Previous Issue
Volume 6, September
 
 

Hydrogen, Volume 6, Issue 4 (December 2025) – 30 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
31 pages, 6989 KB  
Article
Feasibility and Sensitivity Analysis of an Off-Grid PV/Wind Hybrid Energy System Integrated with Green Hydrogen Production: A Case Study of Algeria
by Ayoub Boutaghane, Mounir Aksas, Djafar Chabane and Nadhir Lebaal
Hydrogen 2025, 6(4), 103; https://doi.org/10.3390/hydrogen6040103 - 6 Nov 2025
Abstract
Algeria’s transition toward sustainable energy requires the exploitation of its abundant solar and wind resources for green hydrogen production. This study assesses the techno-economic feasibility of an off-grid PV/wind hybrid system integrated with a hydrogen subsystem (electrolyzer, fuel cell, and hydrogen storage) to [...] Read more.
Algeria’s transition toward sustainable energy requires the exploitation of its abundant solar and wind resources for green hydrogen production. This study assesses the techno-economic feasibility of an off-grid PV/wind hybrid system integrated with a hydrogen subsystem (electrolyzer, fuel cell, and hydrogen storage) to supply both electricity and hydrogen to decentralized sites in Algeria. Using HOMER Pro, five representative Algerian regions were analyzed, accounting for variations in solar irradiation, wind speed, and groundwater availability. A deferrable water-extraction and treatment load was incorporated to model the water requirements of the electrolyzer. In addition, a comprehensive sensitivity analysis was conducted on solar irradiation, wind speed, and the capital costs of PV panels and wind turbines to capture the effects of renewable resource and investment cost fluctuations. The results indicate significant regional variation, with the levelized cost of energy (LCOE) ranging from 0.514 to 0.868 $/kWh, the levelized cost of hydrogen (LCOH) between 8.31 and 12.4 $/kg, and the net present cost (NPC) between 10.28 M$ and 17.7 M$, demonstrating that all cost metrics are highly sensitive to these variations. Full article
Show Figures

Graphical abstract

17 pages, 2513 KB  
Article
Bio-Aerodynamic Flow Field Optimization in PEM Fuel Cells: A Peregrine Falcon-Inspired Flow Field Approach
by Mohamed-Amine Babay, Mustapha Adar, Mohamed Essam El Messoussi, Ahmed Chebak and Mustapha Mabrouki
Hydrogen 2025, 6(4), 102; https://doi.org/10.3390/hydrogen6040102 - 5 Nov 2025
Abstract
To simultaneously improve mass transfer and minimize pressure drop in proton exchange membrane fuel cells (PEMFCs), this study proposes a novel bionic flow field inspired by the streamlined abdominal structure of the peregrine falcon. A three-dimensional channel geometry is developed from this biological [...] Read more.
To simultaneously improve mass transfer and minimize pressure drop in proton exchange membrane fuel cells (PEMFCs), this study proposes a novel bionic flow field inspired by the streamlined abdominal structure of the peregrine falcon. A three-dimensional channel geometry is developed from this biological prototype and integrated into a single-channel PEMFC model for numerical simulation. A series of computational fluid dynamics (CFD) analyses compare the new design against conventional straight, trapezoidal, and sinusoidal flow fields. The results demonstrate that the falcon-inspired configuration enhances oxygen delivery, optimizes water management, and achieves a more uniform current density distribution. Remarkably, the design delivers a 9.45% increase in peak power density while significantly reducing pressure drop compared to the straight channel. These findings confirm that biologically optimized aerodynamic structures can provide tangible benefits in PEMFC flow field design by boosting electrochemical performance and lowering parasitic losses. Beyond fuel cells, this bio-inspired approach offers a transferable methodology for advanced energy conversion systems where efficient fluid transport is essential. Full article
Show Figures

Figure 1

25 pages, 3922 KB  
Article
Hydrogen Blending as a Transitional Solution for Decarbonizing the Jordanian Electricity Generation Sector
by Hani Muhsen and Rashed Tarawneh
Hydrogen 2025, 6(4), 101; https://doi.org/10.3390/hydrogen6040101 - 4 Nov 2025
Abstract
While renewable energy deployment has accelerated in recent years, fossil fuels continue to play a dominant role in electricity generation worldwide. This necessitates the development of transitional strategies to mitigate greenhouse gas emissions from this sector while gradually reducing reliance on fossil fuels. [...] Read more.
While renewable energy deployment has accelerated in recent years, fossil fuels continue to play a dominant role in electricity generation worldwide. This necessitates the development of transitional strategies to mitigate greenhouse gas emissions from this sector while gradually reducing reliance on fossil fuels. This study investigates the potential of blending green hydrogen with natural gas as a transitional solution to decarbonize Jordan’s electricity sector. The research presents a comprehensive techno-economic and environmental assessment evaluating the compatibility of the Arab Gas Pipeline and major power plants with hydrogen–natural gas mixtures, considering blending limits, energy needs, environmental impacts, and economic feasibility under Jordan’s 2030 energy scenario. The findings reveal that hydrogen blending between 5 and 20 percent can be technically achieved without major infrastructure modifications. The total hydrogen demand is estimated at 24.75 million kilograms per year, with a reduction of 152.7 thousand tons of carbon dioxide per annum. This requires 296,980 cubic meters of water per year, equivalent to only 0.1 percent of the National Water Carrier’s capacity, indicating a negligible impact on national water resources. Although technically and environmentally feasible, the project remains economically constrained, requiring a carbon price of $1835.8 per ton of carbon dioxide for economic neutrality. Full article
Show Figures

Figure 1

13 pages, 2346 KB  
Article
Hydrogen Diffusivity and Hydrogen Traps Behavior of a Tempered and Untempered Martensitic Steel
by Edgar López-Martínez, Samuel Eduardo Salud-Ordon, Octavio Vázquez-Gómez, Miguel Iván Dávila-Pérez, Julio C. Villalobos and Jesus Israel Barraza-Fierro
Hydrogen 2025, 6(4), 100; https://doi.org/10.3390/hydrogen6040100 - 4 Nov 2025
Viewed by 54
Abstract
The effect of tempering temperature and tempering time on the density of hydrogen traps, hydrogen diffusivity, and microhardness in a vanadium-modified AISI 4140 martensitic steel was determined. Tempering parameters were selected to activate the second, third, and fourth tempering stages. These conditions were [...] Read more.
The effect of tempering temperature and tempering time on the density of hydrogen traps, hydrogen diffusivity, and microhardness in a vanadium-modified AISI 4140 martensitic steel was determined. Tempering parameters were selected to activate the second, third, and fourth tempering stages. These conditions were intended to promote specific microstructural transformations. Permeability tests were performed using the electrochemical method developed by Devanathan and Stachurski, and microhardness was measured before and after these tests. It was observed that hydrogen diffusivity is inversely proportional to microhardness, while the density of hydrogen traps is directly proportional to microhardness. The lowest hydrogen diffusivity, the highest trap density, and the highest microhardness were obtained in the as-quenched condition and the tempering at 286 °C for 0.25 h. In contrast, tempering at a temperature corresponding to the fourth tempering stage increases hydrogen diffusivity and decreases the density of hydrogen traps and microhardness. However, as the tempering time or temperature increases, the opposite occurs, which is attributed to the formation of alloy carbides. Finally, hydrogen has a softening effect for tempering temperatures corresponding to the fourth tempering stage, tempering times of 0.25 h, and in the as-quenched condition. However, with increasing tempering time, hydrogen has a hardening effect. Full article
Show Figures

