Next Issue
Volume 7, December
Previous Issue
Volume 7, June
 
 

Mach. Learn. Knowl. Extr., Volume 7, Issue 3 (September 2025) – 50 articles

Cover Story (view full-size image): The rise of LLMs in user-facing settings—such as chatbots—makes it critical to ensure that these systems are safeguarded against prompt attacks. If not properly protected, such attacks could lead to data breaches, malware transmission, or reputational damage. Even more concerning, publicly available and computationally lightweight generative models can be leveraged to mass-produce prompt attacks. This paper assesses the generative capabilities of such models, evaluating two LSTM-based GAN architectures—SeqGAN and RelGAN—alongside a small language model (SLM). By systematically analyzing their effectiveness against current LLM defense systems and revealing distinct attack patterns, this work offers actionable steps to strengthen future LLM defense systems. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
18 pages, 1070 KB  
Article
Saliency-Guided Local Semantic Mixing for Long-Tailed Image Classification
by Jiahui Lv, Jun Lei, Jun Zhang, Chao Chen and Shuohao Li
Mach. Learn. Knowl. Extr. 2025, 7(3), 107; https://doi.org/10.3390/make7030107 - 22 Sep 2025
Abstract
In real-world visual recognition tasks, long-tailed distributions pose a widespread challenge, with extreme class imbalance severely limiting the representational learning capability of deep models. In practice, due to this imbalance, deep models often exhibit poor generalization performance on tail classes. To address this [...] Read more.
In real-world visual recognition tasks, long-tailed distributions pose a widespread challenge, with extreme class imbalance severely limiting the representational learning capability of deep models. In practice, due to this imbalance, deep models often exhibit poor generalization performance on tail classes. To address this issue, data augmentation through the synthesis of new tail-class samples has become an effective method. One popular approach is CutMix, which explicitly mixes images from tail and other classes, constructing labels based on the ratio of the regions cropped from both images. However, region-based labels completely ignore the inherent semantic information of the augmented samples. To overcome this problem, we propose a saliency-guided local semantic mixing (LSM) method, which uses differentiable block decoupling and semantic-aware local mixing techniques. This method integrates head-class backgrounds while preserving the key discriminative features of tail classes and dynamically assigns labels to effectively augment tail-class samples. This results in efficient balancing of long-tailed data distributions and significant improvements in classification performance. The experimental validation shows that this method demonstrates significant advantages across three long-tailed benchmark datasets, improving classification accuracy by 5.0%, 7.3%, and 6.1%, respectively. Notably, the LSM framework is highly compatible, seamlessly integrating with existing classification models and providing significant performance gains, validating its broad applicability. Full article
Show Figures

Figure 1

24 pages, 983 KB  
Article
Bayesian Learning Strategies for Reducing Uncertainty of Decision-Making in Case of Missing Values
by Vitaly Schetinin and Livija Jakaite
Mach. Learn. Knowl. Extr. 2025, 7(3), 106; https://doi.org/10.3390/make7030106 - 22 Sep 2025
Abstract
Background: Liquidity crises pose significant risks to financial stability, and missing data in predictive models increase the uncertainty in decision-making. This study aims to develop a robust Bayesian Model Averaging (BMA) framework using decision trees (DTs) to enhance liquidity crisis prediction under missing [...] Read more.
Background: Liquidity crises pose significant risks to financial stability, and missing data in predictive models increase the uncertainty in decision-making. This study aims to develop a robust Bayesian Model Averaging (BMA) framework using decision trees (DTs) to enhance liquidity crisis prediction under missing data conditions, offering reliable probabilistic estimates and insights into uncertainty. Methods: We propose a BMA framework over DTs, employing Reversible Jump Markov Chain Monte Carlo (RJ MCMC) sampling with a sweeping strategy to mitigate overfitting. Three preprocessing techniques for missing data were evaluated: Cont (treating variables as continuous with missing values labeled by a constant), ContCat (converting variables with missing values to categorical), and Ext (extending features with binary missing-value indicators). Results: The Ext method achieved 100% accuracy on a synthetic dataset and 92.2% on a real-world dataset of 20,000 companies (11% in crisis), outperforming baselines (AUC PRC 0.817 vs. 0.803, p < 0.05). The framework provided interpretable uncertainty estimates and identified key financial indicators driving crisis predictions. Conclusions: The BMA-DT framework with the Ext technique offers a scalable, interpretable solution for handling missing data, improving prediction accuracy and uncertainty estimation in liquidity crisis forecasting, with potential applications in finance, healthcare, and environmental modeling. Full article
(This article belongs to the Section Learning)
Show Figures

Figure 1

38 pages, 2833 KB  
Systematic Review
Customer Churn Prediction: A Systematic Review of Recent Advances, Trends, and Challenges in Machine Learning and Deep Learning
by Mehdi Imani, Majid Joudaki, Ali Beikmohammadi and Hamid Reza Arabnia
Mach. Learn. Knowl. Extr. 2025, 7(3), 105; https://doi.org/10.3390/make7030105 - 21 Sep 2025
Viewed by 258
Abstract
Background: Customer churn significantly impacts business revenues. Machine Learning (ML) and Deep Learning (DL) methods are increasingly adopted to predict churn, yet a systematic synthesis of recent advancements is lacking. Objectives: This systematic review evaluates ML and DL approaches for churn prediction, identifying [...] Read more.
Background: Customer churn significantly impacts business revenues. Machine Learning (ML) and Deep Learning (DL) methods are increasingly adopted to predict churn, yet a systematic synthesis of recent advancements is lacking. Objectives: This systematic review evaluates ML and DL approaches for churn prediction, identifying trends, challenges, and research gaps from 2020 to 2024. Data Sources: Six databases (Springer, IEEE, Elsevier, MDPI, ACM, Wiley) were searched via Lens.org for studies published between January 2020 and December 2024. Study Eligibility Criteria: Peer-reviewed original studies applying ML/DL techniques for churn prediction were included. Reviews, preprints, and non-peer-reviewed works were excluded. Methods: Screening followed PRISMA 2020 guidelines. A two-phase strategy identified 240 studies for bibliometric analysis and 61 for detailed qualitative synthesis. Results: Ensemble methods (e.g., XGBoost, LightGBM) remain dominant in ML, while DL approaches (e.g., LSTM, CNN) are increasingly applied to complex data. Challenges include class imbalance, interpretability, concept drift, and limited use of profit-oriented metrics. Explainable AI and adaptive learning show potential but limited real-world adoption. Limitations: No formal risk of bias or certainty assessments were conducted. Study heterogeneity prevented meta-analysis. Conclusions: ML and DL methods have matured as key tools for churn prediction, yet gaps remain in interpretability, real-world deployment, and business-aligned evaluation. Systematic Review Registration: Registered retrospectively in OSF. Full article
Show Figures

Graphical abstract

32 pages, 684 KB  
Article
Screening Smarter, Not Harder: Budget Allocation Strategies for Technology-Assisted Reviews (TARs) in Empirical Medicine
by Giorgio Maria Di Nunzio
Mach. Learn. Knowl. Extr. 2025, 7(3), 104; https://doi.org/10.3390/make7030104 - 20 Sep 2025
Viewed by 97
Abstract
In the technology-assisted review (TAR) area, most research has focused on ranking effectiveness and active learning strategies within individual topics, often assuming unconstrained review effort. However, real-world applications such as legal discovery or medical systematic reviews are frequently subject to global screening budgets. [...] Read more.
In the technology-assisted review (TAR) area, most research has focused on ranking effectiveness and active learning strategies within individual topics, often assuming unconstrained review effort. However, real-world applications such as legal discovery or medical systematic reviews are frequently subject to global screening budgets. In this paper, we revisit the CLEF eHealth TAR shared tasks (2017–2019) through the lens of budget-aware evaluation. We first reproduce and verify the official participant results, organizing them into a unified dataset for comparative analysis. Then, we introduce and assess four intuitive budget allocation strategies—even, proportional, inverse proportional, and threshold-capped greedy—to explore how review effort can be efficiently distributed across topics. To evaluate systems under resource constraints, we propose two cost-aware metrics: relevant found per cost unit (RFCU) and utility gain at budget (UG@B). These complement traditional recall by explicitly modeling efficiency and trade-offs between true and false positives. Our results show that different allocation strategies optimize different metrics: even and inverse proportional allocation favor recall, while proportional and capped strategies better maximize RFCU. UG@B remains relatively stable across strategies, reflecting its balanced formulation. A correlation analysis reveals that RFCU and UG@B offer distinct perspectives from recall, with varying alignment across years. Together, these findings underscore the importance of aligning evaluation metrics and allocation strategies with screening goals. We release all data and code to support reproducibility and future research on cost-sensitive TAR. Full article
Show Figures

Graphical abstract

34 pages, 1172 KB  
Article
Leveraging LLMs for Automated Extraction and Structuring of Educational Concepts and Relationships
by Tianyuan Yang, Baofeng Ren, Chenghao Gu, Tianjia He, Boxuan Ma and Shin’ichi Konomi
Mach. Learn. Knowl. Extr. 2025, 7(3), 103; https://doi.org/10.3390/make7030103 - 19 Sep 2025
Viewed by 171
Abstract
Students must navigate large catalogs of courses and make appropriate enrollment decisions in many online learning environments. In this context, identifying key concepts and their relationships is essential for understanding course content and informing course recommendations. However, identifying and extracting concepts can be [...] Read more.
Students must navigate large catalogs of courses and make appropriate enrollment decisions in many online learning environments. In this context, identifying key concepts and their relationships is essential for understanding course content and informing course recommendations. However, identifying and extracting concepts can be an extremely labor-intensive and time-consuming task when it has to be done manually. Traditional NLP-based methods to extract relevant concepts from courses heavily rely on resource-intensive preparation of detailed course materials, thereby failing to minimize labor. As recent advances in large language models (LLMs) offer a promising alternative for automating concept identification and relationship inference, we thoroughly investigate the potential of LLMs in automatically generating course concepts and their relations. Specifically, we systematically evaluate three LLM variants (GPT-3.5, GPT-4o-mini, and GPT-4o) across three distinct educational tasks, which are concept generation, concept extraction, and relation identification, using six systematically designed prompt configurations that range from minimal context (course title only) to rich context (course description, seed concepts, and subtitles). We systematically assess model performance through extensive automated experiments using standard metrics (Precision, Recall, F1, and Accuracy) and human evaluation by four domain experts, providing a comprehensive analysis of how prompt design and model choice influence the quality and reliability of the generated concepts and their interrelations. Our results show that GPT-3.5 achieves the highest scores on quantitative metrics, whereas GPT-4o and GPT-4o-mini often generate concepts that are more educationally meaningful despite lexical divergence from the ground truth. Nevertheless, LLM outputs still require expert revision, and performance is sensitive to prompt complexity. Overall, our experiments demonstrate the viability of LLMs as a tool for supporting educational content selection and delivery. Full article
Show Figures

Graphical abstract

21 pages, 596 KB  
Article
Exploiting the Feature Space Structures of KNN and OPF Algorithms for Identification of Incipient Faults in Power Transformers
by André Gifalli, Marco Akio Ikeshoji, Danilo Sinkiti Gastaldello, Victor Hideki Saito Yamaguchi, Welson Bassi, Talita Mazon, Floriano Torres Neto, Pedro da Costa Junior and André Nunes de Souza
Mach. Learn. Knowl. Extr. 2025, 7(3), 102; https://doi.org/10.3390/make7030102 - 18 Sep 2025
Viewed by 337
Abstract
Power transformers represent critical assets within the electrical power system, and their unexpected failures may result in substantial financial losses for both utilities and consumers. Dissolved Gas Analysis (DGA) is a well-established diagnostic method extensively employed to detect incipient faults in power transformers. [...] Read more.
Power transformers represent critical assets within the electrical power system, and their unexpected failures may result in substantial financial losses for both utilities and consumers. Dissolved Gas Analysis (DGA) is a well-established diagnostic method extensively employed to detect incipient faults in power transformers. Although several conventional and machine learning techniques have been applied to DGA, most of them focus only on fault classification and lack the capability to provide predictive scenarios that would enable proactive maintenance planning. In this context, the present study introduces a novel approach to DGA interpretation, which highlights the trends and progression of faults by exploring the feature space through the algorithms k-Nearest Neighbors (KNN) and Optimum-Path Forest (OPF). To improve accuracy, the following strategies were implemented: statistical filtering based on normal distribution to eliminate outliers from the dataset; augmentation of gas-related features; and feature selection using optimization algorithms such as Cuckoo Search and Genetic Algorithms. The approach was validated using data from several transformers, with fault diagnoses cross-checked against inspection reports provided by the utility company. The findings indicate that the proposed method offers valuable insights into the progression, proximity, and classification of faults with satisfactory accuracy, thereby supporting its recommendation as a complementary tool for diagnosing incipient transformer faults. Full article
Show Figures

Figure 1

38 pages, 2992 KB  
Article
CRISP-NET: Integration of the CRISP-DM Model with Network Analysis
by Héctor Alejandro Acuña-Cid, Eduardo Ahumada-Tello, Óscar Omar Ovalle-Osuna, Richard Evans, Julia Elena Hernández-Ríos and Miriam Alondra Zambrano-Soto
Mach. Learn. Knowl. Extr. 2025, 7(3), 101; https://doi.org/10.3390/make7030101 - 16 Sep 2025
Viewed by 321
Abstract
To carry out data analysis, it is necessary to implement a model that guides the process in an orderly and sequential manner, with the aim of maintaining control over software development and its documentation. One of the most widely used tools in the [...] Read more.
To carry out data analysis, it is necessary to implement a model that guides the process in an orderly and sequential manner, with the aim of maintaining control over software development and its documentation. One of the most widely used tools in the field of data analysis is the Cross-Industry Standard Process for Data Mining (CRISP-DM), which serves as a reference framework for data mining, allowing the identification of patterns and, based on them, supporting informed decision-making. Another tool used for pattern identification and the study of relationships within systems is network analysis (NA), which makes it possible to explore how different components are interconnected. The integration of these tools can be justified and developed under the principles of Situational Method Engineering (SME), which allows for the adaptation and customization of existing methods according to the specific needs of a problem or context. Through SME, it is possible to determine which components of CRISP-DM need to be adjusted to efficiently incorporate NA, ensuring that this integration aligns with the project’s objectives in a structured and effective manner. The proposed methodological process was applied in a real working group, which allowed its functionality to be validated, each phase to be documented, and concrete outputs to be generated, demonstrating its usefulness for the development of analytical projects. Full article
Show Figures

Figure 1

27 pages, 1321 KB  
Article
Learnable Petri Net Neural Network Using Max-Plus Algebra
by Mohammed Sharafath Abdul Hameed, Sofiene Lassoued and Andreas Schwung
Mach. Learn. Knowl. Extr. 2025, 7(3), 100; https://doi.org/10.3390/make7030100 - 13 Sep 2025
Viewed by 252
Abstract
Interpretable decision-making algorithms are important when used in the context of production optimization. While concepts like Petri nets are inherently interpretable, they are not straightforwardly learnable. This paper presents a novel approach to transform the Petri net model into a learnable entity. This [...] Read more.
Interpretable decision-making algorithms are important when used in the context of production optimization. While concepts like Petri nets are inherently interpretable, they are not straightforwardly learnable. This paper presents a novel approach to transform the Petri net model into a learnable entity. This is accomplished by establishing a relationship between the Petri net description in the event domain, its representation in the max-plus algebra, and a one-layer perceptron neural network. This allows us to apply standard supervised learning methods adapted to the max-plus domain to infer the parameters of the Petri net. To this end, the feed-forward and back-propagation paths are modified to accommodate the differing mathematical operations in the context of max-plus algebra. We apply our approach to a multi-robot handling system with potentially varying processing and operation times. The results show that essential timing parameters can be inferred from data with high precision. Full article
Show Figures

Figure 1

17 pages, 3058 KB  
Article
Dynamic Graph Analysis: A Hybrid Structural–Spatial Approach for Brain Shape Correspondence
by Jonnatan Arias-García, Hernán Felipe García, Andrés Escobar-Mejía, David Cárdenas-Peña and Álvaro A. Orozco
Mach. Learn. Knowl. Extr. 2025, 7(3), 99; https://doi.org/10.3390/make7030099 - 10 Sep 2025
Viewed by 402
Abstract
Accurate correspondence of complex neuroanatomical surfaces under non-rigid deformations remains a formidable challenge in computational neuroimaging, owing to inter-subject topological variability, partial occlusions, and non-isometric distortions. Here, we introduce the Dynamic Graph Analyzer (DGA), a unified hybrid framework that integrates simplified structural descriptors [...] Read more.
Accurate correspondence of complex neuroanatomical surfaces under non-rigid deformations remains a formidable challenge in computational neuroimaging, owing to inter-subject topological variability, partial occlusions, and non-isometric distortions. Here, we introduce the Dynamic Graph Analyzer (DGA), a unified hybrid framework that integrates simplified structural descriptors with spatial constraints and formulates matching as a global linear assignment. Structurally, the DGA computes node-level metrics, degree weighted by betweenness centrality and local clustering coefficients, to capture essential topological patterns at a low computational cost. Spatially, it employs a two-stage scheme that combines global maximum distances and local rescaling of adjacent node separations to preserve geometric fidelity. By embedding these complementary measures into a single cost matrix solved via the Kuhn–Munkres algorithm followed by a refinement of weak correspondences, the DGA ensures a globally optimal correspondence. In benchmark evaluations on the FAUST dataset, the DGA achieved a significant reduction in the mean geodetic reconstruction error compared to spectral graph convolutional netwworks (GCNs)—which learn optimized spectral descriptors akin to classical approaches like heat/wave kernel signatures (HKS/WKS)—and traditional spectral methods. Additional experiments demonstrate robust performance on partial matches in TOSCA and cross-species alignments in SHREC-20, validating resilience to morphological variation and symmetry ambiguities. These results establish the DGA as a scalable and accurate approach for brain shape correspondence, with promising applications in biomarker mapping, developmental studies, and clinical morphometry. Full article
Show Figures

Figure 1

14 pages, 1259 KB  
Article
MCTS-Based Policy Improvement for Reinforcement Learning
by György Csippán, István Péter, Bálint Kővári and Tamás Bécsi
Mach. Learn. Knowl. Extr. 2025, 7(3), 98; https://doi.org/10.3390/make7030098 - 10 Sep 2025
Viewed by 390
Abstract
Curriculum Learning (CL) is a potent field in Machine Learning that provides several excellent techniques for enhancing the performance of the training process given the same data points, regardless of the training method used. In this research, we propose a novel Monte Carlo [...] Read more.
Curriculum Learning (CL) is a potent field in Machine Learning that provides several excellent techniques for enhancing the performance of the training process given the same data points, regardless of the training method used. In this research, we propose a novel Monte Carlo Tree Search (MCTS)-based technique that enhances model performance, articulating the utilization of MCTS in Curriculum Learning. The proposed approach leverages MCTS to optimize the sequence of batches during the training process. First, we demonstrate the application of our method in Reinforcement Learning, where sparse rewards often diminish convergence and deteriorate performance. By leveraging the strategic planning and exploration capabilities of MCTS, our method systematically identifies and selects trajectories that are more informative and have a higher potential to enhance policy improvement. This MCTS-guided batch optimization focuses the learning process on valuable experiences, accelerating convergence and improving overall performance. We evaluate our approach on standard RL benchmarks, demonstrating that it outperforms conventional batch selection methods regarding learning speed and policy effectiveness. The results highlight the potential of combining MCTS with CL to optimize batch selection, offering a promising direction for future research in efficient Reinforcement Learning. Full article
Show Figures

Figure 1

26 pages, 1386 KB  
Review
A Review of Large Language Models for Automated Test Case Generation
by Arda Celik and Qusay H. Mahmoud
Mach. Learn. Knowl. Extr. 2025, 7(3), 97; https://doi.org/10.3390/make7030097 - 9 Sep 2025
Viewed by 1038
Abstract
Automated test case generation aims to improve software testing by reducing the manual effort required to create test cases. Recent advancements in large language models (LLMs), with their ability to understand natural language and generate code, have identified new opportunities to enhance this [...] Read more.
Automated test case generation aims to improve software testing by reducing the manual effort required to create test cases. Recent advancements in large language models (LLMs), with their ability to understand natural language and generate code, have identified new opportunities to enhance this process. In this review, the focus is on the use of LLMs in test case generation to identify the effectiveness of the proposed methods compared with existing tools and potential directions for future research. A literature search was conducted using online resources, filtering the studies based on the defined inclusion and exclusion criteria. This paper presents the findings from the selected studies according to the three research questions and further categorizes the findings based on the common themes. These findings highlight the opportunities and challenges associated with the use of LLMs in this domain. Although improvements were observed in metrics such as test coverage, usability, and correctness, limitations such as inconsistent performance and compilation errors were highlighted. This provides a state-of-the-art review of LLM-based test case generation, emphasizing the potential of LLMs to improve automated testing while identifying areas for further advancements. Full article
Show Figures

Graphical abstract

35 pages, 6329 KB  
Article
Leveraging DNA-Based Computing to Improve the Performance of Artificial Neural Networks in Smart Manufacturing
by Angkush Kumar Ghosh and Sharifu Ura
Mach. Learn. Knowl. Extr. 2025, 7(3), 96; https://doi.org/10.3390/make7030096 - 9 Sep 2025
Viewed by 299
Abstract
Bioinspired computing methods, such as Artificial Neural Networks (ANNs), play a significant role in machine learning. This is particularly evident in smart manufacturing, where ANNs and their derivatives, like deep learning, are widely used for pattern recognition and adaptive control. However, ANNs sometimes [...] Read more.
Bioinspired computing methods, such as Artificial Neural Networks (ANNs), play a significant role in machine learning. This is particularly evident in smart manufacturing, where ANNs and their derivatives, like deep learning, are widely used for pattern recognition and adaptive control. However, ANNs sometimes fail to achieve the desired results, especially when working with small datasets. To address this limitation, this article presents the effectiveness of DNA-Based Computing (DBC) as a complementary approach. DBC is an innovative machine learning method rooted in the central dogma of molecular biology that deals with the genetic information of DNA/RNA to protein. In this article, two machine learning approaches are considered. In the first approach, an ANN was trained and tested using time series datasets driven by long and short windows, with features extracted from the time domain. Each long-window-driven dataset contained approximately 150 data points, while each short-window-driven dataset had approximately 10 data points. The results showed that the ANN performed well for long-window-driven datasets. However, its performance declined significantly in the case of short-window-driven datasets. In the last approach, a hybrid model was developed by integrating DBC with the ANN. In this case, the features were first extracted using DBC. The extracted features were used to train and test the ANN. This hybrid approach demonstrated robust performance for both long- and short-window-driven datasets. The ability of DBC to overcome the ANN’s limitations with short-window-driven datasets underscores its potential as a pragmatic machine learning solution for developing more effective smart manufacturing systems, such as digital twins. Full article
Show Figures

Figure 1

25 pages, 2535 KB  
Article
Machine Unlearning for Robust DNNs: Attribution-Guided Partitioning and Neuron Pruning in Noisy Environments
by Deliang Jin, Gang Chen, Shuo Feng, Yufeng Ling and Haoran Zhu
Mach. Learn. Knowl. Extr. 2025, 7(3), 95; https://doi.org/10.3390/make7030095 - 5 Sep 2025
Viewed by 514
Abstract
Deep neural networks (DNNs) are highly effective across many domains but are sensitive to noisy or corrupted training data. Existing noise mitigation strategies often rely on strong assumptions about noise distributions or require costly retraining, limiting their scalability. Inspired by machine unlearning, we [...] Read more.
Deep neural networks (DNNs) are highly effective across many domains but are sensitive to noisy or corrupted training data. Existing noise mitigation strategies often rely on strong assumptions about noise distributions or require costly retraining, limiting their scalability. Inspired by machine unlearning, we propose a novel framework that integrates attribution-guided data partitioning, neuron pruning, and targeted fine-tuning to enhance robustness. Our method uses gradient-based attribution to probabilistically identify clean samples without assuming specific noise characteristics. It then applies sensitivity-based neuron pruning to remove components most susceptible to noise, followed by fine-tuning on the retained high-quality subset. This approach jointly addresses data and model-level noise, offering a practical alternative to full retraining or explicit noise modeling. We evaluate our method on CIFAR-10 image classification and keyword spotting tasks under varying levels of label corruption. On CIFAR-10, our framework improves accuracy by up to 10% (F-FT vs. retrain) and reduces retraining time by 47% (L-FT vs. retrain), highlighting both accuracy and efficiency gains. These results highlight its effectiveness and efficiency in noisy settings, making it a scalable solution for robust generalization. Full article
Show Figures

Figure 1

37 pages, 7453 KB  
Article
A Dynamic Hypergraph-Based Encoder–Decoder Risk Model for Longitudinal Predictions of Knee Osteoarthritis Progression
by John B. Theocharis, Christos G. Chadoulos and Andreas L. Symeonidis
Mach. Learn. Knowl. Extr. 2025, 7(3), 94; https://doi.org/10.3390/make7030094 - 2 Sep 2025
Viewed by 822
Abstract
Knee osteoarthritis (KOA) is a most prevalent chronic muscoloskeletal disorder causing pain and functional impairment. Accurate predictions of KOA evolution are important for early interventions and preventive treatment planning. In this paper, we propose a novel dynamic hypergraph-based risk model (DyHRM) which integrates [...] Read more.
Knee osteoarthritis (KOA) is a most prevalent chronic muscoloskeletal disorder causing pain and functional impairment. Accurate predictions of KOA evolution are important for early interventions and preventive treatment planning. In this paper, we propose a novel dynamic hypergraph-based risk model (DyHRM) which integrates the encoder–decoder (ED) architecture with hypergraph convolutional neural networks (HGCNs). The risk model is used to generate longitudinal forecasts of KOA incidence and progression based on the knee evolution at a historical stage. DyHRM comprises two main parts, namely the dynamic hypergraph gated recurrent unit (DyHGRU) and the multi-view HGCN (MHGCN) networks. The ED-based DyHGRU follows the sequence-to-sequence learning approach. The encoder first transforms a knee sequence at the historical stage into a sequence of hidden states in a latent space. The Attention-based Context Transformer (ACT) is designed to identify important temporal trends in the encoder’s state sequence, while the decoder is used to generate sequences of KOA progression, at the prediction stage. MHGCN conducts multi-view spatial HGCN convolutions of the original knee data at each step of the historic stage. The aim is to acquire more comprehensive feature representations of nodes by exploiting different hyperedges (views), including the global shape descriptors of the cartilage volume, the injury history, and the demographic risk factors. In addition to DyHRM, we also propose the HyGraphSMOTE method to confront the inherent class imbalance problem in KOA datasets, between the knee progressors (minority) and non-progressors (majority). Embedded in MHGCN, the HyGraphSMOTE algorithm tackles data balancing in a systematic way, by generating new synthetic node sequences of the minority class via interpolation. Extensive experiments are conducted using the Osteoarthritis Initiative (OAI) cohort to validate the accuracy of longitudinal predictions acquired by DyHRM under different definition criteria of KOA incidence and progression. The basic finding of the experiments is that the larger the historic depth, the higher the accuracy of the obtained forecasts ahead. Comparative results demonstrate the efficacy of DyHRM against other state-of-the-art methods in this field. Full article
(This article belongs to the Special Issue Advances in Machine and Deep Learning)
Show Figures

Figure 1

34 pages, 4200 KB  
Article
Geometric Reasoning in the Embedding Space
by David Mojžíšek, Jan Hůla, Jiří Janeček, David Herel and Mikoláš Janota
Mach. Learn. Knowl. Extr. 2025, 7(3), 93; https://doi.org/10.3390/make7030093 - 2 Sep 2025
Viewed by 684
Abstract
While neural networks can solve complex geometric problems, as demonstrated by systems like AlphaGeometry, we have limited understanding of how they internally represent and reason about spatial relationships. In this work, we investigate how neural networks develop internal spatial understanding by training Graph [...] Read more.
While neural networks can solve complex geometric problems, as demonstrated by systems like AlphaGeometry, we have limited understanding of how they internally represent and reason about spatial relationships. In this work, we investigate how neural networks develop internal spatial understanding by training Graph Neural Networks and Transformers to predict point positions on a discrete 2D grid from geometric constraints that describe hidden figures. We show that both models develop interpretable internal representations that mirror the geometric structure of the problems they solve. Specifically, we observe that point embeddings self-organize into 2D grid structures during training, and during inference, the models iteratively construct the hidden geometric figures within their embedding spaces. Our analysis reveals how reasoning complexity correlates with prediction accuracy, and shows that models solve constraints through an iterative refinement process, which might resemble continuous optimization. We also find that Graph Neural Networks prove more suitable than Transformers for this type of structured constraint reasoning and scale more effectively to larger problems. These findings provide initial insights into how neural networks can develop structured understanding and contribute to their interpretability. Full article
Show Figures

Figure 1

17 pages, 1447 KB  
Article
A Novel Prediction Model for Multimodal Medical Data Based on Graph Neural Networks
by Lifeng Zhang, Teng Li, Hongyan Cui, Quan Zhang, Zijie Jiang, Jiadong Li, Roy E. Welsch and Zhongwei Jia
Mach. Learn. Knowl. Extr. 2025, 7(3), 92; https://doi.org/10.3390/make7030092 - 2 Sep 2025
Viewed by 1005
Abstract
Multimodal medical data provides a wide and real basis for disease diagnosis. Computer-aided diagnosis (CAD) powered by artificial intelligence (AI) is becoming increasingly prominent in disease diagnosis. CAD for multimodal medical data requires addressing the issues of data fusion and prediction. Traditionally, the [...] Read more.
Multimodal medical data provides a wide and real basis for disease diagnosis. Computer-aided diagnosis (CAD) powered by artificial intelligence (AI) is becoming increasingly prominent in disease diagnosis. CAD for multimodal medical data requires addressing the issues of data fusion and prediction. Traditionally, the prediction performance of CAD models has not been good enough due to the complicated dimensionality reduction. Therefore, this paper proposes a fusion and prediction model—EPGC—for multimodal medical data based on graph neural networks. Firstly, we select features from unstructured multimodal medical data and quantify them. Then, we transform the multimodal medical data into a graph data structure by establishing each patient as a node, and establishing edges based on the similarity of features between the patients. Normalization of data is also essential in this process. Finally, we build a node prediction model based on graph neural networks and predict the node classification, which predicts the patients’ diseases. The model is validated on two publicly available datasets of heart diseases. Compared to the existing models that typically involve dimensionality reduction, classification, or the establishment of complex deep learning networks, the proposed model achieves outstanding results with the experimental dataset. This demonstrates that the fusion and diagnosis of multimodal data can be effectively achieved without dimension reduction or intricate deep learning networks. We take pride in exploring unstructured multimodal medical data using deep learning and hope to make breakthroughs in various fields. Full article
Show Figures

Figure 1

28 pages, 3780 KB  
Article
Machine Learning Prediction Models of Beneficial and Toxicological Effects of Zinc Oxide Nanoparticles in Rat Feed
by Leonid Legashev, Ivan Khokhlov, Irina Bolodurina, Alexander Shukhman and Svetlana Kolesnik
Mach. Learn. Knowl. Extr. 2025, 7(3), 91; https://doi.org/10.3390/make7030091 - 29 Aug 2025
Viewed by 880
Abstract
Nanoparticles have found widespread application across diverse fields, including agriculture and animal husbandry. However, a persistent challenge in laboratory-based studies involving nanoparticle exposure is the limited availability of experimental data, which constrains the robustness and generalizability of findings. This study presents a comprehensive [...] Read more.
Nanoparticles have found widespread application across diverse fields, including agriculture and animal husbandry. However, a persistent challenge in laboratory-based studies involving nanoparticle exposure is the limited availability of experimental data, which constrains the robustness and generalizability of findings. This study presents a comprehensive analysis of the impact of zinc oxide nanoparticles (ZnO NPs) in feed on elemental homeostasis in male Wistar rats. Using correlation-based network analysis, a correlation graph weight value of 15.44 and a newly proposed weighted importance score of 1.319 were calculated, indicating that a dose of 3.1 mg/kg represents an optimal balance between efficacy and physiological stability. To address the issue of limited sample size, synthetic data generation was performed using generative adversarial networks, enabling data augmentation while preserving the statistical characteristics of the original dataset. Machine learning models based on fully connected neural networks and kernel ridge regression, enhanced with a custom loss function, were developed and evaluated. These models demonstrated strong predictive performance across a ZnO NP concentration range of 1–150 mg/kg, accurately capturing the dependencies of essential element, protein, and enzyme levels in blood on nanoparticle dosage. Notably, the presence of toxic elements and some other elements at ultra-low concentrations exhibited non-random patterns, suggesting potential systemic responses or early indicators of nanoparticle-induced perturbations and probable inability of synthetic data to capture the true dynamics. The integration of machine learning with synthetic data expansion provides a promising approach for analyzing complex biological responses in data-scarce experimental settings, contributing to the safer and more effective application of nanoparticles in animal nutrition. Full article
Show Figures

Figure 1

30 pages, 4353 KB  
Article
Distributionally Robust Bayesian Optimization via Sinkhorn-Based Wasserstein Barycenter
by Iman Seyedi, Antonio Candelieri and Francesco Archetti
Mach. Learn. Knowl. Extr. 2025, 7(3), 90; https://doi.org/10.3390/make7030090 - 28 Aug 2025
Viewed by 558
Abstract
This paper introduces a novel framework for Distributionally Robust Bayesian Optimization (DRBO) with continuous context that integrates optimal transport theory and entropic regularization. We propose the sampling from the Wasserstein Barycenter Bayesian Optimization (SWBBO) method to deal with uncertainty about the context; that [...] Read more.
This paper introduces a novel framework for Distributionally Robust Bayesian Optimization (DRBO) with continuous context that integrates optimal transport theory and entropic regularization. We propose the sampling from the Wasserstein Barycenter Bayesian Optimization (SWBBO) method to deal with uncertainty about the context; that is, the unknown stochastic component affecting the observations of the black-box objective function. This approach captures the geometric structure of the underlying distributional uncertainty and enables robust acquisition strategies without incurring excessive computational costs. The method incorporates adaptive robustness scheduling, Lipschitz regularization, and efficient barycenter construction to balance exploration and exploitation. Theoretical analysis establishes convergence guarantees for the robust Bayesian Optimization acquisition function. Empirical evaluations on standard global optimization problems and real-life inspired benchmarks demonstrate that SWBBO consistently achieves faster convergence, good final regret, and greater stability than other recently proposed methods for DRBO with continuous context. Indeed, SWBBO outperforms all of them in terms of both optimization performance and robustness under repeated evaluations. Full article
Show Figures

Figure 1

22 pages, 3476 KB  
Article
AlzheimerRAG: Multimodal Retrieval-Augmented Generation for Clinical Use Cases
by Aritra Kumar Lahiri and Qinmin Vivian Hu
Mach. Learn. Knowl. Extr. 2025, 7(3), 89; https://doi.org/10.3390/make7030089 - 27 Aug 2025
Viewed by 705
Abstract
Recent advancements in generative AI have fostered the development of highly adept Large Language Models (LLMs) that integrate diverse data types to empower decision-making. Among these, multimodal retrieval-augmented generation (RAG) applications are promising because they combine the strengths of information retrieval and generative [...] Read more.
Recent advancements in generative AI have fostered the development of highly adept Large Language Models (LLMs) that integrate diverse data types to empower decision-making. Among these, multimodal retrieval-augmented generation (RAG) applications are promising because they combine the strengths of information retrieval and generative models, enhancing their utility across various domains, including clinical use cases. This paper introduces AlzheimerRAG, a multimodal RAG application for clinical use cases, primarily focusing on Alzheimer’s disease case studies from PubMed articles. This application incorporates cross-modal attention fusion techniques to integrate textual and visual data processing by efficiently indexing and accessing vast amounts of biomedical literature. Our experimental results, compared to benchmarks such as BioASQ and PubMedQA, yield improved performance in the retrieval and synthesis of domain-specific information. We also present a case study using our multimodal RAG in various Alzheimer’s clinical scenarios. We infer that AlzheimerRAG can generate responses with accuracy non-inferior to humans and with low rates of hallucination. Full article
Show Figures

Figure 1

29 pages, 6541 KB  
Article
A Novel Spatio-Temporal Graph Convolutional Network with Attention Mechanism for PM2.5 Concentration Prediction
by Xin Guan, Xinyue Mo and Huan Li
Mach. Learn. Knowl. Extr. 2025, 7(3), 88; https://doi.org/10.3390/make7030088 - 27 Aug 2025
Viewed by 708
Abstract
Accurate and high-resolution spatio-temporal prediction of PM2.5 concentrations remains a significant challenge for air pollution early warning and prevention. Advanced artificial intelligence (AI) technologies, however, offer promising solutions to this problem. A spatio-temporal prediction model is designed in this study, which is [...] Read more.
Accurate and high-resolution spatio-temporal prediction of PM2.5 concentrations remains a significant challenge for air pollution early warning and prevention. Advanced artificial intelligence (AI) technologies, however, offer promising solutions to this problem. A spatio-temporal prediction model is designed in this study, which is built upon a seq2seq architecture. This model employs an improved graph convolutional neural network to capture spatially dependent features, integrates time-series information through a gated recurrent unit, and incorporates an attention mechanism to achieve PM2.5 concentration prediction. Benefiting from high-resolution satellite remote sensing data, the regional, multi-step and high-resolution prediction of PM2.5 concentration in Beijing has been performed. To validate the model’s performance, ablation experiments are conducted, and the model is compared with other advanced prediction models. The experimental results show our proposed Spatio-Temporal Graph Convolutional Network with Attention Mechanism (STGCA) outperforms comparison models in multi-step forecasting, achieving root mean squared error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) of 4.21, 3.11 and 11.41% for the first step, respectively. For subsequent steps, the model also shows significant improvements. For subsequent steps, the model also shows significant improvements, with RMSE, MAE and MAPE values of 5.08, 3.69 and 13.34% for the second step and 6.54, 4.61 and 16.62% for the third step, respectively. Additionally, STGCA achieves the index of agreement (IA) values of 0.98, 0.97 and 0.95, as well as Theil’s inequality coefficient (TIC) values of 0.06, 0.08 and 0.10 proving its superiority. These results demonstrate that the proposed model offers an efficient technical approach for smart air pollution forecasting and warning in the future. Full article
Show Figures

Figure 1

33 pages, 2122 KB  
Article
AML4S: An AutoML Pipeline for Data Streams
by Eleftherios Kalaitzidis, Themistoklis Diamantopoulos, Athanasios Michailoudis and Andreas L. Symeonidis
Mach. Learn. Knowl. Extr. 2025, 7(3), 87; https://doi.org/10.3390/make7030087 - 26 Aug 2025
Viewed by 645
Abstract
The data landscape has changed, as more and more information is produced in the form of continuous data streams instead of stationary datasets. In this context, several online machine learning techniques have been proposed with the aim of automatically adapting to changes in [...] Read more.
The data landscape has changed, as more and more information is produced in the form of continuous data streams instead of stationary datasets. In this context, several online machine learning techniques have been proposed with the aim of automatically adapting to changes in data distributions, known as drifts. Though effective in certain scenarios, contemporary techniques do not generalize well to different types of data, while they also require manual parameter tuning, thus significantly hindering their applicability. Moreover, current methods do not thoroughly address drifts, as they mostly focus on concept drifts (distribution shifts on the target variable) and not on data drifts (changes in feature distributions). To confront these challenges, in this paper, we propose an AutoML Pipeline for Streams (AML4S), which automates the choice of preprocessing techniques, the choice of machine learning models, and the tuning of hyperparameters. Our pipeline further includes a drift detection mechanism that identifies different types of drifts, therefore continuously adapting the underlying models. We assess our pipeline on several real and synthetic data streams, including a data stream that we crafted to focus on data drifts. Our results indicate that AML4S produces robust pipelines and outperforms existing online learning or AutoML algorithms. Full article
Show Figures

Graphical abstract

27 pages, 33734 KB  
Article
Full Domain Analysis in Fluid Dynamics
by Alexander Hagg, Adam Gaier, Dominik Wilde, Alexander Asteroth, Holger Foysi and Dirk Reith
Mach. Learn. Knowl. Extr. 2025, 7(3), 86; https://doi.org/10.3390/make7030086 - 18 Aug 2025
Viewed by 842
Abstract
Novel techniques in evolutionary optimization, simulation, and machine learning enable a broad analysis of domains like fluid dynamics, in which computation is expensive and flow behavior is complex. This paper introduces the concept of full domain analysis, defined as the ability to efficiently [...] Read more.
Novel techniques in evolutionary optimization, simulation, and machine learning enable a broad analysis of domains like fluid dynamics, in which computation is expensive and flow behavior is complex. This paper introduces the concept of full domain analysis, defined as the ability to efficiently determine the full space of solutions in a problem domain and analyze the behavior of those solutions in an accessible and interactive manner. The goal of full domain analysis is to deepen our understanding of domains by generating many examples of flow, their diversification, optimization, and analysis. We define a formal model for full domain analysis, its current state of the art, and the requirements of its sub-components. Finally, an example is given to show what can be learned by using full domain analysis. Full domain analysis, rooted in optimization and machine learning, can be a valuable tool in understanding complex systems in computational physics and beyond. Full article
Show Figures

Graphical abstract

45 pages, 59922 KB  
Article
Machine Learning Applied to Professional Football: Performance Improvement and Results Prediction
by Diego Moya, Christian Tipantuña, Génesis Villa, Xavier Calderón-Hinojosa, Belén Rivadeneira and Robin Álvarez
Mach. Learn. Knowl. Extr. 2025, 7(3), 85; https://doi.org/10.3390/make7030085 - 14 Aug 2025
Viewed by 2334
Abstract
This paper examines the integration of machine learning (ML) techniques in professional football, focusing on two key areas: (i) player and team performance, and (ii) match outcome prediction. Using a systematic methodology, this study reviews 172 papers from a five-year observation period (2019–2024) [...] Read more.
This paper examines the integration of machine learning (ML) techniques in professional football, focusing on two key areas: (i) player and team performance, and (ii) match outcome prediction. Using a systematic methodology, this study reviews 172 papers from a five-year observation period (2019–2024) to identify relevant applications, focusing on the analysis of game actions (free kicks, passes, and penalties), individual and collective performance, and player position. A predominance of supervised learning, deep learning, and hybrid models (which integrate several ML techniques) is observed in the ML categories. Among the most widely used algorithms are decision trees, extreme gradient boosting, and artificial neural networks, which focus on optimizing sports performance and predicting outcomes. This paper discusses challenges such as the limited availability of public datasets due to access and cost restrictions, the restricted use of advanced visualization tools, and the poor integration of data acquisition devices, such as sensors. However, it also highlights the role of ML in addressing these challenges, thereby representing future research opportunities. Furthermore, this paper includes two illustrative case studies: (i) predicting the date Cristiano Ronaldo will reach 1000 goals, and (ii) an example of predicting penalty shoots; these examples demonstrate the practical potential of ML for performance monitoring and tactical decision-making in real-world football environments. Full article
Show Figures

Figure 1

24 pages, 3617 KB  
Article
A Comparison Between Unimodal and Multimodal Segmentation Models for Deep Brain Structures from T1- and T2-Weighted MRI
by Nicola Altini, Erica Lasaracina, Francesca Galeone, Michela Prunella, Vladimiro Suglia, Leonarda Carnimeo, Vito Triggiani, Daniele Ranieri, Gioacchino Brunetti and Vitoantonio Bevilacqua
Mach. Learn. Knowl. Extr. 2025, 7(3), 84; https://doi.org/10.3390/make7030084 - 13 Aug 2025
Viewed by 917
Abstract
Accurate segmentation of deep brain structures is critical for preoperative planning in such neurosurgical procedures as Deep Brain Stimulation (DBS). Previous research has showcased successful pipelines for segmentation from T1-weighted (T1w) Magnetic Resonance Imaging (MRI) data. Nevertheless, the role of T2-weighted (T2w) MRI [...] Read more.
Accurate segmentation of deep brain structures is critical for preoperative planning in such neurosurgical procedures as Deep Brain Stimulation (DBS). Previous research has showcased successful pipelines for segmentation from T1-weighted (T1w) Magnetic Resonance Imaging (MRI) data. Nevertheless, the role of T2-weighted (T2w) MRI data has been underexploited so far. This study proposes and evaluates a fully automated deep learning pipeline based on nnU-Net for the segmentation of eight clinically relevant deep brain structures. A heterogeneous dataset has been prepared by gathering 325 paired T1w and T2w MRI scans from eight publicly available sources, which have been annotated by means of an atlas-based registration approach. Three 3D nnU-Net models—unimodal T1w, unimodal T2w, and multimodal (encompassing both T1w and T2w)—have been trained and compared by using 5-fold cross-validation and a separate test set. The outcomes prove that the multimodal model consistently outperforms the T2w unimodal model and achieves comparable performance with the T1w unimodal model. On our dataset, all proposed models significantly exceed the performance of the state-of-the-art DBSegment tool. These findings underscore the value of multimodal MRI in enhancing deep brain segmentation and offer a robust framework for accurate delineation of subcortical targets in both research and clinical settings. Full article
(This article belongs to the Special Issue Deep Learning in Image Analysis and Pattern Recognition, 2nd Edition)
Show Figures

Figure 1

15 pages, 2175 KB  
Article
Thrifty World Models for Applying Machine Learning in the Design of Complex Biosocial–Technical Systems
by Stephen Fox and Vitor Fortes Rey
Mach. Learn. Knowl. Extr. 2025, 7(3), 83; https://doi.org/10.3390/make7030083 - 13 Aug 2025
Viewed by 630
Abstract
Interactions between human behavior, legal regulations, and monitoring technology in road traffic systems provide an everyday example of complex biosocial–technical systems. In this paper, a study is reported that investigated the potential for a thrifty world model to predict consequences from choices about [...] Read more.
Interactions between human behavior, legal regulations, and monitoring technology in road traffic systems provide an everyday example of complex biosocial–technical systems. In this paper, a study is reported that investigated the potential for a thrifty world model to predict consequences from choices about road traffic system design. Colloquially, the term thrifty means economical. In physics, the term thrifty is related to the principle of least action. Predictions were made with algebraic machine learning, which combines predefined embeddings with ongoing learning from data. The thrifty world model comprises three categories that encompass a total of only eight system design choice options. Results indicate that the thrifty world model is sufficient to encompass biosocial–technical complexity in predictions of where and when it is most likely that accidents will occur. Overall, it is argued that thrifty world models can provide a practical alternative to large photo-realistic world models, which can contribute to explainable artificial intelligence (AI) and to frugal AI. Full article
(This article belongs to the Special Issue Advances in Machine and Deep Learning)
Show Figures

Figure 1

30 pages, 2261 KB  
Article
Multilayer Perceptron Mapping of Subjective Time Duration onto Mental Imagery Vividness and Underlying Brain Dynamics: A Neural Cognitive Modeling Approach
by Matthew Sheculski and Amedeo D’Angiulli
Mach. Learn. Knowl. Extr. 2025, 7(3), 82; https://doi.org/10.3390/make7030082 - 13 Aug 2025
Viewed by 676
Abstract
According to a recent experimental phenomenology–information processing theory, the sensory strength, or vividness, of visual mental images self-reported by human observers reflects the intensive variation in subjective time duration during the process of generation of said mental imagery. The primary objective of this [...] Read more.
According to a recent experimental phenomenology–information processing theory, the sensory strength, or vividness, of visual mental images self-reported by human observers reflects the intensive variation in subjective time duration during the process of generation of said mental imagery. The primary objective of this study was to test the hypothesis that a biologically plausible essential multilayer perceptron (MLP) architecture can validly map the phenomenological categories of subjective time duration onto levels of subjectively self-reported vividness. A secondary objective was to explore whether this type of neural network cognitive modeling approach can give insight into plausible underlying large-scale brain dynamics. To achieve these objectives, vividness self-reports and reaction times from a previously collected database were reanalyzed using multilayered perceptron network models. The input layer consisted of six levels representing vividness self-reports and a reaction time cofactor. A single hidden layer consisted of three nodes representing the salience, task positive, and default mode networks. The output layer consisted of five levels representing Vittorio Benussi’s subjective time categories. Across different models of networks, Benussi’s subjective time categories (Level 1 = very brief, 2 = brief, 3 = present, 4 = long, 5 = very long) were predicted by visual imagery vividness level 1 (=no image) to 5 (=very vivid) with over 90% success in classification accuracy, precision, recall, and F1-score. This accuracy level was maintained after 5-fold cross validation. Linear regressions, Welch’s t-test for independent coefficients, and Pearson’s correlation analysis were applied to the resulting hidden node weight vectors, obtaining evidence for strong correlation and anticorrelation between nodes. This study successfully mapped Benussi’s five levels of subjective time categories onto the activation patterns of a simple MLP, providing a novel computational framework for experimental phenomenology. Our results revealed structured, complex dynamics between the task positive network (TPN), the default mode network (DMN), and the salience network (SN), suggesting that the neural mechanisms underlying temporal consciousness involve flexible network interactions beyond the traditional triple network model. Full article
Show Figures

Graphical abstract

25 pages, 24334 KB  
Article
Unsupervised Knowledge Extraction of Distinctive Landmarks from Earth Imagery Using Deep Feature Outliers for Robust UAV Geo-Localization
by Zakhar Ostrovskyi, Oleksander Barmak, Pavlo Radiuk and Iurii Krak
Mach. Learn. Knowl. Extr. 2025, 7(3), 81; https://doi.org/10.3390/make7030081 - 13 Aug 2025
Viewed by 583
Abstract
Vision-based navigation is a common solution for the critical challenge of GPS-denied Unmanned Aerial Vehicle (UAV) operation, but a research gap remains in the autonomous discovery of robust landmarks from aerial survey imagery needed for such systems. In this work, we propose a [...] Read more.
Vision-based navigation is a common solution for the critical challenge of GPS-denied Unmanned Aerial Vehicle (UAV) operation, but a research gap remains in the autonomous discovery of robust landmarks from aerial survey imagery needed for such systems. In this work, we propose a framework to fill this gap by identifying visually distinctive urban buildings from aerial survey imagery and curating them into a landmark database for GPS-free UAV localization. The proposed framework constructs semantically rich embeddings using intermediate layers from a pre-trained YOLOv11n-seg segmentation network. This novel technique requires no additional training. An unsupervised landmark selection strategy, based on the Isolation Forest algorithm, then identifies objects with statistically unique embeddings. Experimental validation on the VPAIR aerial-to-aerial benchmark shows that the proposed max-pooled embeddings, assembled from selected layers, significantly improve retrieval performance. The top-1 retrieval accuracy for landmarks more than doubled compared to typical buildings (0.53 vs. 0.31), and a Recall@5 of 0.70 is achieved for landmarks. Overall, this study demonstrates that unsupervised outlier selection in a carefully constructed embedding space yields a highly discriminative, computation-friendly set of landmarks suitable for real-time, robust UAV navigation. Full article
(This article belongs to the Special Issue Deep Learning in Image Analysis and Pattern Recognition, 2nd Edition)
Show Figures

Graphical abstract

20 pages, 5008 KB  
Article
Harnessing Large-Scale University Registrar Data for Predictive Insights: A Data-Driven Approach to Forecasting Undergraduate Student Success with Convolutional Autoencoders
by Mohammad Erfan Shoorangiz and Michal Brylinski
Mach. Learn. Knowl. Extr. 2025, 7(3), 80; https://doi.org/10.3390/make7030080 - 8 Aug 2025
Viewed by 491
Abstract
Predicting undergraduate student success is critical for informing timely interventions and improving outcomes in higher education. This study leverages over a decade of historical data from Louisiana State University (LSU) to forecast graduation outcomes using advanced machine learning techniques, with a focus on [...] Read more.
Predicting undergraduate student success is critical for informing timely interventions and improving outcomes in higher education. This study leverages over a decade of historical data from Louisiana State University (LSU) to forecast graduation outcomes using advanced machine learning techniques, with a focus on convolutional autoencoders (CAEs). We detail the data processing and transformation steps, including feature selection and imputation, to construct a robust dataset. The CAE effectively extracts meaningful latent features, validated through low-dimensional t-SNE visualizations that reveal clear clusters based on class labels, differentiating students likely to graduate from those at risk. A two-year gap strategy is introduced to ensure rigorous evaluation and simulate real-world conditions by predicting outcomes on unseen future data. Our results demonstrate the promise of CAE-derived embeddings for dimensionality reduction and computational efficiency, with competitive performance in downstream classification tasks. While models trained on embeddings showed slightly reduced performance compared to raw input data, with accuracies of 83% and 85%, respectively, their compactness and computational efficiency highlight their potential for large-scale analyses. The study emphasizes the importance of rigorous preprocessing, feature engineering, and evaluation protocols. By combining these approaches, we provide actionable insights and adaptive modeling strategies to support robust and generalizable predictive systems, enabling educators and administrators to enhance student success initiatives in dynamic educational environments. Full article
(This article belongs to the Section Learning)
Show Figures

Figure 1

18 pages, 973 KB  
Article
Machine Learning-Based Vulnerability Detection in Rust Code Using LLVM IR and Transformer Model
by Young Lee, Syeda Jannatul Boshra, Jeong Yang, Zechun Cao and Gongbo Liang
Mach. Learn. Knowl. Extr. 2025, 7(3), 79; https://doi.org/10.3390/make7030079 - 6 Aug 2025
Viewed by 1161
Abstract
Rust’s growing popularity in high-integrity systems requires automated vulnerability detection in order to maintain its strong safety guarantees. Although Rust’s ownership model and compile-time checks prevent many errors, sometimes unexpected bugs may occasionally pass analysis, underlining the necessity for automated safe and unsafe [...] Read more.
Rust’s growing popularity in high-integrity systems requires automated vulnerability detection in order to maintain its strong safety guarantees. Although Rust’s ownership model and compile-time checks prevent many errors, sometimes unexpected bugs may occasionally pass analysis, underlining the necessity for automated safe and unsafe code detection. This paper presents Rust-IR-BERT, a machine learning approach to detect security vulnerabilities in Rust code by analyzing its compiled LLVM intermediate representation (IR) instead of the raw source code. This approach offers novelty by employing LLVM IR’s language-neutral, semantically rich representation of the program, facilitating robust detection by capturing core data and control-flow semantics and reducing language-specific syntactic noise. Our method leverages a graph-based transformer model, GraphCodeBERT, which is a transformer architecture pretrained model to encode structural code semantics via data-flow information, followed by a gradient boosting classifier, CatBoost, that is capable of handling complex feature interactions—to classify code as vulnerable or safe. The model was evaluated using a carefully curated dataset of over 2300 real-world Rust code samples (vulnerable and non-vulnerable Rust code snippets) from RustSec and OSV advisory databases, compiled to LLVM IR and labeled with corresponding Common Vulnerabilities and Exposures (CVEs) identifiers to ensure comprehensive and realistic coverage. Rust-IR-BERT achieved an overall accuracy of 98.11%, with a recall of 99.31% for safe code and 93.67% for vulnerable code. Despite these promising results, this study acknowledges potential limitations such as focusing primarily on known CVEs. Built on a representative dataset spanning over 2300 real-world Rust samples from diverse crates, Rust-IR-BERT delivers consistently strong performance. Looking ahead, practical deployment could take the form of a Cargo plugin or pre-commit hook that automatically generates and scans LLVM IR artifacts during the development cycle, enabling developers to catch vulnerabilities at an early stage in the development cycle. Full article
Show Figures

Figure 1

40 pages, 2515 KB  
Article
AE-DTNN: Autoencoder–Dense–Transformer Neural Network Model for Efficient Anomaly-Based Intrusion Detection Systems
by Hesham Kamal and Maggie Mashaly
Mach. Learn. Knowl. Extr. 2025, 7(3), 78; https://doi.org/10.3390/make7030078 - 6 Aug 2025
Viewed by 1003
Abstract
In this study, we introduce an enhanced hybrid Autoencoder–Dense–Transformer Neural Network (AE-DTNN) model for developing an effective intrusion detection system (IDS) aimed at improving the performance and robustness of threat detection strategies within a rapidly changing and increasingly complex network landscape. The Autoencoder [...] Read more.
In this study, we introduce an enhanced hybrid Autoencoder–Dense–Transformer Neural Network (AE-DTNN) model for developing an effective intrusion detection system (IDS) aimed at improving the performance and robustness of threat detection strategies within a rapidly changing and increasingly complex network landscape. The Autoencoder component restructures network traffic data, while a stack of Dense layers performs feature extraction to generate more meaningful representations. The Transformer network then facilitates highly precise and comprehensive classification. Our strategy incorporates adaptive synthetic sampling (ADASYN) for both binary and multi-class classification tasks, complemented by the edited nearest neighbors (ENN) technique and the use of class weights to mitigate class imbalance issues. In experiments conducted on the NF-BoT-IoT-v2 dataset, the AE-DTNN-based IDS achieved outstanding performance, with 99.98% accuracy in binary classification and 98.30% in multi-class classification. On the NSL-KDD dataset, the model reached 98.57% accuracy for binary classification and 97.50% for multi-class classification. Additionally, the model attained 99.92% and 99.78% accuracy in binary and multi-class classification, respectively, on the CSE-CIC-IDS2018 dataset. These results demonstrate the exceptional effectiveness of the proposed model in contrast to conventional approaches, highlighting its strong potential to detect a broad range of network intrusions with high reliability. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop