Integrated Modeling of Steam Methane Reforming and Carbon Capture for Blue Hydrogen Production
Abstract
1. Introduction
2. Methodology
2.1. Process Definition
2.2. SMR Reactor
2.3. Carbon Capture and Storage System
2.4. Model Validation
2.5. Sensitivity Analysis of Key Parameters
3. Results and Discussion
Energy Penalty and Process Efficiency Impact of CCS
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Massarweh, O.; Al-khuzaei, M.; Al-Shafi, M.; Bicer, Y.; Abushaikha, A.S. Blue Hydrogen Production from Natural Gas Reservoirs: A Review of Application and Feasibility. J. CO2 Util. 2023, 70, 102438. [Google Scholar] [CrossRef]
- Ishaq, H.; Dincer, I.; Crawford, C. A Review on Hydrogen Production and Utilization: Challenges and Opportunities. Int. J. Hydrogen Energy 2022, 47, 26238–26264. [Google Scholar] [CrossRef]
- Staffell, I.; Scamman, D.; Velazquez Abad, A.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shah, N.; Ward, K.R. The Role of Hydrogen and Fuel Cells in the Global Energy System. Energy Environ. Sci. 2019, 12, 463–491. [Google Scholar] [CrossRef]
- Bayramoğlu, K. Energy and Exergy Analysis of Diesel-Hydrogen and Diesel-Ammonia Fuel Blends in Diesel Engine. J. Eta Marit. Sci. 2024, 12, 128–135. [Google Scholar] [CrossRef]
- Muhammed, N.S.; Gbadamosi, A.O.; Epelle, E.I.; Abdulrasheed, A.A.; Haq, B.; Patil, S.; Al-Shehri, D.; Kamal, M.S. Hydrogen Production, Transportation, Utilization, and Storage: Recent Advances towards Sustainable Energy. J. Energy Storage 2023, 73, 109207. [Google Scholar] [CrossRef]
- Bilgili, L. A Systematic Review on the Acceptance of Alternative Marine Fuels. Renew. Sustain. Energy Rev. 2023, 182, 113367. [Google Scholar] [CrossRef]
- Bayramoğlu, K.; Yılmaz, S.; Çoban, M.T. Numerical Analysis of Hydrogen Production by Methanol and Methane Steam Reforming Using Compact Reactors. Therm. Sci. Eng. Prog. 2025, 58, 103238. [Google Scholar] [CrossRef]
- Kumar, M.S.; Srinivasan, S.A.; Vichitra, M.; Amith, S.C.; Beemkumar, N.; Singh, R.P.; Kamakshi Priya, K. Green, Blue, and Turquoise Hydrogen: A Review of Production Technologies and Sustainability. Results Eng. 2025, 27, 106238. [Google Scholar] [CrossRef]
- Mokheimer, E.M.A.; Shakeel, M.R.; Harale, A.; Paglieri, S.; Ben Mansour, R. Fuel Reforming Processes for Hydrogen Production. Fuel 2024, 359, 130427. [Google Scholar] [CrossRef]
- Nakkeeran, K.; Victor, K. Grey and Blue Hydrogen: Insights into Production Technologies and Outlook on CO2-Free Alternatives. Sustain. Energy Technol. Assess. 2025, 75, 104222. [Google Scholar] [CrossRef]
- Bicer, Y.; Dincer, I. Life Cycle Environmental Impact Assessments and Comparisons of Alternative Fuels for Clean Vehicles. Resour. Conserv. Recycl. 2018, 132, 141–157. [Google Scholar] [CrossRef]
- Nnabuife, S.G.; Oko, E.; Kuang, B.; Bello, A.; Onwualu, A.P.; Oyagha, S.; Whidborne, J. The Prospects of Hydrogen in Achieving Net Zero Emissions by 2050: A Critical Review. Sustain. Chem. Clim. Action 2023, 2, 100024. [Google Scholar] [CrossRef]
- Budinis, S.; Krevor, S.; Mac Dowell, N.; Brandon, N.; Hawkes, A. An Assessment of CCS Costs, Barriers and Potential. Energy Strategy Rev. 2018, 22, 61–81. [Google Scholar] [CrossRef]
- IEAGHG. Comparison of Commercial, State-of-the-Art, Fossil-Based Hydrogen Production Technologies (DOE-NETL-2022/3241). In Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; European Commission: Brussels, Belgium, 2017; Volume 53, p. 286. [Google Scholar]
- Zhong, H.; Wang, Z.; Zhang, Y.; Suo, S.; Hong, Y.; Wang, L.; Gan, Y. Gas Storage in Geological Formations: A Comparative Review on Carbon Dioxide and Hydrogen Storage. Mater. Today Sustain. 2024, 26, 100720. [Google Scholar] [CrossRef]
- Alizadeh, S.M.; Khalili, Y.; Ahmadi, M. Comprehensive Review of Carbon Capture and Storage Integration in Hydrogen Production: Opportunities, Challenges, and Future Perspectives. Energies 2024, 17, 5330. [Google Scholar] [CrossRef]
- Bayramoğlu, K. Application of Post-Combustion Carbon Capture Process in Marine Diesel Engine. Energy Sources Part A Recover. Util. Environ. Eff. 2023, 45, 10909–10925. [Google Scholar] [CrossRef]
- Peres, C.B.; Resende, P.M.R.; Nunes, L.J.R.; de Morais, L.C. Advances in Carbon Capture and Use (CCU) Technologies: A Comprehensive Review and CO2 Mitigation Potential Analysis. Clean Technol. 2022, 4, 1193–1207. [Google Scholar] [CrossRef]
- Usman, M.; Ghanem, A.S.; Garba, M.D.; Suliman, M.H.; Khan, S.; Khan, A.; Ahmed, U.; Humayun, M. Green and Blue Hydrogen Production and Purification Technologies. Int. J. Hydrogen Energy 2025, 153, 150176. [Google Scholar] [CrossRef]
- Pistidda, C. Solid-State Hydrogen Storage for a Decarbonized Society. Hydrogen 2021, 2, 428–443. [Google Scholar] [CrossRef]
- Diab, J.; Fulcheri, L.; Hessel, V.; Rohani, V.; Frenklach, M. Why Turquoise Hydrogen Will Be a Game Changer for the Energy Transition. Int. J. Hydrogen Energy 2022, 47, 25831–25848. [Google Scholar] [CrossRef]
- Curcio, E. Techno-Economic Analysis of Hydrogen Production: Costs, Policies, and Scalability in the Transition to Net-Zero. arXiv 2025, arXiv:2502.12211. [Google Scholar] [CrossRef]
- Oni, A.O.; Anaya, K.; Giwa, T.; Di Lullo, G.; Kumar, A. Comparative Assessment of Blue Hydrogen from Steam Methane Reforming, Autothermal Reforming, and Natural Gas Decomposition Technologies for Natural Gas-Producing Regions. Energy Convers. Manag. 2022, 254, 115245. [Google Scholar] [CrossRef]
- Ali Khan, M.H.; Daiyan, R.; Neal, P.; Haque, N.; MacGill, I.; Amal, R. A Framework for Assessing Economics of Blue Hydrogen Production from Steam Methane Reforming Using Carbon Capture Storage & Utilisation. Int. J. Hydrogen Energy 2021, 46, 22685–22706. [Google Scholar] [CrossRef]
- Katebah, M.; Al-Rawashdeh, M.; Linke, P. Analysis of Hydrogen Production Costs in Steam-Methane Reforming Considering Integration with Electrolysis and CO2 Capture. Clean. Eng. Technol. 2022, 10, 100552. [Google Scholar] [CrossRef]
- Özdeş, E.O.; Koç, Y.; Yağlı, H.; Köse, Ö.; Koç, A. Thermodynamic Analysis and Step-by-Step Performance and Emission Optimization of a Real Steam Methane Reforming (SMR) Hydrogen Production Plant. Int. J. Hydrogen Energy 2025, 140, 233–245. [Google Scholar] [CrossRef]
- Youcai, Z.; Ran, W. Chapter 1—Anaerobic Fermentation Process for Biomethane Production from Vegetable Waste. In Biomethane Production from Vegetable and Water Hyacinth Waste; Youcai, Z., Ran, W., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–62. ISBN 978-0-12-821763-4. [Google Scholar]
- Bayramoğlu, K.; Özmen, G. Design and Performance Evaluation of Low-Speed Marine Diesel Engine Selective Catalytic Reduction System. Process Saf. Environ. Prot. 2021, 155, 184–196. [Google Scholar] [CrossRef]
- Zhang, S.; Wen, Z.; Liu, X.; Liu, X.; Wang, S.; Zhang, H. Experimental Study on the Permeability and Resistance Characteristics in the Packed Bed with the Multi-Size Irregular Particle Applied in the Sinter Vertical Waste Heat Recovery Technology. Powder Technol. 2021, 384, 304–312. [Google Scholar] [CrossRef]
- Bayramoğlu, K. Determination of Hydrogen Production Performance with Waste Exhaust Gas in Marine Diesel Engines. Int. J. Hydrogen Energy 2024, 52, 1319–1333. [Google Scholar] [CrossRef]
- Choi, H.; Kim, S.H.; Bae, J.; Katikaneni, S.P.R.; Jamal, A.; Harale, A.; Paglieri, S.N.; Lee, J.H. CFD Analysis and Scale up of a Baffled Membrane Reactor for Hydrogen Production by Steam Methane Reforming. Comput. Chem. Eng. 2022, 165, 107912. [Google Scholar] [CrossRef]
- Xu, J.; Froment, G.F. Methane Steam Reforming, Methanation and Water-gas Shift: I. Intrinsic Kinetics. AIChE J. 1989, 35, 88–96. [Google Scholar] [CrossRef]
- Hou, K.; Hughes, R. The Kinetics of Methane Steam Reforming over a Ni/a-Al2O Catalyst. Chem. Eng. J. 2001, 82, 311–328. [Google Scholar] [CrossRef]
- Numaguchi, T.; Kikuchi, K. Intrinsic Kinetics and Design Simulation in a Complex Reaction Network; Steam-Methane Reforming. Chem. Eng. Sci. 1988, 43, 2295–2301. [Google Scholar] [CrossRef]
- Wan, J.; Wang, H.; Gao, M. Reaction Using Fe2O3/γ-Al2O3 Catalyst. Catalysts 2023, 13, 114991. [Google Scholar]
- Linstrom, P.J.; Mallard, W.G. The NIST Chemistry WebBook: A Chemical Data Resource on the Internet. J. Chem. Eng. Data 2001, 46, 1059–1063. [Google Scholar] [CrossRef]
- Çengel Yunus, A. Book—Heat and Mass Transfer Fundamentals and Applications, 5th ed.; McGraw-Hill: New York, NY, USA, 2007; Volume 136, ISBN 9780073398181. [Google Scholar]
- Rossi, M.; Fanti, O.; Pacca, S.A.; Mancinelli, E.; Comodi, G. E-REFORMER for Sustainable Hydrogen Production: Enhancing Efficiency in the Steam Methane Reforming Process. Appl. Energy 2025, 401, 126625. [Google Scholar] [CrossRef]
- Bayramoğlu, K.; Bayraktar, M.; Seyhan, A.; Yuksel, O. Evaluation of Techniques to Reduce Carbon Emissions from Ships within the Scope of Revised Greenhouse Gas Emission Targets for 2030, 2040, and 2050. Ocean Eng. 2025, 334, 121605. [Google Scholar] [CrossRef]
- Hosseinifard, F.; Aghdami, G.; Salimi, M.; Amidpour, M. Thermo-Economic Feasibility of Heliostat and Parabolic Trough Collector Integration with Optimized Configuration of Post-Combustion Carbon Capture for Steam Methane Reforming. Fuel Process. Technol. 2025, 271, 108207. [Google Scholar] [CrossRef]
- Nessi, E.; Papadopoulos, A.I.; Seferlis, P. A Review of Research Facilities, Pilot and Commercial Plants for Solvent-Based Post-Combustion CO2 Capture: Packed Bed, Phase-Change and Rotating Processes. Int. J. Greenh. Gas Control 2021, 111, 103474. [Google Scholar] [CrossRef]
- Haider, J.; Lee, B.; Choe, C.; Abdul Qyyum, M.; Shiung Lam, S.; Lim, H. SNG Production with Net Zero Outflow of CO2 in an Integrated Energy System: An Energy and Economic Aspects. Energy Convers. Manag. 2022, 270, 116167. [Google Scholar] [CrossRef]
- Abawalo, M.; Pikoń, K.; Landrat, M. Comparative Life Cycle Assessment of Hydrogen Production via Biogas Reforming and Agricultural Residue Gasification. Appl. Sci. 2025, 15, 5029. [Google Scholar] [CrossRef]












| Reaction | Ei | A(Kj) | ∆ | |
|---|---|---|---|---|
| 1 | 3 × 1010 | 2.4 × 105 | 1 × 10−7 | 7 × 104 |
| 2 | 3 × 104 | 6.7 × 104 | 5 × 10−8 | 1 × 104 |
| 3 | 1.2 × 1010 | 2.4 × 105 | 3 × 10−8 | 8 × 104 |
| Equilibrium Constants | ∆ [J/mol] | ∆ [J/mol] |
|---|---|---|
| Kp1 | 206 × 103 | 214.7 |
| Kp2 | −41.2 × 103 | −42.1 |
| Kp3 | 164.9 × 103 | 172.5 |
| Parameter | Variation Range | Change in CO2 Intensity (kg CO2/kg H2) | Sensitive (%) |
|---|---|---|---|
| System heat loss | 3–7% | ±0.06 (≈±2.5%) | Low |
| NG emission factor | 2.6–2.9 kg CO2/kg CH4 | ±0.11 (≈±4.6%) | Moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayramoğlu, K.; Bayramoğlu, T. Integrated Modeling of Steam Methane Reforming and Carbon Capture for Blue Hydrogen Production. Hydrogen 2025, 6, 94. https://doi.org/10.3390/hydrogen6040094
Bayramoğlu K, Bayramoğlu T. Integrated Modeling of Steam Methane Reforming and Carbon Capture for Blue Hydrogen Production. Hydrogen. 2025; 6(4):94. https://doi.org/10.3390/hydrogen6040094
Chicago/Turabian StyleBayramoğlu, Kubilay, and Tolga Bayramoğlu. 2025. "Integrated Modeling of Steam Methane Reforming and Carbon Capture for Blue Hydrogen Production" Hydrogen 6, no. 4: 94. https://doi.org/10.3390/hydrogen6040094
APA StyleBayramoğlu, K., & Bayramoğlu, T. (2025). Integrated Modeling of Steam Methane Reforming and Carbon Capture for Blue Hydrogen Production. Hydrogen, 6(4), 94. https://doi.org/10.3390/hydrogen6040094