Figure 1

21 pages, 2611 KB  
Article
Hydrogen-Rich Gaseous Mixture for Enhanced Combustion in a Flex-Fuel Engine: An Experimental Analysis
by Lucimar Venancio Amaral, Augusto César Teixeira Malaquias, Gabriel Heleno de Paula Araújo, Marcos de Carvalho Torres Filho, Marco André Fraga, Ricardo Belchior Torres, Rita de Cássia de Oliveira Sebastião and Fabricio José Pacheco Pujatti
Hydrogen 2025, 6(4), 99; https://doi.org/10.3390/hydrogen6040099 - 3 Nov 2025
Viewed by 110
Abstract
This experimental study examines the effect of adding a hydrogen-enriched synthetic gaseous mixture (HGM’) on the combustion and fuel conversion efficiency of a single-cylinder research engine (SCRE). The work assesses the viability of using this mixture as a supplemental fuel for flex-fuel engines [...] Read more.
This experimental study examines the effect of adding a hydrogen-enriched synthetic gaseous mixture (HGM’) on the combustion and fuel conversion efficiency of a single-cylinder research engine (SCRE). The work assesses the viability of using this mixture as a supplemental fuel for flex-fuel engines operating under urban driving cycling conditions. An SCRE, the AVL 5405 model, was employed, operating with ethanol and gasoline as primary fuels through direct injection (DI) and a volumetric compression ratio of 11.5:1. The HGM’ was added in the engine’s intake via fumigation (FS), with volumetric proportions ranging from 5% to 20%. The tests were executed at 1900 rpm and 2500 rpm engine speeds, with indicated mean effective pressures (IMEPs) of 3 and 5 bar. When HGM’s 5% v/v was applied at 2500 rpm, the mean indicated effective pressure of 3 bar was observed. A decrease of 21% and 16.5% in the ISFC was observed when using gasoline and ethanol as primary fuels, respectively. The usage of an HGM’ combined with gasoline or ethanol, proved to be a relevant and economically accessible strategy in the improvement of the conversion efficiency of combustion fuels, once this gaseous mixture could be obtained through the vapor-catalytic reforming of ethanol, giving up the use of turbochargers or lean and ultra-lean burn strategies. These results demonstrated the potential of using HGM’ as an effective alternative to increase the efficiency of flex-fuel engines. Full article
(This article belongs to the Special Issue Hydrogen for a Clean Energy Future)
Show Figures

Figure 1

19 pages, 1791 KB  
Article
Cost-Optimal Design of a Stand-Alone PV-Driven Hydrogen Production and Refueling Station Using Genetic Algorithms
by Domenico Vizza, Roberta Caponi, Umberto Di Matteo and Enrico Bocci
Hydrogen 2025, 6(4), 98; https://doi.org/10.3390/hydrogen6040098 - 3 Nov 2025
Viewed by 221
Abstract
Driven by the growing availability of funding opportunities, electrolyzers have become increasingly accessible, unlocking significant potential for large-scale green hydrogen production. The goal of this investigation is to develop a techno-economic optimization framework for the design of a stand-alone photovoltaic (PV)-driven hydrogen production [...] Read more.
Driven by the growing availability of funding opportunities, electrolyzers have become increasingly accessible, unlocking significant potential for large-scale green hydrogen production. The goal of this investigation is to develop a techno-economic optimization framework for the design of a stand-alone photovoltaic (PV)-driven hydrogen production and refueling station, with the explicit objective of minimizing the levelized cost of hydrogen (LCOH). The system integrates PV generation, a proton-exchange-membrane electrolyzer, battery energy storage, compression, and high-pressure hydrogen storage to meet the daily demand of a fleet of fuel cell buses. Results show that the optimal configuration achieves an LCOH of 11 €/kg when only fleet demand is considered, whereas if surplus hydrogen sales are accounted for, the LCOH reduces to 7.98 €/kg. The analysis highlights that more than 75% of total investment costs are attributable to PV and electrolysis, underscoring the importance of capital incentives. Financial modeling indicates that a subsidy of about 58.4% of initial CAPEX is required to ensure a 10% internal rate of return under EU market conditions. The proposed methodology provides a reproducible decision-support tool for optimizing off-grid hydrogen refueling infrastructure and assessing policy instruments to accelerate hydrogen adoption in heavy-duty transport. Full article
Show Figures

Figure 1

21 pages, 2454 KB  
Article
Techno-Economic Analysis of Green Hydrogen Energy Production in West Africa
by Kokoutse Gawou, Obindah Gershon, Joseph Kwasi Asafo and Sonia Agbonjaru
Hydrogen 2025, 6(4), 97; https://doi.org/10.3390/hydrogen6040097 - 3 Nov 2025
Viewed by 302
Abstract
The United Nations has set a global vision towards emissions reduction and green growth through the Sustainable Development Goals (SDGs). Towards the realisation of SDGS 7, 9, and 13, we focus on green hydrogen production as a potential pathway to achievement. Green hydrogen, [...] Read more.
The United Nations has set a global vision towards emissions reduction and green growth through the Sustainable Development Goals (SDGs). Towards the realisation of SDGS 7, 9, and 13, we focus on green hydrogen production as a potential pathway to achievement. Green hydrogen, produced via water electrolysis powered by renewable energy sources, represents a pivotal solution towards climate change mitigation. Energy access in West Africa remains a challenge, and dependency on fossil fuels persists. So, green hydrogen offers an opportunity to harness abundant solar resources, reduce carbon emissions, and foster economic development. This study evaluates the techno-economic feasibility of green hydrogen production in five West African countries: Ghana, Nigeria, Mali, Niger, and Senegal. The analyses cover the solar energy potential, hydrogen production capacities, and economic viability using the Levelised Cost of Hydrogen (LCOH) and Net Present Value (NPV). Results indicate substantial annual hydrogen production potential with LCOH values competitive with global benchmarks amidst the EU’s Carbon Border Adjustment Mechanism (CBAM). Despite this potential, several barriers exist, including high initial capital costs, policy and regulatory gaps, limited technical capacity, and water resource constraints. We recommend targeted strategies for strengthening policy frameworks, fostering international partnerships, enhancing regional infrastructure integration, and investing in capacity-building initiatives. By addressing these barriers, West Africa can be a key player in the global green hydrogen market. Full article
Show Figures

