to rely on offline optimizations or predictive methods combined with online optimization. To maintain optimal performance across this broad range of operating conditions, the online control strategy [...] Read more.
Shunting locomotives exhibit a wide and unpredictable range of power profiles. This unpredictability makes it impossible to rely on offline optimizations or predictive methods combined with online optimization. To maintain optimal performance across this broad range of operating conditions, the online control strategy must be robust. This article proposes a robust method to determine the optimal parameter combinations for an online energy management strategy of a hybrid fuel cell battery shunting locomotive, ensuring optimality across all scenario conditions. The first step involves extracting a statistically representative subspace for simulation, both in terms of parameter combinations and scenario conditions. A response surface model (numerical twin) is then constructed to extrapolate results across the entire space based on this simulated subspace. Using this model, the optimal solution is identified through metaheuristic algorithms (minimization search). Finally, the proposed solution is validated against a set of expert-defined scenarios. The result of the methodology ensures robust optimization across an infinite number of scenarios by minimizing the impact on both the fuel cell and the battery, without increasing mission costs. Full article
Show Figures

Figure 1

30 pages, 3738 KB  
Review
Hydrogen Propulsion Technologies for Aviation: A Review of Fuel Cell and Direct Combustion Systems Towards Decarbonising Medium-Haul Aircraft
by Daisan Gopalasingam, Bassam Rakhshani and Cristina Rodriguez
Hydrogen 2025, 6(4), 92; https://doi.org/10.3390/hydrogen6040092 - 20 Oct 2025
Viewed by 1957
Abstract
Hydrogen propulsion technologies are emerging as a key enabler for decarbonizing the aviation sector, especially for regional commercial aircraft. The evolution of aircraft propulsion technologies in recent years raises the question of the feasibility of a hydrogen propulsion system for beyond regional aircraft. [...] Read more.
Hydrogen propulsion technologies are emerging as a key enabler for decarbonizing the aviation sector, especially for regional commercial aircraft. The evolution of aircraft propulsion technologies in recent years raises the question of the feasibility of a hydrogen propulsion system for beyond regional aircraft. This paper presents a comprehensive review of hydrogen propulsion technologies, highlighting key advancements in component-level performance metrics. It further explores the technological transitions necessary to enable hydrogen-powered aircraft beyond the regional category. The feasibility assessment is based on key performance parameters, including power density, efficiency, emissions, and integration challenges, aligned with the targets set for 2035 and 2050. The adoption of hydrogen-electric powertrains for the efficient transition from KW to MW powertrains depends on transitions in fuel cell type, thermal management systems (TMS), lightweight electric machines and power electronics, and integrated cryogenic cooling architectures. While hydrogen combustion can leverage existing gas turbine architectures with relatively fewer integration challenges, it presents its technical hurdles, especially related to combustion dynamics, NOx emissions, and contrail formation. Advanced combustor designs, such as micromix, staged, and lean premixed systems, are being explored to mitigate these challenges. Finally, the integration of waste heat recovery technologies in the hydrogen propulsion system is discussed, demonstrating the potential to improve specific fuel consumption by up to 13%. Full article
Show Figures

Figure 1

23 pages, 666 KB  
Review
A Review of Caprock Integrity in Underground Hydrogen Storage Sites: Implication of Wettability, Interfacial Tension, and Diffusion
by Polyanthi-Maria Trimi, Spyridon Bellas, Ioannis Vakalas, Raoof Gholami, Vasileios Gaganis, Evangelia Gontikaki, Emmanuel Stamatakis and Ioannis V. Yentekakis
Hydrogen 2025, 6(4), 91; https://doi.org/10.3390/hydrogen6040091 - 20 Oct 2025
Viewed by 768
Abstract
As industry moves from fossil fuels to green energy, substituting hydrocarbons with hydrogen as an energy carrier seems promising. Hydrogen can be stored in salt caverns, depleted hydrocarbon fields, and saline aquifers. Among other criteria, these storage solutions must ensure storage safety and [...] Read more.
As industry moves from fossil fuels to green energy, substituting hydrocarbons with hydrogen as an energy carrier seems promising. Hydrogen can be stored in salt caverns, depleted hydrocarbon fields, and saline aquifers. Among other criteria, these storage solutions must ensure storage safety and prevent leakage. The ability of a caprock to prevent fluid from flowing out of the reservoir is, thus, of utmost importance. In this review, the main factors influencing fluid flow are examined. These are the wettability of the caprock formation, the interfacial tension (IFT) between the rock and the gas or liquid phases, and the ability of gases to diffuse through it. To achieve effective sealing, the caprock formation should possess low porosity, a disconnected or highly complicated pore system, low permeability, and remain strongly water-wet regardless of pressure and temperature conditions. In addition, it must exhibit low rock–liquid IFT, while presenting high rock–gas and liquid–gas IFT. Finally, the effective diffusion coefficient should be the lowest possible. Among all of the currently reviewed formations and minerals, the evaporites, low-organic-content shales, mudstones, muscovite, clays, and anhydrite have been identified as highly effective caprocks, offering excellent sealing capabilities and preventing hydrogen leakages. Full article
Show Figures

Figure 1

19 pages, 2000 KB  
Article
Techno-Economic Optimization of Hybrid Renewable Energy Systems (HRESs) and Feasibility Study on Replacing Diesel and Photovoltaic Systems with Hydrogen for Electrical and Small Deferrable Loads: Case Study of Cameroon
by Tabitha Christie Vartan Messana M’oboun, Nasser Yimen, Jorelle Larissa Meli’i, Andre Michel Pouth Nkoma and Philippe Njandjock Nouck
Hydrogen 2025, 6(4), 90; https://doi.org/10.3390/hydrogen6040090 - 19 Oct 2025
Viewed by 408
Abstract
To reduce the amount of harmful gases produced by fossil fuels, more environmentally friendly and sustainable alternatives are being proposed around the world. As a result, technologies for manufacturing hydrogen fuel cells and producing green hydrogen are becoming more widespread, with an impact [...] Read more.
To reduce the amount of harmful gases produced by fossil fuels, more environmentally friendly and sustainable alternatives are being proposed around the world. As a result, technologies for manufacturing hydrogen fuel cells and producing green hydrogen are becoming more widespread, with an impact on energy production and environmental protection. In many countries around the world, and in Africa in particular, leaders, scientists, and populations are considering switching from fossil fuels to so-called green energies. Hydrogen is therefore an interesting alternative that deserves to be explored, especially since both rural and urban populations have shown an interest in using it in the near future, which would reduce pollution and the proliferation of greenhouse gases, thereby mitigating global warming. The aim of this paper is to determine the hybrid energy system best suited to addressing the energy problem in the study area, and then to make successive substitutions of different energy sources, starting with the most polluting, in order to assess the possibilities for transitioning the energy used in the area to green hydrogen. To this end, this study began with a technical and economic analysis which, based on climatic parameters, led to the proposal of a PV/DG-BATTery system configuration, with a Net Present Cost (NPC) of USD 19,267 and an average Cost Of Energy (COE) of USD 0.4, and with a high proportion of CO2 emissions compared with the PV/H2GEN-BATT and H2GEN systems. The results of replacing fossil fuel generators with hydrogen generators are beneficial in terms of environmental protection and lead to a reduction in energy-related expenses of around 2.1 times the cost of diesel and a reduction in mass of around 2.7 times the mass of diesel. The integration of H2GEN, at high duty percentages, increases the Cost Of Energy, whether in a hybrid PV/H2GEN system or an H2GEN system. This shows the interest in the study country in using favorable duty proportions to make the use of hydrogen profitable. Full article
Show Figures

Figure 1

19 pages, 2287 KB  
Review
Hydrogen Adsorbents in the Vacuum Layer of Liquid Hydrogen Containers: Materials and Applications
by Meng Yu, Yang Wu, Jiake Wu, Yongxiang Zhu, Xiangjun Yu and Long Jiang
Hydrogen 2025, 6(4), 89; https://doi.org/10.3390/hydrogen6040089 - 15 Oct 2025
Viewed by 517
Abstract
Hydrogen serves as a key clean-energy carrier, with the main hurdles lying in safe, efficient transport and storage (gas or liquid) and in end-use energy conversion. Liquid hydrogen (LH), as a high-density method of storage and transportation, presents cryogenic insulation as its key [...] Read more.
Hydrogen serves as a key clean-energy carrier, with the main hurdles lying in safe, efficient transport and storage (gas or liquid) and in end-use energy conversion. Liquid hydrogen (LH), as a high-density method of storage and transportation, presents cryogenic insulation as its key technical issues. In LH storage tanks, the performance of high vacuum multilayer insulation (HVMLI) will decline due to hydrogen release and leakage from the microscopic pores of steel, which significantly destroy the vacuum layer. The accumulation of residual gases will accelerate thermal failure, shorten the service life of storage tanks and increase safety risks. Adsorption is the most effective strategy for removing residual gases. This review aims to elucidate materials, methods, and design approaches related to hydrogen storage. First, it summarizes adsorbents used in liquid hydrogen storage tanks, including cryogenic adsorbents, metal oxides, zeolite molecular sieves, and non-volatile compounds. Second, it explores experimental testing methods and applications of hydrogen adsorbents in storage tanks, analyzing key challenges faced in practical applications and corresponding countermeasures. Finally, it proposes research prospects for exploring novel adsorbents and developing integrated systems. Full article
Show Figures

Figure 1

14 pages, 2033 KB  
Article
Influence of Catalytic Support on Hydrogen Production from Glycerol Steam Reforming
by Jorge Feijoo, Rocío Maceiras, Victor Alfonsín, Nevin Aly and Alejandro de la Fuente
Hydrogen 2025, 6(4), 88; https://doi.org/10.3390/hydrogen6040088 - 14 Oct 2025
Viewed by 527
Abstract
The use of hydrogen as an energy carrier represents a promising alternative for mitigating climate change. However, its practical application requires achieving a high degree of purity throughout the production process. In this study, the influence of the type of catalytic support on [...] Read more.
The use of hydrogen as an energy carrier represents a promising alternative for mitigating climate change. However, its practical application requires achieving a high degree of purity throughout the production process. In this study, the influence of the type of catalytic support on H2 production via steam glycerol reforming was evaluated, with the objective of obtaining syngas with the highest possible H2 concentration. Three types of support were analyzed: two natural materials (zeolite and dolomite) and one metal oxide, alumina. Alumina and dolomite were coated with Ni at different loadings, while zeolite was only evaluated without Ni. Reforming experiments were carried out at a constant temperature of 850 °C, with continuous monitoring of H2, CO2, CO, and CH4 concentrations. The results showed that zeolite yielded the lowest H2 concentration (51%), mainly due to amorphization at high temperatures and the limited effectiveness of physical adsorption processes. In contrast, alumina and dolomite achieved H2 purities of around 70%, which increased with Ni loading. The improvement was particularly significant in dolomite, owing to its higher porosity and the recarbonation processes of CaO, enabling H2 purities of up to 90%. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production, Storage, and Utilization)
Show Figures

Figure 1

23 pages, 1004 KB  
Article
Who Is in and How? A Comprehensive Study on Stakeholder Perspectives in the Green Hydrogen Sector in Luxembourg
by Mariangela Vespa and Jan Hildebrand
Hydrogen 2025, 6(4), 87; https://doi.org/10.3390/hydrogen6040087 - 14 Oct 2025
Viewed by 511
Abstract
Green hydrogen has the potential to contribute to the decarbonization of the fossil fuel industry, and its development is expected to increase in the coming years. The social dynamics among the various actors in the green hydrogen sector are studied to understand their [...] Read more.
Green hydrogen has the potential to contribute to the decarbonization of the fossil fuel industry, and its development is expected to increase in the coming years. The social dynamics among the various actors in the green hydrogen sector are studied to understand their public perception. Using the technological innovation system research approach for the stakeholder analysis and the qualitative thematic analysis method for the interviews with experts, this study presents an overview of the actors in the green hydrogen sector and their relations in Luxembourg. As a central European country with strategic political and geographic relevance, Luxembourg offers a timely case for analyzing public perception before the large-scale implementation of green hydrogen. Observing this early stage allows for future comparative insights as the national hydrogen strategy progresses. Results show high expectations for green hydrogen in mobility and industry, but concerns persist over infrastructure costs, safety, and public awareness. Regional stakeholders demonstrate a strong willingness to collaborate, recognizing that local public acceptance still requires effort, particularly in areas such as clear and inclusive communication, sharing knowledge, and fostering trust. These findings provide practical insights for stakeholder engagement strategies and theoretical contributions to the study of social dynamics in sustainability transitions. Full article
Show Figures

Figure 1

18 pages, 2838 KB  
Article
Evaluating the Role of Hydrogen as an Energy Carrier: Perspectives on Low-Emission Applications
by Dominika Polakovičová and Miroslav Variny
Hydrogen 2025, 6(4), 86; https://doi.org/10.3390/hydrogen6040086 - 13 Oct 2025
Viewed by 547
Abstract
Application of low-emission hydrogen production methods in the decarbonization process remains a highly relevant topic, particularly in the context of sustainable hydrogen value chains. This study evaluates hydrogen applications beyond industry, focusing on its role as an energy carrier and applying multi-criteria decision [...] Read more.
Application of low-emission hydrogen production methods in the decarbonization process remains a highly relevant topic, particularly in the context of sustainable hydrogen value chains. This study evaluates hydrogen applications beyond industry, focusing on its role as an energy carrier and applying multi-criteria decision analysis (MCDA) to assess economics, environmental impact, efficiency, and technological readiness. The analysis confirmed that hydrogen use for heating was the most competitive non-industrial application (ranking first in 66%), with favorable efficiency and costs. Power generation placed among the top two alternatives in 75% of cases. Transport end-use was less suitable due to compression requirements, raising emissions to 272–371 g CO2/kg H2 and levelizing the cost of hydrogen (LCOH) to 13–17 EUR/kg. When H2 transport was included, new pipelines and compressed H2 clearly outperformed other methods for short- and long-distances, adding only 3.2–3.9% to overall LCOH. Sensitivity analysis confirmed that electricity price variations had a stronger influence on LCOH than capital expenditures. Comparing electrolysis technologies yielded that, proton-exchange membrane and solid oxide reduced costs by 12–20% and CO2 emissions by 15–25% compared to alkaline. The study highlights heating end-use and compressed hydrogen and pipeline transport, proving MCDA to be useful for selecting scalable pathways. Full article
Show Figures

Figure 1

15 pages, 3399 KB  
Article
Design and Optimization of a Solar Parabolic Dish for Steam Generation in a Blue Hydrogen Production Plant
by Taher Maatallah, Mussad Al-Zahrani, Salman Hilal, Abdullah Alsubaie, Mohammad Aljohani, Murad Alghamdi, Faisal Almansour, Loay Awad and Sajid Ali
Hydrogen 2025, 6(4), 85; https://doi.org/10.3390/hydrogen6040085 - 13 Oct 2025
Viewed by 452
Abstract
The integration of renewable energy into industrial processes is crucial for reducing the carbon footprint of conventional hydrogen production. This work presents detailed design, optical–thermal simulation, and performance analysis of a solar parabolic dish (SPD) system for supplying high-temperature steam to a Steam [...] Read more.
The integration of renewable energy into industrial processes is crucial for reducing the carbon footprint of conventional hydrogen production. This work presents detailed design, optical–thermal simulation, and performance analysis of a solar parabolic dish (SPD) system for supplying high-temperature steam to a Steam Methane Reforming (SMR) plant. A 5 m diameter dish with a focal length of 3 m was designed and optimized using COMSOL Multiphysics (version 6.2) and MATLAB (version R2023a). Optical ray tracing confirmed a geometric concentration ratio of 896×, effectively focusing solar irradiation onto a helical cavity receiver. Thermal–fluid simulations demonstrated the system’s capability to superheat steam to 551 °C at a mass flow rate of 0.0051 kg/s, effectively meeting the stringent thermal requirements for SMR. The optimized SPD system, with a 5 m dish diameter and 3 m focal length, was designed to supply 10% of the total process heat (≈180 GJ/day). This contribution reduces natural gas consumption and leads to annual fuel savings of approximately 141,000 SAR (Saudi Riyal), along with a substantial reduction in CO2 emissions. These quantitative results confirm the SPD as both a technically reliable and economically attractive solution for sustainable blue hydrogen production. Full article
Show Figures

Figure 1

29 pages, 5680 KB  
Article
Injection Strategies in a Hydrogen SI Engine: Parameter Selection and Comparative Analysis
by Oleksandr Osetrov and Rainer Haas
Hydrogen 2025, 6(4), 84; https://doi.org/10.3390/hydrogen6040084 - 11 Oct 2025
Viewed by 395
Abstract
Injection strategies play a crucial role in determining hydrogen engine performance. The diversity of these strategies and the limited number of comparative studies highlight the need for further investigation. This study focuses on the analysis, parameter selection, and comparison of single early and [...] Read more.
Injection strategies play a crucial role in determining hydrogen engine performance. The diversity of these strategies and the limited number of comparative studies highlight the need for further investigation. This study focuses on the analysis, parameter selection, and comparison of single early and late direct injection, single injection with ignition occurring during injection (the so-called jet-guided operation), and dual injection in a hydrogen spark-ignition engine. The applicability and effectiveness of these injection strategies are assessed using contour maps, with ignition timing and start of injection as coordinates representing equal levels of key engine parameters. Based on this approach, injection and ignition settings are selected for a range of engine operating modes. Simulations of engine performance under different load conditions are carried out using the selected parameters for each strategy. The results indicate that the highest indicated thermal efficiencies are achieved with single late injection, while the lowest occur with dual injection. At the same time, both dual injection and jet-guided operation provide advantages in terms of knock suppression, peak pressure reduction, and reduced nitrogen oxide emissions. Full article
Show Figures

Figure 1

16 pages, 1476 KB  
Article
Feasibility of Using Rainwater for Hydrogen Production via Electrolysis: Experimental Evaluation and Ionic Analysis
by João Victor Torres A. F. Dutra, Michaela Kroeppl and Christina Toigo
Hydrogen 2025, 6(4), 83; https://doi.org/10.3390/hydrogen6040083 - 11 Oct 2025
Viewed by 665
Abstract
This study evaluates the feasibility of employing rainwater as an alternative feedstock for hydrogen production via electrolysis. While conventional systems typically rely on high-purity water—such as deionized or distilled variants—these can be cost-prohibitive and environmentally intensive. Rainwater, being naturally available and minimally treated, [...] Read more.
This study evaluates the feasibility of employing rainwater as an alternative feedstock for hydrogen production via electrolysis. While conventional systems typically rely on high-purity water—such as deionized or distilled variants—these can be cost-prohibitive and environmentally intensive. Rainwater, being naturally available and minimally treated, presents a potential sustainable alternative. In this work, a series of comparative experiments was conducted using a proton exchange membrane electrolyzer system operating with both deionized water and rainwater collected from different Austrian locations. The chemical composition of rainwater samples was assessed through inductively coupled plasma, ion chromatography and visual rapid tests to identify impurities and ionic profiles. The electrolyzer’s performance was evaluated under equivalent operating conditions. Results indicate that rainwater, in some cases, yielded comparable or marginally superior efficiency compared to deionized water, attributed to its inherent ionic content. The study also examines the operational risks linked to trace contaminants and explores possible strategies for their mitigation. Full article
Show Figures

Graphical abstract

20 pages, 3635 KB  
Article
Theoretical Thermal Management Concepts of Recovery Heat Waste in Solid Oxide Fuel Cell System
by Georgi D. Todorov, Todor Todorov, Konstantin Kamberov and Grazia Lo Sciuto
Hydrogen 2025, 6(4), 82; https://doi.org/10.3390/hydrogen6040082 - 9 Oct 2025
Viewed by 691
Abstract
Solid oxide electrolysis cells (SOEC) system has potential to offer an efficient green hydrogen production technology. However, the significant cost of this technology is related to the high operating temperatures, materials and thermal management including the waste heat. Recovering the waste heat can [...] Read more.
Solid oxide electrolysis cells (SOEC) system has potential to offer an efficient green hydrogen production technology. However, the significant cost of this technology is related to the high operating temperatures, materials and thermal management including the waste heat. Recovering the waste heat can be conducted through techniques to reduce the overall energy consumption. This approach aims to improve accuracy and efficiency by recovering and reusing the heat that would otherwise be lost. In this paper, thermal energy models are proposed based on waste heat recovery methodologies to utilize the heat from outlet fluids within the SOEC system. The mathematical methods for calculating thermal energy and energy transfer in SOEC systems have involved the principles of heat transfer. To address this, different simplified thermal models are developed in Simulink Matlab R2025b. The obtained results for estimating proper thermal energy for heating incoming fluids and recycled heat are discussed and compared to determine the efficient and potential thermal model for improvement the waste heat recovery. Full article
Show Figures

Graphical abstract

19 pages, 1397 KB  
Article
Hydrogen Pipelines Safety Using System Dynamics
by Maryam Shourideh, Sirous Yasseri and Hamid Bahai
Hydrogen 2025, 6(4), 81; https://doi.org/10.3390/hydrogen6040081 - 7 Oct 2025
Viewed by 721
Abstract
With the global expansion of hydrogen infrastructure, the safe and efficient transportation of hydrogen is becoming more important. In this study, several technical factors, including material degradation, pressure variations, and monitoring effectiveness, that influence hydrogen transportation using pipelines are examined using system dynamics. [...] Read more.
With the global expansion of hydrogen infrastructure, the safe and efficient transportation of hydrogen is becoming more important. In this study, several technical factors, including material degradation, pressure variations, and monitoring effectiveness, that influence hydrogen transportation using pipelines are examined using system dynamics. The results show that hydrogen embrittlement, which is the result of microstructural trapping and limited diffusion in certain steels, can have a profound effect on pipeline integrity. Material incompatibility and pressure fluctuations deepen fatigue damage and leakage risk. Moreover, pipeline monitoring inefficiency, combined with hydrogen’s high flammability and diffusivity, can raise serious safety issues. An 80% decrease in monitoring efficiency will result in a 52% reduction in the total hydrogen provided to the end users. On the other hand, technical risks such as pressure fluctuations and material weakening from hydrogen embrittlement also affect overall system performance. It is essential to understand that real-time detection using hydrogen monitoring is particularly important and will lower the risk of leakage. It is crucial to know where hydrogen is lost and how it impacts transport efficiency. The model offers practical insights for developing stronger and more reliable hydrogen transport systems, thereby supporting the transition to a low-carbon energy future. Full article
Show Figures

Figure 1

44 pages, 9261 KB  
Review
Advances in Type IV Tanks for Safe Hydrogen Storage: Materials, Technologies and Challenges
by Francesco Piraino, Leonardo Pagnotta, Orlando Corigliano, Matteo Genovese and Petronilla Fragiacomo
Hydrogen 2025, 6(4), 80; https://doi.org/10.3390/hydrogen6040080 - 3 Oct 2025
Viewed by 2705
Abstract
This paper provides a comprehensive review of Type IV hydrogen tanks, with a focus on materials, manufacturing technologies and structural issues related to high-pressure hydrogen storage. Recent advances in the use of advanced composite materials, such as carbon fibers and polyamide liners, useful [...] Read more.
This paper provides a comprehensive review of Type IV hydrogen tanks, with a focus on materials, manufacturing technologies and structural issues related to high-pressure hydrogen storage. Recent advances in the use of advanced composite materials, such as carbon fibers and polyamide liners, useful for improving mechanical strength and permeability, have been reviewed. The present review also discusses solutions to reduce hydrogen blistering and embrittlement, as well as exploring geometric optimization methodologies and manufacturing techniques, such as helical winding. Additionally, emerging technologies, such as integrated smart sensors for real-time monitoring of tank performance, are explored. The review concludes with an assessment of future trends and potential solutions to overcome current technical limitations, with the aim of fostering a wider adoption of Type IV tanks in mobility and stationary applications. Full article
Show Figures

Figure 1

9 pages, 669 KB  
Article
Analysis of Equipment Failures as a Contributor to Hydrogen Refuelling Stations Incidents
by Rialivhuwa Nekhwevha, Daniel M. Madyira and Samuel L. Gqibani
Hydrogen 2025, 6(4), 79; https://doi.org/10.3390/hydrogen6040079 - 3 Oct 2025
Viewed by 647
Abstract
Hydrogen is a sustainable, clean source of energy and a viable alternative to carbon-based fossil fuels. To support the transport sector’s transition from fossil fuels to hydrogen, a hydrogen refuelling station network is being developed to refuel hydrogen-powered vehicles. However, hydrogen’s inherent properties [...] Read more.
Hydrogen is a sustainable, clean source of energy and a viable alternative to carbon-based fossil fuels. To support the transport sector’s transition from fossil fuels to hydrogen, a hydrogen refuelling station network is being developed to refuel hydrogen-powered vehicles. However, hydrogen’s inherent properties present a significant safety challenge, and there have been several hydrogen incidents noted, with severe impacts to people and assets reported from operational hydrogen refuelling stations worldwide. This paper presents the outcome of an analysis of hydrogen incidents that occurred at hydrogen refuelling stations. For this purpose, the HIAD 2.1 and H2tool.org databases were used for the collection of hydrogen incidents. Forty-five incidents were reviewed and analysed to determine the frequent equipment failures in the hydrogen refuelling stations and the underlying causes. This study adopted a mixed research approach for the analysis of the incidents in the hydrogen refuelling stations. The analysis reveals that storage tank failures accounted for 40% of total reported incidents, hydrogen dispenser failures accounted for 33%, compressors accounted for 11%, valves accounted for 9%, and pipeline failures accounted for 7%. To enable the safe operation of hydrogen refuelling stations, hazards must be understood, effective barriers implemented, and learning from past incidents incorporated into safety protocols to prevent future incidents. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop