Previous Issue
Volume 7, June
 
 

Mach. Learn. Knowl. Extr., Volume 7, Issue 3 (September 2025) – 10 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
24 pages, 2667 KiB  
Article
Transformer-Driven Fault Detection in Self-Healing Networks: A Novel Attention-Based Framework for Adaptive Network Recovery
by Parul Dubey, Pushkar Dubey and Pitshou N. Bokoro
Mach. Learn. Knowl. Extr. 2025, 7(3), 67; https://doi.org/10.3390/make7030067 - 16 Jul 2025
Viewed by 98
Abstract
Fault detection and remaining useful life (RUL) prediction are critical tasks in self-healing network (SHN) environments and industrial cyber–physical systems. These domains demand intelligent systems capable of handling dynamic, high-dimensional sensor data. However, existing optimization-based approaches often struggle with imbalanced datasets, noisy signals, [...] Read more.
Fault detection and remaining useful life (RUL) prediction are critical tasks in self-healing network (SHN) environments and industrial cyber–physical systems. These domains demand intelligent systems capable of handling dynamic, high-dimensional sensor data. However, existing optimization-based approaches often struggle with imbalanced datasets, noisy signals, and delayed convergence, limiting their effectiveness in real-time applications. This study utilizes two benchmark datasets—EFCD and SFDD—which represent electrical and sensor fault scenarios, respectively. These datasets pose challenges due to class imbalance and complex temporal dependencies. To address this, we propose a novel hybrid framework combining Attention-Augmented Convolutional Neural Networks (AACNN) with transformer encoders, enhanced through Enhanced Ensemble-SMOTE for balancing the minority class. The model captures spatial features and long-range temporal patterns and learns effectively from imbalanced data streams. The novelty lies in the integration of attention mechanisms and adaptive oversampling in a unified fault-prediction architecture. Model evaluation is based on multiple performance metrics, including accuracy, F1-score, MCC, RMSE, and score*. The results show that the proposed model outperforms state-of-the-art approaches, achieving up to 97.14% accuracy and a score* of 0.419, with faster convergence and improved generalization across both datasets. Full article
Show Figures

Figure 1

16 pages, 2355 KiB  
Article
Generalising Stock Detection in Retail Cabinets with Minimal Data Using a DenseNet and Vision Transformer Ensemble
by Babak Rahi, Deniz Sagmanli, Felix Oppong, Direnc Pekaslan and Isaac Triguero
Mach. Learn. Knowl. Extr. 2025, 7(3), 66; https://doi.org/10.3390/make7030066 - 16 Jul 2025
Viewed by 78
Abstract
Generalising deep-learning models to perform well on unseen data domains with minimal retraining remains a significant challenge in computer vision. Even when the target task—such as quantifying the number of elements in an image—stays the same, data quality, shape, or form variations can [...] Read more.
Generalising deep-learning models to perform well on unseen data domains with minimal retraining remains a significant challenge in computer vision. Even when the target task—such as quantifying the number of elements in an image—stays the same, data quality, shape, or form variations can deviate from the training conditions, often necessitating manual intervention. As a real-world industry problem, we aim to automate stock level estimation in retail cabinets. As technology advances, new cabinet models with varying shapes emerge alongside new camera types. This evolving scenario poses a substantial obstacle to deploying long-term, scalable solutions. To surmount the challenge of generalising to new cabinet models and cameras with minimal amounts of sample images, this research introduces a new solution. This paper proposes a novel ensemble model that combines DenseNet-201 and Vision Transformer (ViT-B/8) architectures to achieve generalisation in stock-level classification. The novelty aspect of our solution comes from the fact that we combine a transformer with a DenseNet model in order to capture both the local, hierarchical details and the long-range dependencies within the images, improving generalisation accuracy with less data. Key contributions include (i) a novel DenseNet-201 + ViT-B/8 feature-level fusion, (ii) an adaptation workflow that needs only two images per class, (iii) a balanced layer-unfreezing schedule, (iv) a publicly described domain-shift benchmark, and (v) a 47 pp accuracy gain over four standard few-shot baselines. Our approach leverages fine-tuning techniques to adapt two pre-trained models to the new retail cabinets (i.e., standing or horizontal) and camera types using only two images per class. Experimental results demonstrate that our method achieves high accuracy rates of 91% on new cabinets with the same camera and 89% on new cabinets with different cameras, significantly outperforming standard few-shot learning methods. Full article
(This article belongs to the Section Data)
Show Figures

Figure 1

24 pages, 8216 KiB  
Article
Application of Dueling Double Deep Q-Network for Dynamic Traffic Signal Optimization: A Case Study in Danang City, Vietnam
by Tho Cao Phan, Viet Dinh Le and Teron Nguyen
Mach. Learn. Knowl. Extr. 2025, 7(3), 65; https://doi.org/10.3390/make7030065 - 14 Jul 2025
Viewed by 285
Abstract
This study investigates the application of the Dueling Double Deep Q-Network (3DQN) algorithm to optimize traffic signal control at a major urban intersection in Danang City, Vietnam. The objective is to enhance signal timing efficiency in response to mixed traffic flow and real-world [...] Read more.
This study investigates the application of the Dueling Double Deep Q-Network (3DQN) algorithm to optimize traffic signal control at a major urban intersection in Danang City, Vietnam. The objective is to enhance signal timing efficiency in response to mixed traffic flow and real-world traffic dynamics. A simulation environment was developed using the Simulation of Urban Mobility (SUMO) software version 1.11, incorporating both a fixed-time signal controller and two 3DQN models trained with 1 million (1M-Step) and 5 million (5M-Step) iterations. The models were evaluated using randomized traffic demand scenarios ranging from 50% to 150% of baseline traffic volumes. The results demonstrate that the 3DQN models outperform the fixed-time controller, significantly reducing vehicle delays, with the 5M-Step model achieving average waiting times of under five minutes. To further assess the model’s responsiveness to real-time conditions, traffic flow data were collected using YOLOv8 for object detection and SORT for vehicle tracking from live camera feeds, and integrated into the SUMO-3DQN simulation. The findings highlight the robustness and adaptability of the 3DQN approach, particularly under peak traffic conditions, underscoring its potential for deployment in intelligent urban traffic management systems. Full article
Show Figures

Graphical abstract

22 pages, 2583 KiB  
Article
Helmet Detection in Underground Coal Mines via Dynamic Background Perception with Limited Valid Samples
by Guangfu Wang, Dazhi Sun, Hao Li, Jian Cheng, Pengpeng Yan and Heping Li
Mach. Learn. Knowl. Extr. 2025, 7(3), 64; https://doi.org/10.3390/make7030064 - 9 Jul 2025
Viewed by 259
Abstract
The underground coal mine environment is complex and dynamic, making the application of visual algorithms for object detection a crucial component of underground safety management as well as a key factor in ensuring the safe operation of workers. We look at this in [...] Read more.
The underground coal mine environment is complex and dynamic, making the application of visual algorithms for object detection a crucial component of underground safety management as well as a key factor in ensuring the safe operation of workers. We look at this in the context of helmet-wearing detection in underground mines, where over 25% of the targets are small objects. To address challenges such as the lack of effective samples for unworn helmets, significant background interference, and the difficulty of detecting small helmet targets, this paper proposes a novel underground helmet-wearing detection algorithm that combines dynamic background awareness with a limited number of valid samples to improve accuracy for underground workers. The algorithm begins by analyzing the distribution of visual surveillance data and spatial biases in underground environments. By using data augmentation techniques, it then effectively expands the number of training samples by introducing positive and negative samples for helmet-wearing detection from ordinary scenes. Thereafter, based on YOLOv10, the algorithm incorporates a background awareness module with region masks to reduce the adverse effects of complex underground backgrounds on helmet-wearing detection. Specifically, it adds a convolution and attention fusion module in the detection head to enhance the model’s perception of small helmet-wearing objects by enlarging the detection receptive field. By analyzing the aspect ratio distribution of helmet wearing data, the algorithm improves the aspect ratio constraints in the loss function, further enhancing detection accuracy. Consequently, it achieves precise detection of helmet-wearing in underground coal mines. Experimental results demonstrate that the proposed algorithm can detect small helmet-wearing objects in complex underground scenes, with a 14% reduction in background false detection rates, and thereby achieving accuracy, recall, and average precision rates of 94.4%, 89%, and 95.4%, respectively. Compared to other mainstream object detection algorithms, the proposed algorithm shows improvements in detection accuracy of 6.7%, 5.1%, and 11.8% over YOLOv9, YOLOv10, and RT-DETR, respectively. The algorithm proposed in this paper can be applied to real-time helmet-wearing detection in underground coal mine scenes, providing safety alerts for standardized worker operations and enhancing the level of underground security intelligence. Full article
Show Figures

Graphical abstract

19 pages, 1926 KiB  
Article
A Novel Approach to Company Bankruptcy Prediction Using Convolutional Neural Networks and Generative Adversarial Networks
by Alessia D’Ercole and Gianluigi Me
Mach. Learn. Knowl. Extr. 2025, 7(3), 63; https://doi.org/10.3390/make7030063 - 7 Jul 2025
Viewed by 318
Abstract
Predicting company bankruptcy is a critical task in financial risk assessment. This study introduces a novel approach using Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs) to enhance bankruptcy prediction accuracy. By transforming financial statements into grayscale images and leveraging synthetic data [...] Read more.
Predicting company bankruptcy is a critical task in financial risk assessment. This study introduces a novel approach using Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs) to enhance bankruptcy prediction accuracy. By transforming financial statements into grayscale images and leveraging synthetic data generation, we analyze a dataset of 6249 companies, including 3256 active and 2993 bankrupt firms. Our methodology innovates by addressing dataset limitations through GAN-based data augmentation. CNNs are employed to take advantage of their ability to extract hierarchical patterns from financial statement images, providing a new approach to financial analysis, while GANs help mitigate dataset imbalance by generating realistic synthetic data for training. We generate synthetic financial data that closely mimics real-world patterns, expanding the training dataset and potentially improving classifier performance. The CNN model is trained on a combination of real and synthetic data, with strict separation between training/validation and testing. Full article
(This article belongs to the Section Network)
Show Figures

Graphical abstract

22 pages, 555 KiB  
Review
A Review of Methods for Unobtrusive Measurement of Work-Related Well-Being
by Zoja Anžur, Klara Žinkovič, Junoš Lukan, Pietro Barbiero, Gašper Slapničar, Mohan Li, Martin Gjoreski, Maike E. Debus, Sebastijan Trojer, Mitja Luštrek and Marc Langheinrich
Mach. Learn. Knowl. Extr. 2025, 7(3), 62; https://doi.org/10.3390/make7030062 - 1 Jul 2025
Viewed by 747
Abstract
Work-related well-being is an important research topic, as it is linked to various aspects of individuals’ lives, including job performance. To measure it effectively, unobtrusive sensors are desirable to minimize the burden on employees. Because there is a lack of consensus on the [...] Read more.
Work-related well-being is an important research topic, as it is linked to various aspects of individuals’ lives, including job performance. To measure it effectively, unobtrusive sensors are desirable to minimize the burden on employees. Because there is a lack of consensus on the definitions of well-being in the psychological literature in terms of its dimensions, our work begins by proposing a conceptualization of well-being based on the refined definition of health provided by the World Health Organization. We focus on reviewing the existing literature on the unobtrusive measurement of well-being. In our literature review, we focus on affect, engagement, fatigue, stress, sleep deprivation, physical comfort, and social interactions. Our initial search resulted in a total of 644 studies, from which we then reviewed 35, revealing a variety of behavioral markers such as facial expressions, posture, eye movements, and speech. The most commonly used sensory devices were red, green, and blue (RGB) cameras, followed by microphones and smartphones. The methods capture a variety of behavioral markers, the most common being body movement, facial expressions, and posture. Our work serves as an investigation into various unobtrusive measuring methods applicable to the workplace context, aiming to foster a more employee-centric approach to the measurement of well-being and to emphasize its affective component. Full article
(This article belongs to the Special Issue Sustainable Applications for Machine Learning)
Show Figures

Figure 1

13 pages, 2983 KiB  
Article
AI-Driven Intelligent Financial Forecasting: A Comparative Study of Advanced Deep Learning Models for Long-Term Stock Market Prediction
by Sira Yongchareon
Mach. Learn. Knowl. Extr. 2025, 7(3), 61; https://doi.org/10.3390/make7030061 - 1 Jul 2025
Viewed by 649
Abstract
The integration of artificial intelligence (AI) and advanced deep learning techniques is reshaping intelligent financial forecasting and decision-support systems. This study presents a comprehensive comparative analysis of advanced deep learning models, including state-of-the-art transformer architectures and established non-transformer approaches, for long-term stock market [...] Read more.
The integration of artificial intelligence (AI) and advanced deep learning techniques is reshaping intelligent financial forecasting and decision-support systems. This study presents a comprehensive comparative analysis of advanced deep learning models, including state-of-the-art transformer architectures and established non-transformer approaches, for long-term stock market index prediction. Utilizing historical data from major global indices (S&P 500, NASDAQ, and Hang Seng), we evaluate ten models across multiple forecasting horizons. A dual-metric evaluation framework is employed, combining traditional predictive accuracy metrics with critical financial performance indicators such as returns, volatility, maximum drawdown, and the Sharpe ratio. Statistical validation through the Mann–Whitney U test ensures robust differentiation in model performance. The results highlight that model effectiveness varies significantly with forecasting horizons and market conditions—where transformer-based models like PatchTST excel in short-term forecasts, while simpler architectures demonstrate greater stability over extended periods. This research offers actionable insights for the development of AI-driven intelligent financial forecasting systems, enhancing risk-aware investment strategies and supporting practical applications in FinTech and smart financial analytics. Full article
Show Figures

Figure 1

13 pages, 1700 KiB  
Article
A Simple Yet Powerful Hybrid Machine Learning Approach to Aid Decision-Making in Laboratory Experiments
by Bernardo Campos Diocaretz, Ágota Tűzesi and Andrei Herdean
Mach. Learn. Knowl. Extr. 2025, 7(3), 60; https://doi.org/10.3390/make7030060 - 25 Jun 2025
Viewed by 440
Abstract
High-dimensional experimental spaces and resource constraints challenge modern science. We introduce a hybrid machine-learning (ML) framework that combines Ordinary Least Squares (OLS) for global surface estimation, Gaussian Process (GP) regression for uncertainty modelling, expected improvement (EI) for active learning, and K-means clustering for [...] Read more.
High-dimensional experimental spaces and resource constraints challenge modern science. We introduce a hybrid machine-learning (ML) framework that combines Ordinary Least Squares (OLS) for global surface estimation, Gaussian Process (GP) regression for uncertainty modelling, expected improvement (EI) for active learning, and K-means clustering for diversifying conditions. We applied this approach to published growth-rate data of the diatom Thalassiosira pseudonana, originally measured across 25 phosphate–temperature conditions. Using the nutrient–temperature model as a simulator, our ML framework located the optimal growth conditions in only 25 virtual experiments—matching the original study’s outcome. Sensitivity analyses further revealed that fewer iterations and controlled batch sizes maintain accuracy even with higher data variability. This demonstrates that ML-guided experimentation can achieve expert-level decision-making without extensive prior data, reducing experimental burden while preserving rigour. Our results highlight the promise of algorithm-assisted experimentation in biology, agriculture, and medicine, marking a shift toward smarter, data-driven scientific workflows. Full article
Show Figures

Graphical abstract

24 pages, 3832 KiB  
Article
Stitching History into Semantics: LLM-Supported Knowledge Graph Engineering for 19th-Century Greek Bookbinding
by Dimitrios Doumanas, Efthalia Ntalouka, Costas Vassilakis, Manolis Wallace and Konstantinos Kotis
Mach. Learn. Knowl. Extr. 2025, 7(3), 59; https://doi.org/10.3390/make7030059 - 24 Jun 2025
Viewed by 599
Abstract
Preserving cultural heritage can be efficiently supported by structured and semantic representation of historical artifacts. Bookbinding, a critical aspect of book history, provides valuable insights into past craftsmanship, material use, and conservation practices. However, existing bibliographic records often lack the depth needed to [...] Read more.
Preserving cultural heritage can be efficiently supported by structured and semantic representation of historical artifacts. Bookbinding, a critical aspect of book history, provides valuable insights into past craftsmanship, material use, and conservation practices. However, existing bibliographic records often lack the depth needed to analyze bookbinding techniques, provenance, and preservation status. This paper presents a proof-of-concept system that explores how Large Language Models (LLMs) can support knowledge graph engineering within the context of 19th-century Greek bookbinding (1830–1900), and as a result, generate a domain-specific ontology and a knowledge graph. Our ontology encapsulates materials, binding techniques, artistic styles, and conservation history, integrating metadata standards like MARC and Dublin Core to ensure interoperability with existing library and archival systems. To validate its effectiveness, we construct a Neo4j knowledge graph, based on the generated ontology and utilize Cypher Queries—including LLM-generated queries—to extract insights about bookbinding practices and trends. This study also explores how semantic reasoning over the knowledge graph can identify historical binding patterns, assess book conservation needs, and infer relationships between bookbinding workshops. Unlike previous bibliographic ontologies, our approach provides a comprehensive, semantically rich representation of bookbinding history, methods and techniques, supporting scholars, conservators, and cultural heritage institutions. By demonstrating how LLMs can assist in ontology/KG creation and query generation, we introduce and evaluate a semi-automated pipeline as a methodological demonstration for studying historical bookbinding, contributing to digital humanities, book conservation, and cultural informatics. Finally, the proposed approach can be used in other domains, thus, being generally applicable in knowledge engineering. Full article
(This article belongs to the Special Issue Knowledge Graphs and Large Language Models)
Show Figures

Graphical abstract

26 pages, 1838 KiB  
Article
Machine Learning Product Line Engineering: A Systematic Reuse Framework
by Bedir Tekinerdogan
Mach. Learn. Knowl. Extr. 2025, 7(3), 58; https://doi.org/10.3390/make7030058 - 20 Jun 2025
Viewed by 505
Abstract
Machine Learning (ML) is increasingly applied across various domains, addressing tasks such as predictive analytics, anomaly detection, and decision-making. Many of these applications share similar underlying tasks, offering potential for systematic reuse. However, existing reuse in ML is often fragmented, small-scale, and ad [...] Read more.
Machine Learning (ML) is increasingly applied across various domains, addressing tasks such as predictive analytics, anomaly detection, and decision-making. Many of these applications share similar underlying tasks, offering potential for systematic reuse. However, existing reuse in ML is often fragmented, small-scale, and ad hoc, focusing on isolated components such as pretrained models or datasets without a cohesive framework. Product Line Engineering (PLE) is a well-established approach for achieving large-scale systematic reuse in traditional engineering. It enables efficient management of core assets like requirements, models, and code across product families. However, traditional PLE is not designed to accommodate ML-specific assets—such as datasets, feature pipelines, and hyperparameters—and is not aligned with the iterative, data-driven workflows of ML systems. To address this gap, we propose Machine Learning Product Line Engineering (ML PLE), a framework that adapts PLE principles for ML systems. In contrast to conventional ML reuse methods such as transfer learning or fine-tuning, our framework introduces a systematic, variability-aware reuse approach that spans the entire lifecycle of ML development, including datasets, pipelines, models, and configuration assets. The proposed framework introduces the key requirements for ML PLE and the lifecycle process tailored to machine-learning-intensive systems. We illustrate the approach using an industrial case study in the context of space systems, where ML PLE is applied for data analytics of satellite missions. Full article
(This article belongs to the Section Learning)
Show Figures

Figure 1

Previous Issue
Back to TopTop