Figure 1

22 pages, 2082 KB  
Review
A Systematic Analysis of Life Cycle Assessments in Hydrogen Energy Systems
by Miguel Simão Coelho, Pedro Jorge Coelho, Ana Filipa Ferreira and Elena Surra
Hydrogen 2025, 6(4), 96; https://doi.org/10.3390/hydrogen6040096 - 2 Nov 2025
Viewed by 208
Abstract
Hydrogen plays a central role in ensuring the fulfillment of the climate and energy goals established in the Paris Agreement. To implement sustainable and resilient hydrogen economies, it is essential to analyze the entire hydrogen value chain, following a Life Cycle Assessment (LCA) [...] Read more.
Hydrogen plays a central role in ensuring the fulfillment of the climate and energy goals established in the Paris Agreement. To implement sustainable and resilient hydrogen economies, it is essential to analyze the entire hydrogen value chain, following a Life Cycle Assessment (LCA) methodology. To determine the current methodologies, approaches, and research tendencies adopted when performing LCA of hydrogen energy systems, a systematic literature analysis is carried out in the present study. The choices regarding the “goal and scope definition”, “life cycle inventory analysis”, and “life cycle impact assessment” in 70 scientific papers were assessed. Based on the collected information, it was concluded that there are no similar LCA studies, since specificities introduced in the system boundaries, functional unit, production, storage, transportation, end-use technologies, geographical specifications, and LCA methodological approaches, among others, introduce differences among studies. This lack of harmonization triggers the need to define harmonization protocols that allow for a fair comparison between studies; otherwise, the decision-making process in the hydrogen energy sector may be influenced by methodological choices. Although initial efforts have been made, their adoption remains limited, and greater promotion is needed to encourage wider implementation. Full article
Show Figures

Figure 1

16 pages, 1654 KB  
Article
Computational Fluid Dynamic Modeling and Parametric Optimization of Hydrogen Adsorption in Stationary Hydrogen Tanks
by A. Ousegui and B. Marcos
Hydrogen 2025, 6(4), 95; https://doi.org/10.3390/hydrogen6040095 - 1 Nov 2025
Viewed by 136
Abstract
This study investigates hydrogen storage enhancement through adsorption in porous materials by coupling the Dubinin–Astakhov (D-A) adsorption model with H2 conservation equations (mass, momentum, and energy). The resulting system of partial differential equations (PDEs) was solved numerically using the finite element method [...] Read more.
This study investigates hydrogen storage enhancement through adsorption in porous materials by coupling the Dubinin–Astakhov (D-A) adsorption model with H2 conservation equations (mass, momentum, and energy). The resulting system of partial differential equations (PDEs) was solved numerically using the finite element method (FEM). Experimental work using activated carbon as an adsorbent was carried out to validate the model. The comparison showed good agreement in terms of temperature distribution, average pressure of the system, and the amount of adsorbed hydrogen (H2). Further simulations with different adsorbents indicated that compact metal–organic framework 5 (MOF-5) is the most effective material in terms of H2 adsorption. Additionally, the pair (273 K, 800 s) remains the optimal combination of injection temperature and time. The findings underscore the prospective advantages of optimized MOF-5-based systems for enhanced hydrogen storage. These systems offer increased capacity and safety compared to traditional adsorbents. Subsequent research should investigate multi-objective optimization of material properties and system geometry, along with evaluating dynamic cycling performance in practical operating conditions. Additionally, experimental validation on MOF-5-based storage prototypes would further reinforce the model’s predictive capabilities for industrial applications. Full article
Show Figures

Figure 1

17 pages, 1620 KB  
Article
Integrated Modeling of Steam Methane Reforming and Carbon Capture for Blue Hydrogen Production
by Kubilay Bayramoğlu and Tolga Bayramoğlu
Hydrogen 2025, 6(4), 94; https://doi.org/10.3390/hydrogen6040094 - 1 Nov 2025
Viewed by 260
Abstract
The increasing global demand for clean energy highlights hydrogen as a strategic energy carrier due to its high energy density and carbon-free utilization. Currently, steam methane reforming (SMR) is the most widely applied method for hydrogen production; however, its high CO2 emissions [...] Read more.
The increasing global demand for clean energy highlights hydrogen as a strategic energy carrier due to its high energy density and carbon-free utilization. Currently, steam methane reforming (SMR) is the most widely applied method for hydrogen production; however, its high CO2 emissions undermine the environmental benefits of hydrogen. Blue hydrogen production integrates carbon capture and storage (CCS) technologies to overcome this drawback in the SMR process, significantly reducing greenhouse gas emissions. This study integrated a MATLAB-R2025b-based plug flow reactor (PFR) model for SMR kinetics with an Aspen HYSYS-based CCS system. The effects of reformer temperature (600–1000 °C) and steam-to-carbon (S/C) ratio (1–5) on hydrogen yield and CO2 emission intensity were investigated. Results show that hydrogen production increases with temperature, reaching maximum conversion at 850–1000 °C, while the optimum performance is achieved at S/C ratios of 2.5–3.0, balancing high hydrogen yield and minimized methane slip. Conventional SMR generates 9–12 kgCO2/kgH2 emissions, whereas SMR + CCS reduces this to 2–3 kgCO2/kgH2, achieving more than 75% reduction. The findings demonstrate that SMR + CCS integration effectively mitigates emissions and provides a sustainable bridging technology for blue hydrogen production, supporting the transition toward low-carbon energy systems. Full article
Show Figures

Figure 1

26 pages, 4657 KB  
Article
Robust Optimisation of an Online Energy and Power Management Strategy for a Hybrid Fuel Cell Battery Shunting Locomotive
by Thomas Maugis, Jérémy Ziliani, Samuel Hibon, Didier Chamagne and David Bouquain
Hydrogen 2025, 6(4), 93; https://doi.org/10.3390/hydrogen6040093 - 1 Nov 2025
Viewed by 108
Abstract
Shunting locomotives exhibit a wide and unpredictable range of power profiles. This unpredictability makes it impossible to rely on offline optimizations or predictive methods combined with online optimization. To maintain optimal performance across this broad range of operating conditions, the online control strategy [...] Read more.
Shunting locomotives exhibit a wide and unpredictable range of power profiles. This unpredictability makes it impossible to rely on offline optimizations or predictive methods combined with online optimization. To maintain optimal performance across this broad range of operating conditions, the online control strategy must be robust. This article proposes a robust method to determine the optimal parameter combinations for an online energy management strategy of a hybrid fuel cell battery shunting locomotive, ensuring optimality across all scenario conditions. The first step involves extracting a statistically representative subspace for simulation, both in terms of parameter combinations and scenario conditions. A response surface model (numerical twin) is then constructed to extrapolate results across the entire space based on this simulated subspace. Using this model, the optimal solution is identified through metaheuristic algorithms (minimization search). Finally, the proposed solution is validated against a set of expert-defined scenarios. The result of the methodology ensures robust optimization across an infinite number of scenarios by minimizing the impact on both the fuel cell and the battery, without increasing mission costs. Full article
Show Figures

Figure 1

30 pages, 3738 KB  
Review
Hydrogen Propulsion Technologies for Aviation: A Review of Fuel Cell and Direct Combustion Systems Towards Decarbonising Medium-Haul Aircraft
by Daisan Gopalasingam, Bassam Rakhshani and Cristina Rodriguez
Hydrogen 2025, 6(4), 92; https://doi.org/10.3390/hydrogen6040092 - 20 Oct 2025
Viewed by 1147
Abstract
Hydrogen propulsion technologies are emerging as a key enabler for decarbonizing the aviation sector, especially for regional commercial aircraft. The evolution of aircraft propulsion technologies in recent years raises the question of the feasibility of a hydrogen propulsion system for beyond regional aircraft. [...] Read more.
Hydrogen propulsion technologies are emerging as a key enabler for decarbonizing the aviation sector, especially for regional commercial aircraft. The evolution of aircraft propulsion technologies in recent years raises the question of the feasibility of a hydrogen propulsion system for beyond regional aircraft. This paper presents a comprehensive review of hydrogen propulsion technologies, highlighting key advancements in component-level performance metrics. It further explores the technological transitions necessary to enable hydrogen-powered aircraft beyond the regional category. The feasibility assessment is based on key performance parameters, including power density, efficiency, emissions, and integration challenges, aligned with the targets set for 2035 and 2050. The adoption of hydrogen-electric powertrains for the efficient transition from KW to MW powertrains depends on transitions in fuel cell type, thermal management systems (TMS), lightweight electric machines and power electronics, and integrated cryogenic cooling architectures. While hydrogen combustion can leverage existing gas turbine architectures with relatively fewer integration challenges, it presents its technical hurdles, especially related to combustion dynamics, NOx emissions, and contrail formation. Advanced combustor designs, such as micromix, staged, and lean premixed systems, are being explored to mitigate these challenges. Finally, the integration of waste heat recovery technologies in the hydrogen propulsion system is discussed, demonstrating the potential to improve specific fuel consumption by up to 13%. Full article
Show Figures

Figure 1

23 pages, 666 KB  
Review
A Review of Caprock Integrity in Underground Hydrogen Storage Sites: Implication of Wettability, Interfacial Tension, and Diffusion
by Polyanthi-Maria Trimi, Spyridon Bellas, Ioannis Vakalas, Raoof Gholami, Vasileios Gaganis, Evangelia Gontikaki, Emmanuel Stamatakis and Ioannis V. Yentekakis
Hydrogen 2025, 6(4), 91; https://doi.org/10.3390/hydrogen6040091 - 20 Oct 2025
Viewed by 572
Abstract
As industry moves from fossil fuels to green energy, substituting hydrocarbons with hydrogen as an energy carrier seems promising. Hydrogen can be stored in salt caverns, depleted hydrocarbon fields, and saline aquifers. Among other criteria, these storage solutions must ensure storage safety and [...] Read more.
As industry moves from fossil fuels to green energy, substituting hydrocarbons with hydrogen as an energy carrier seems promising. Hydrogen can be stored in salt caverns, depleted hydrocarbon fields, and saline aquifers. Among other criteria, these storage solutions must ensure storage safety and prevent leakage. The ability of a caprock to prevent fluid from flowing out of the reservoir is, thus, of utmost importance. In this review, the main factors influencing fluid flow are examined. These are the wettability of the caprock formation, the interfacial tension (IFT) between the rock and the gas or liquid phases, and the ability of gases to diffuse through it. To achieve effective sealing, the caprock formation should possess low porosity, a disconnected or highly complicated pore system, low permeability, and remain strongly water-wet regardless of pressure and temperature conditions. In addition, it must exhibit low rock–liquid IFT, while presenting high rock–gas and liquid–gas IFT. Finally, the effective diffusion coefficient should be the lowest possible. Among all of the currently reviewed formations and minerals, the evaporites, low-organic-content shales, mudstones, muscovite, clays, and anhydrite have been identified as highly effective caprocks, offering excellent sealing capabilities and preventing hydrogen leakages. Full article
Show Figures

Figure 1

19 pages, 2000 KB  
Article
Techno-Economic Optimization of Hybrid Renewable Energy Systems (HRESs) and Feasibility Study on Replacing Diesel and Photovoltaic Systems with Hydrogen for Electrical and Small Deferrable Loads: Case Study of Cameroon
by Tabitha Christie Vartan Messana M’oboun, Nasser Yimen, Jorelle Larissa Meli’i, Andre Michel Pouth Nkoma and Philippe Njandjock Nouck
Hydrogen 2025, 6(4), 90; https://doi.org/10.3390/hydrogen6040090 - 19 Oct 2025
Viewed by 337
Abstract
To reduce the amount of harmful gases produced by fossil fuels, more environmentally friendly and sustainable alternatives are being proposed around the world. As a result, technologies for manufacturing hydrogen fuel cells and producing green hydrogen are becoming more widespread, with an impact [...] Read more.
To reduce the amount of harmful gases produced by fossil fuels, more environmentally friendly and sustainable alternatives are being proposed around the world. As a result, technologies for manufacturing hydrogen fuel cells and producing green hydrogen are becoming more widespread, with an impact on energy production and environmental protection. In many countries around the world, and in Africa in particular, leaders, scientists, and populations are considering switching from fossil fuels to so-called green energies. Hydrogen is therefore an interesting alternative that deserves to be explored, especially since both rural and urban populations have shown an interest in using it in the near future, which would reduce pollution and the proliferation of greenhouse gases, thereby mitigating global warming. The aim of this paper is to determine the hybrid energy system best suited to addressing the energy problem in the study area, and then to make successive substitutions of different energy sources, starting with the most polluting, in order to assess the possibilities for transitioning the energy used in the area to green hydrogen. To this end, this study began with a technical and economic analysis which, based on climatic parameters, led to the proposal of a PV/DG-BATTery system configuration, with a Net Present Cost (NPC) of USD 19,267 and an average Cost Of Energy (COE) of USD 0.4, and with a high proportion of CO2 emissions compared with the PV/H2GEN-BATT and H2GEN systems. The results of replacing fossil fuel generators with hydrogen generators are beneficial in terms of environmental protection and lead to a reduction in energy-related expenses of around 2.1 times the cost of diesel and a reduction in mass of around 2.7 times the mass of diesel. The integration of H2GEN, at high duty percentages, increases the Cost Of Energy, whether in a hybrid PV/H2GEN system or an H2GEN system. This shows the interest in the study country in using favorable duty proportions to make the use of hydrogen profitable. Full article
Show Figures

Figure 1

19 pages, 2287 KB  
Review
Hydrogen Adsorbents in the Vacuum Layer of Liquid Hydrogen Containers: Materials and Applications
by Meng Yu, Yang Wu, Jiake Wu, Yongxiang Zhu, Xiangjun Yu and Long Jiang
Hydrogen 2025, 6(4), 89; https://doi.org/10.3390/hydrogen6040089 - 15 Oct 2025
Viewed by 377
Abstract
Hydrogen serves as a key clean-energy carrier, with the main hurdles lying in safe, efficient transport and storage (gas or liquid) and in end-use energy conversion. Liquid hydrogen (LH), as a high-density method of storage and transportation, presents cryogenic insulation as its key [...] Read more.
Hydrogen serves as a key clean-energy carrier, with the main hurdles lying in safe, efficient transport and storage (gas or liquid) and in end-use energy conversion. Liquid hydrogen (LH), as a high-density method of storage and transportation, presents cryogenic insulation as its key technical issues. In LH storage tanks, the performance of high vacuum multilayer insulation (HVMLI) will decline due to hydrogen release and leakage from the microscopic pores of steel, which significantly destroy the vacuum layer. The accumulation of residual gases will accelerate thermal failure, shorten the service life of storage tanks and increase safety risks. Adsorption is the most effective strategy for removing residual gases. This review aims to elucidate materials, methods, and design approaches related to hydrogen storage. First, it summarizes adsorbents used in liquid hydrogen storage tanks, including cryogenic adsorbents, metal oxides, zeolite molecular sieves, and non-volatile compounds. Second, it explores experimental testing methods and applications of hydrogen adsorbents in storage tanks, analyzing key challenges faced in practical applications and corresponding countermeasures. Finally, it proposes research prospects for exploring novel adsorbents and developing integrated systems. Full article
Show Figures

Figure 1

14 pages, 2033 KB  
Article
Influence of Catalytic Support on Hydrogen Production from Glycerol Steam Reforming
by Jorge Feijoo, Rocío Maceiras, Victor Alfonsín, Nevin Aly and Alejandro de la Fuente
Hydrogen 2025, 6(4), 88; https://doi.org/10.3390/hydrogen6040088 - 14 Oct 2025
Viewed by 372
Abstract
The use of hydrogen as an energy carrier represents a promising alternative for mitigating climate change. However, its practical application requires achieving a high degree of purity throughout the production process. In this study, the influence of the type of catalytic support on [...] Read more.
The use of hydrogen as an energy carrier represents a promising alternative for mitigating climate change. However, its practical application requires achieving a high degree of purity throughout the production process. In this study, the influence of the type of catalytic support on H2 production via steam glycerol reforming was evaluated, with the objective of obtaining syngas with the highest possible H2 concentration. Three types of support were analyzed: two natural materials (zeolite and dolomite) and one metal oxide, alumina. Alumina and dolomite were coated with Ni at different loadings, while zeolite was only evaluated without Ni. Reforming experiments were carried out at a constant temperature of 850 °C, with continuous monitoring of H2, CO2, CO, and CH4 concentrations. The results showed that zeolite yielded the lowest H2 concentration (51%), mainly due to amorphization at high temperatures and the limited effectiveness of physical adsorption processes. In contrast, alumina and dolomite achieved H2 purities of around 70%, which increased with Ni loading. The improvement was particularly significant in dolomite, owing to its higher porosity and the recarbonation processes of CaO, enabling H2 purities of up to 90%. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production, Storage, and Utilization)
Show Figures

Figure 1

23 pages, 1004 KB  
Article
Who Is in and How? A Comprehensive Study on Stakeholder Perspectives in the Green Hydrogen Sector in Luxembourg
by Mariangela Vespa and Jan Hildebrand
Hydrogen 2025, 6(4), 87; https://doi.org/10.3390/hydrogen6040087 - 14 Oct 2025
Viewed by 433
Abstract
Green hydrogen has the potential to contribute to the decarbonization of the fossil fuel industry, and its development is expected to increase in the coming years. The social dynamics among the various actors in the green hydrogen sector are studied to understand their [...] Read more.
Green hydrogen has the potential to contribute to the decarbonization of the fossil fuel industry, and its development is expected to increase in the coming years. The social dynamics among the various actors in the green hydrogen sector are studied to understand their public perception. Using the technological innovation system research approach for the stakeholder analysis and the qualitative thematic analysis method for the interviews with experts, this study presents an overview of the actors in the green hydrogen sector and their relations in Luxembourg. As a central European country with strategic political and geographic relevance, Luxembourg offers a timely case for analyzing public perception before the large-scale implementation of green hydrogen. Observing this early stage allows for future comparative insights as the national hydrogen strategy progresses. Results show high expectations for green hydrogen in mobility and industry, but concerns persist over infrastructure costs, safety, and public awareness. Regional stakeholders demonstrate a strong willingness to collaborate, recognizing that local public acceptance still requires effort, particularly in areas such as clear and inclusive communication, sharing knowledge, and fostering trust. These findings provide practical insights for stakeholder engagement strategies and theoretical contributions to the study of social dynamics in sustainability transitions. Full article
Show Figures

Figure 1

18 pages, 2838 KB  
Article
Evaluating the Role of Hydrogen as an Energy Carrier: Perspectives on Low-Emission Applications
by Dominika Polakovičová and Miroslav Variny
Hydrogen 2025, 6(4), 86; https://doi.org/10.3390/hydrogen6040086 - 13 Oct 2025
Viewed by 444
Abstract
Application of low-emission hydrogen production methods in the decarbonization process remains a highly relevant topic, particularly in the context of sustainable hydrogen value chains. This study evaluates hydrogen applications beyond industry, focusing on its role as an energy carrier and applying multi-criteria decision [...] Read more.
Application of low-emission hydrogen production methods in the decarbonization process remains a highly relevant topic, particularly in the context of sustainable hydrogen value chains. This study evaluates hydrogen applications beyond industry, focusing on its role as an energy carrier and applying multi-criteria decision analysis (MCDA) to assess economics, environmental impact, efficiency, and technological readiness. The analysis confirmed that hydrogen use for heating was the most competitive non-industrial application (ranking first in 66%), with favorable efficiency and costs. Power generation placed among the top two alternatives in 75% of cases. Transport end-use was less suitable due to compression requirements, raising emissions to 272–371 g CO2/kg H2 and levelizing the cost of hydrogen (LCOH) to 13–17 EUR/kg. When H2 transport was included, new pipelines and compressed H2 clearly outperformed other methods for short- and long-distances, adding only 3.2–3.9% to overall LCOH. Sensitivity analysis confirmed that electricity price variations had a stronger influence on LCOH than capital expenditures. Comparing electrolysis technologies yielded that, proton-exchange membrane and solid oxide reduced costs by 12–20% and CO2 emissions by 15–25% compared to alkaline. The study highlights heating end-use and compressed hydrogen and pipeline transport, proving MCDA to be useful for selecting scalable pathways. Full article
Show Figures

Figure 1

15 pages, 3399 KB  
Article
Design and Optimization of a Solar Parabolic Dish for Steam Generation in a Blue Hydrogen Production Plant
by Taher Maatallah, Mussad Al-Zahrani, Salman Hilal, Abdullah Alsubaie, Mohammad Aljohani, Murad Alghamdi, Faisal Almansour, Loay Awad and Sajid Ali
Hydrogen 2025, 6(4), 85; https://doi.org/10.3390/hydrogen6040085 - 13 Oct 2025
Viewed by 368
Abstract
The integration of renewable energy into industrial processes is crucial for reducing the carbon footprint of conventional hydrogen production. This work presents detailed design, optical–thermal simulation, and performance analysis of a solar parabolic dish (SPD) system for supplying high-temperature steam to a Steam [...] Read more.
The integration of renewable energy into industrial processes is crucial for reducing the carbon footprint of conventional hydrogen production. This work presents detailed design, optical–thermal simulation, and performance analysis of a solar parabolic dish (SPD) system for supplying high-temperature steam to a Steam Methane Reforming (SMR) plant. A 5 m diameter dish with a focal length of 3 m was designed and optimized using COMSOL Multiphysics (version 6.2) and MATLAB (version R2023a). Optical ray tracing confirmed a geometric concentration ratio of 896×, effectively focusing solar irradiation onto a helical cavity receiver. Thermal–fluid simulations demonstrated the system’s capability to superheat steam to 551 °C at a mass flow rate of 0.0051 kg/s, effectively meeting the stringent thermal requirements for SMR. The optimized SPD system, with a 5 m dish diameter and 3 m focal length, was designed to supply 10% of the total process heat (≈180 GJ/day). This contribution reduces natural gas consumption and leads to annual fuel savings of approximately 141,000 SAR (Saudi Riyal), along with a substantial reduction in CO2 emissions. These quantitative results confirm the SPD as both a technically reliable and economically attractive solution for sustainable blue hydrogen production. Full article
Show Figures

Figure 1

29 pages, 5680 KB  
Article
Injection Strategies in a Hydrogen SI Engine: Parameter Selection and Comparative Analysis
by Oleksandr Osetrov and Rainer Haas
Hydrogen 2025, 6(4), 84; https://doi.org/10.3390/hydrogen6040084 - 11 Oct 2025
Viewed by 325
Abstract
Injection strategies play a crucial role in determining hydrogen engine performance. The diversity of these strategies and the limited number of comparative studies highlight the need for further investigation. This study focuses on the analysis, parameter selection, and comparison of single early and [...] Read more.
Injection strategies play a crucial role in determining hydrogen engine performance. The diversity of these strategies and the limited number of comparative studies highlight the need for further investigation. This study focuses on the analysis, parameter selection, and comparison of single early and late direct injection, single injection with ignition occurring during injection (the so-called jet-guided operation), and dual injection in a hydrogen spark-ignition engine. The applicability and effectiveness of these injection strategies are assessed using contour maps, with ignition timing and start of injection as coordinates representing equal levels of key engine parameters. Based on this approach, injection and ignition settings are selected for a range of engine operating modes. Simulations of engine performance under different load conditions are carried out using the selected parameters for each strategy. The results indicate that the highest indicated thermal efficiencies are achieved with single late injection, while the lowest occur with dual injection. At the same time, both dual injection and jet-guided operation provide advantages in terms of knock suppression, peak pressure reduction, and reduced nitrogen oxide emissions. Full article
Show Figures

Figure 1

16 pages, 1476 KB  
Article
Feasibility of Using Rainwater for Hydrogen Production via Electrolysis: Experimental Evaluation and Ionic Analysis
by João Victor Torres A. F. Dutra, Michaela Kroeppl and Christina Toigo
Hydrogen 2025, 6(4), 83; https://doi.org/10.3390/hydrogen6040083 - 11 Oct 2025
Viewed by 489
Abstract
This study evaluates the feasibility of employing rainwater as an alternative feedstock for hydrogen production via electrolysis. While conventional systems typically rely on high-purity water—such as deionized or distilled variants—these can be cost-prohibitive and environmentally intensive. Rainwater, being naturally available and minimally treated, [...] Read more.
This study evaluates the feasibility of employing rainwater as an alternative feedstock for hydrogen production via electrolysis. While conventional systems typically rely on high-purity water—such as deionized or distilled variants—these can be cost-prohibitive and environmentally intensive. Rainwater, being naturally available and minimally treated, presents a potential sustainable alternative. In this work, a series of comparative experiments was conducted using a proton exchange membrane electrolyzer system operating with both deionized water and rainwater collected from different Austrian locations. The chemical composition of rainwater samples was assessed through inductively coupled plasma, ion chromatography and visual rapid tests to identify impurities and ionic profiles. The electrolyzer’s performance was evaluated under equivalent operating conditions. Results indicate that rainwater, in some cases, yielded comparable or marginally superior efficiency compared to deionized water, attributed to its inherent ionic content. The study also examines the operational risks linked to trace contaminants and explores possible strategies for their mitigation. Full article
Show Figures

Graphical abstract

20 pages, 3635 KB  
Article
Theoretical Thermal Management Concepts of Recovery Heat Waste in Solid Oxide Fuel Cell System
by Georgi D. Todorov, Todor Todorov, Konstantin Kamberov and Grazia Lo Sciuto
Hydrogen 2025, 6(4), 82; https://doi.org/10.3390/hydrogen6040082 - 9 Oct 2025
Viewed by 555
Abstract
Solid oxide electrolysis cells (SOEC) system has potential to offer an efficient green hydrogen production technology. However, the significant cost of this technology is related to the high operating temperatures, materials and thermal management including the waste heat. Recovering the waste heat can [...] Read more.
Solid oxide electrolysis cells (SOEC) system has potential to offer an efficient green hydrogen production technology. However, the significant cost of this technology is related to the high operating temperatures, materials and thermal management including the waste heat. Recovering the waste heat can be conducted through techniques to reduce the overall energy consumption. This approach aims to improve accuracy and efficiency by recovering and reusing the heat that would otherwise be lost. In this paper, thermal energy models are proposed based on waste heat recovery methodologies to utilize the heat from outlet fluids within the SOEC system. The mathematical methods for calculating thermal energy and energy transfer in SOEC systems have involved the principles of heat transfer. To address this, different simplified thermal models are developed in Simulink Matlab R2025b. The obtained results for estimating proper thermal energy for heating incoming fluids and recycled heat are discussed and compared to determine the efficient and potential thermal model for improvement the waste heat recovery. Full article
Show Figures

Graphical abstract

19 pages, 1397 KB  
Article
Hydrogen Pipelines Safety Using System Dynamics
by Maryam Shourideh, Sirous Yasseri and Hamid Bahai
Hydrogen 2025, 6(4), 81; https://doi.org/10.3390/hydrogen6040081 - 7 Oct 2025
Viewed by 612
Abstract
With the global expansion of hydrogen infrastructure, the safe and efficient transportation of hydrogen is becoming more important. In this study, several technical factors, including material degradation, pressure variations, and monitoring effectiveness, that influence hydrogen transportation using pipelines are examined using system dynamics. [...] Read more.
With the global expansion of hydrogen infrastructure, the safe and efficient transportation of hydrogen is becoming more important. In this study, several technical factors, including material degradation, pressure variations, and monitoring effectiveness, that influence hydrogen transportation using pipelines are examined using system dynamics. The results show that hydrogen embrittlement, which is the result of microstructural trapping and limited diffusion in certain steels, can have a profound effect on pipeline integrity. Material incompatibility and pressure fluctuations deepen fatigue damage and leakage risk. Moreover, pipeline monitoring inefficiency, combined with hydrogen’s high flammability and diffusivity, can raise serious safety issues. An 80% decrease in monitoring efficiency will result in a 52% reduction in the total hydrogen provided to the end users. On the other hand, technical risks such as pressure fluctuations and material weakening from hydrogen embrittlement also affect overall system performance. It is essential to understand that real-time detection using hydrogen monitoring is particularly important and will lower the risk of leakage. It is crucial to know where hydrogen is lost and how it impacts transport efficiency. The model offers practical insights for developing stronger and more reliable hydrogen transport systems, thereby supporting the transition to a low-carbon energy future. Full article
Show Figures

Figure 1

44 pages, 9261 KB  
Review
Advances in Type IV Tanks for Safe Hydrogen Storage: Materials, Technologies and Challenges
by Francesco Piraino, Leonardo Pagnotta, Orlando Corigliano, Matteo Genovese and Petronilla Fragiacomo
Hydrogen 2025, 6(4), 80; https://doi.org/10.3390/hydrogen6040080 - 3 Oct 2025
Viewed by 1916
Abstract
This paper provides a comprehensive review of Type IV hydrogen tanks, with a focus on materials, manufacturing technologies and structural issues related to high-pressure hydrogen storage. Recent advances in the use of advanced composite materials, such as carbon fibers and polyamide liners, useful [...] Read more.
This paper provides a comprehensive review of Type IV hydrogen tanks, with a focus on materials, manufacturing technologies and structural issues related to high-pressure hydrogen storage. Recent advances in the use of advanced composite materials, such as carbon fibers and polyamide liners, useful for improving mechanical strength and permeability, have been reviewed. The present review also discusses solutions to reduce hydrogen blistering and embrittlement, as well as exploring geometric optimization methodologies and manufacturing techniques, such as helical winding. Additionally, emerging technologies, such as integrated smart sensors for real-time monitoring of tank performance, are explored. The review concludes with an assessment of future trends and potential solutions to overcome current technical limitations, with the aim of fostering a wider adoption of Type IV tanks in mobility and stationary applications. Full article
Show Figures

Figure 1

9 pages, 669 KB  
Article
Analysis of Equipment Failures as a Contributor to Hydrogen Refuelling Stations Incidents
by Rialivhuwa Nekhwevha, Daniel M. Madyira and Samuel L. Gqibani
Hydrogen 2025, 6(4), 79; https://doi.org/10.3390/hydrogen6040079 - 3 Oct 2025
Viewed by 540
Abstract
Hydrogen is a sustainable, clean source of energy and a viable alternative to carbon-based fossil fuels. To support the transport sector’s transition from fossil fuels to hydrogen, a hydrogen refuelling station network is being developed to refuel hydrogen-powered vehicles. However, hydrogen’s inherent properties [...] Read more.
Hydrogen is a sustainable, clean source of energy and a viable alternative to carbon-based fossil fuels. To support the transport sector’s transition from fossil fuels to hydrogen, a hydrogen refuelling station network is being developed to refuel hydrogen-powered vehicles. However, hydrogen’s inherent properties present a significant safety challenge, and there have been several hydrogen incidents noted, with severe impacts to people and assets reported from operational hydrogen refuelling stations worldwide. This paper presents the outcome of an analysis of hydrogen incidents that occurred at hydrogen refuelling stations. For this purpose, the HIAD 2.1 and H2tool.org databases were used for the collection of hydrogen incidents. Forty-five incidents were reviewed and analysed to determine the frequent equipment failures in the hydrogen refuelling stations and the underlying causes. This study adopted a mixed research approach for the analysis of the incidents in the hydrogen refuelling stations. The analysis reveals that storage tank failures accounted for 40% of total reported incidents, hydrogen dispenser failures accounted for 33%, compressors accounted for 11%, valves accounted for 9%, and pipeline failures accounted for 7%. To enable the safe operation of hydrogen refuelling stations, hazards must be understood, effective barriers implemented, and learning from past incidents incorporated into safety protocols to prevent future incidents. Full article
Show Figures

Figure 1

15 pages, 9213 KB  
Article
Facile Engineering of Pt-Rh Nanoparticles over Carbon for Composition-Dependent Activity and Durability Toward Glycerol Electrooxidation
by Marta Venancia França Rodrigues, Wemerson Daniel Correia dos Santos, Fellipe dos Santos Pereira, Augusto César Azevedo Silva, Liying Liu, Mikele Candida Sant’Anna, Eliane D’Elia, Roberto Batista de Lima and Marco Aurélio Suller Garcia
Hydrogen 2025, 6(4), 78; https://doi.org/10.3390/hydrogen6040078 - 3 Oct 2025
Viewed by 442
Abstract
In this study, we report the synthesis, characterization, and performance evaluation of a series of bimetallic PtxRhy/C electrocatalysts with systematically varied Rh content for glycerol electrooxidation in acidic and alkaline media. The catalysts were prepared via a polyol reduction [...] Read more.
In this study, we report the synthesis, characterization, and performance evaluation of a series of bimetallic PtxRhy/C electrocatalysts with systematically varied Rh content for glycerol electrooxidation in acidic and alkaline media. The catalysts were prepared via a polyol reduction method using ethylene glycol as both a solvent and reducing agent, with prior functionalization of Vulcan XC-72 carbon to enhance nanoparticles (NPs) dispersion. High-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) analyses indicated the spatial co-location of Rh atoms alongside Pt atoms. Electrochemical studies revealed strong composition-dependent behavior, with Pt95Rh5/C exhibiting the highest activity toward glycerol oxidation. To elucidate the origin of raised results, density functional tight binding (DFTB) simulations were conducted to model atomic distributions and evaluate energetic parameters. The results showed that Rh atoms preferentially segregate to the surface at higher concentrations due to their lower surface energy, while at low concentrations, they remain confined within the Pt lattice. Among the series, Pt95Rh5/C exhibited a distinctively higher excess energy and less favorable binding energy, rationalizing its lower thermodynamic stability. These findings reveal a clear trade-off between catalytic activity and structural durability, highlighting the critical role of the composition and nanoscale architecture in optimizing Pt-based electrocatalysts for alcohol oxidation reactions. Full article
Show Figures

Figure 1

20 pages, 1498 KB  
Article
Predicting the Structure of Hydrogenase in Microalgae: The Case of Nannochloropsis salina
by Simone Botticelli, Cecilia Faraloni and Giovanni La Penna
Hydrogen 2025, 6(4), 77; https://doi.org/10.3390/hydrogen6040077 - 2 Oct 2025
Viewed by 415
Abstract
The production of green hydrogen by microalgae is a promising strategy to convert energy of sun light into a carbon-free fuel. Many problems must be solved before large-scale industrial applications. One solution is to find a microalgal species that is easy to grow, [...] Read more.
The production of green hydrogen by microalgae is a promising strategy to convert energy of sun light into a carbon-free fuel. Many problems must be solved before large-scale industrial applications. One solution is to find a microalgal species that is easy to grow, easy to manipulate, and that can produce hydrogen open-air, thus in the presence of oxygen, for periods of time as long as possible. In this work we investigate by means of predictive computational models, the [FeFe] hydrogenase enzyme of Nannochloropsis salina, a promising microcalga already used to produce high-value products in salt water. Catalysis of water reduction to hydrogen by [FeFe] hydrogenase occurs in a peculiar iron-sulfur cluster (H-cluster) contained into a conserved H-domain, well represented by the known structure of the single-domain enzyme in Chlamydomonas reinhardtii (457 residues). By combining advanced deep-learning and molecular simulation methods we propose for N. salina a two-domain enzyme architecture hosting five iron-sulfur clusters. The enzyme organization is allowed by the protein size of 708 residues and by its sequence rich in cysteine and histidine residues mostly binding Fe atoms. The structure of an extended F-domain, containing four auxiliary iron-sulfur clusters and interacting with both the reductant ferredoxin and the H-domain, is thus predicted for the first time for microalgal [FeFe] hydrogenase. The structural study is the first step towards further studies of the microalga as a microorganism producing pure hydrogen gas. Full article
Show Figures

Figure 1

34 pages, 6690 KB  
Article
Assessing the Effect of Mineralogy and Reaction Pathways on Geological Hydrogen (H2) Generation in Ultramafic and Mafic (Basaltic) Rocks
by Abubakar Isah, Hamidreza Samouei and Esuru Rita Okoroafor
Hydrogen 2025, 6(4), 76; https://doi.org/10.3390/hydrogen6040076 - 1 Oct 2025
Viewed by 550
Abstract
This study evaluates the impact of mineralogy, elemental composition, and reaction pathways on hydrogen (H2) generation in seven ultramafic and mafic (basaltic) rocks. Experiments were conducted under typical low-temperature hydrothermal conditions (150 °C) and captured early and evolving stages of fluid–rock [...] Read more.
This study evaluates the impact of mineralogy, elemental composition, and reaction pathways on hydrogen (H2) generation in seven ultramafic and mafic (basaltic) rocks. Experiments were conducted under typical low-temperature hydrothermal conditions (150 °C) and captured early and evolving stages of fluid–rock interaction. Pre- and post-interactions, the solid phase was analyzed using X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS), while Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used to determine the composition of the aqueous fluids. Results show that not all geologic H2-generating reactions involving ultramafic and mafic rocks result in the formation of serpentine, brucite, or magnetite. Our observations suggest that while mineral transformation is significant and may be the predominant mechanism, there is also the contribution of surface-mediated electron transfer and redox cycling processes. The outcome suggests continuous H2 production beyond mineral phase changes, indicating active reaction pathways. Particularly, in addition to transition metal sites, some ultramafic rock minerals may promote redox reactions, thereby facilitating ongoing H2 production beyond their direct hydration. Fluid–rock interactions also regenerate reactive surfaces, such as clinochlore, zeolite, and augite, enabling sustained H2 production, even without serpentine formation. Variation in reaction rates depends on mineralogy and reaction kinetics rather than being solely controlled by Fe oxidation states. These findings suggest that ultramafic and mafic rocks may serve as dynamic, self-sustaining systems for generating H2. The potential involvement of transition metal sites (e.g., Ni, Mo, Mn, Cr, Cu) within the rock matrix may accelerate H2 production, requiring further investigation. This perspective shifts the focus from serpentine formation as the primary driver of H2 production to a more complex mechanism where mineral surfaces play a significant role. Understanding these processes will be valuable for refining experimental approaches, improving kinetic models of H2 generation, and informing the site selection and design of engineered H2 generation systems in ultramafic and mafic formations. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production, Storage, and Utilization)
Show Figures

Figure 1

17 pages, 2864 KB  
Article
Green Hydrogen Production with 25 kW Alkaline Electrolyzer Pilot Plant Shows Hydrogen Flow Rate Exponential Asymptotic Behavior with the Stack Current
by Debajeet K. Bora
Hydrogen 2025, 6(4), 75; https://doi.org/10.3390/hydrogen6040075 - 25 Sep 2025
Viewed by 1846
Abstract
Green H2 production using electrolyzer technology is an emerging method in the current mandate, using renewable-based power sources integrated with electrolyzer technology. Prior research has been extensively studied to understand the effects of intermittent power sources on the hydrogen production output. However, [...] Read more.
Green H2 production using electrolyzer technology is an emerging method in the current mandate, using renewable-based power sources integrated with electrolyzer technology. Prior research has been extensively studied to understand the effects of intermittent power sources on the hydrogen production output. However, in this context, the characteristics of the working electrolyzer behave differently under system-level operation. In this paper, we investigated a 25 kW alkaline electrolyzer for its stack performance in terms of stack efficiency, the stack current vs. stack voltage, and the relationship between the H2 flow rate and stack current. It was found that the current of 52 A produces the best system efficiency of 64% under full load operation for 1 h. The H2 flow rate behaves in an exponential asymptotic pattern, and it is also found that the ramp-up time for hydrogen generation by the electrolyzer is significantly low, thus marking it as an efficient option for producing green hydrogen with the input of a hybrid grid and renewable PV-based power sources. Hydrogen production techno-economic analysis has been conducted, and the LCOH is found to be on the higher side for the current electrolyzer under investigation. Full article
Show Figures

Graphical abstract

27 pages, 1313 KB  
Article
A Comparative Analysis of Waste-as-a-Feedstock Accounting Methods in Life Cycle Assessments
by Tyler W. Davis, Roksana Mahmud, Shannon McNaul, Matthew Jamieson and Eric Lewis
Hydrogen 2025, 6(4), 74; https://doi.org/10.3390/hydrogen6040074 - 24 Sep 2025
Viewed by 591
Abstract
Global waste generation is a ubiquitous challenge, driving a paradigm shift towards viewing waste as a valuable resource for a circular economy across diverse sectors. While innovative waste-to-resource pathways are crucial, rigorous Life Cycle Assessment (LCA) is essential to ensure the pathways are [...] Read more.
Global waste generation is a ubiquitous challenge, driving a paradigm shift towards viewing waste as a valuable resource for a circular economy across diverse sectors. While innovative waste-to-resource pathways are crucial, rigorous Life Cycle Assessment (LCA) is essential to ensure the pathways are an important part of current practices. However, LCA application to waste valorization varies, leading to incomparable results due to differing methodological choices. This paper examines three key nuances in waste-as-resource LCAs: the zero-burden assumption, the biogenic carbon neutrality assumption, and the benchmark assumption for emissions avoidance. Using a waste gasification to hydrogen case study, we demonstrate how these methodological decisions impact LCA outcomes. Our findings reveal that waste composition significantly influences the results and highlight challenges associated with biogenic carbon accounting under various system boundary assumptions. Emissions avoidance accounting requires multi-functional unit perspectives and robust benchmark selection. This paper clarifies these accounting approaches, empirically illustrates their influence, and discusses broad implications for accurate sustainability assessment, emphasizing the critical role of transparent LCA choices for effective policy and investment in circular economy solutions. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop