Previous Issue
Volume 4, June

Table of Contents

Designs, Volume 4, Issue 3 (September 2020) – 7 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Open AccessArticle
Analyzing the Effects of Tactical Dependence for Business Process Reengineering and Optimization
Designs 2020, 4(3), 23; https://doi.org/10.3390/designs4030023 - 07 Jul 2020
Viewed by 165
Abstract
Implementing business and manufacturing process reengineering is challenging and poses major issues. The dependence issues between process functions during the implementation phase are the main reason for the high failure rate of process reengineering. The incompetence in identifying the dependence makes existing business [...] Read more.
Implementing business and manufacturing process reengineering is challenging and poses major issues. The dependence issues between process functions during the implementation phase are the main reason for the high failure rate of process reengineering. The incompetence in identifying the dependence makes existing business process reengineering approaches static for modern business and manufacturing process structures. This paper has implemented a new process reengineering approach called the Khan–Hassan–Butt (KHB) methodology that incorporates the process interdependence algorithm to identify the dependence issues. The KHB method is a hybrid process reengineering approach to identify dependence issues before implementing changes; thus significantly reducing the failure rate of implementing business process reengineering. The KHB method has been implemented in a Bangladesh fabric manufacturing facility. The mapping and verification of the process have been completed using the WITNESS Horizon 22.5 simulation package. The case study has investigated the fabric production process and identified the dependence issues between each function and suggested changes to optimize the process. The outcome has shown significant improvement in production output and process efficiency. Full article
Show Figures

Graphical abstract

Open AccessArticle
Design and Mechanical Testing of 3D Printed Hierarchical Lattices Using Biocompatible Stereolithography
Designs 2020, 4(3), 22; https://doi.org/10.3390/designs4030022 - 06 Jul 2020
Viewed by 220
Abstract
Emerging 3D printing technologies are enabling the rapid fabrication of complex designs with favorable properties such as mechanically efficient lattices for biomedical applications. However, there is a lack of biocompatible materials suitable for printing complex lattices constructed from beam-based unit cells. Here, we [...] Read more.
Emerging 3D printing technologies are enabling the rapid fabrication of complex designs with favorable properties such as mechanically efficient lattices for biomedical applications. However, there is a lack of biocompatible materials suitable for printing complex lattices constructed from beam-based unit cells. Here, we investigate the design and mechanics of biocompatible lattices fabricated with cost-effective stereolithography. Mechanical testing experiments include material characterization, lattices rescaled with differing unit cell numbers, topology alterations, and hierarchy. Lattices were consistently printed with 5% to 10% lower porosity than intended. Elastic moduli for 70% porous body-centered cube topologies ranged from 360 MPa to 135 MPa, with lattices having decreased elastic moduli as unit cell number increased. Elastic moduli ranged from 101 MPa to 260 MPa based on unit cell topology, with increased elastic moduli when a greater proportion of beams were aligned with the loading direction. Hierarchy provided large pores for improved nutrient transport and minimally decreased lattice elastic moduli for a fabricated tissue scaffold lattice with 7.72 kN/mm stiffness that is suitable for bone fusion. Results demonstrate the mechanical feasibility of biocompatible stereolithography and provide a basis for future investigations of lattice building blocks for diverse 3D printed designs. Full article
Show Figures

Graphical abstract

Open AccessArticle
Establishing Picture Databases for Image Boards: An Example for Lifestyles of Health and Sustainability Images
Designs 2020, 4(3), 21; https://doi.org/10.3390/designs4030021 - 01 Jul 2020
Viewed by 143
Abstract
Recently, more importance has been attached to consumers’ emotional feelings in the course of product design. Designers must convey positive emotions, such as surprise and affection, to consumers through their designs. For this purpose, image boards have been frequently used in design to [...] Read more.
Recently, more importance has been attached to consumers’ emotional feelings in the course of product design. Designers must convey positive emotions, such as surprise and affection, to consumers through their designs. For this purpose, image boards have been frequently used in design to position product emotional feeling and arouse design ideas. A large number of pictures are often needed for constructing an image board. However, it is time-consuming and labor-intensive to find appropriate pictures and the pictures that are finally collected may not reflect the expected image of consumers. Therefore, this study aims to take Lifestyles of Health and Sustainability (LOHAS) as an example to build a user-driven database for image boards. In this research, 16 LOHAS representatives were identified and recruited by using a lifestyle questionnaire to collect, and then screen out 50 proposed pictures relevant to the image of LOHAS. Since image boards are usually used by designers, in order to include their ideas, another 16 pictures were selected by the invited experienced product designers to create a comprehensive pool of 66 proposed pictures. Design experts were asked to select six key image adjectives, which included healthy, environmentally friendly, sustainable, natural, simple, and ecological for describing images of the LOHAS, from the vocabulary pool collected by general respondents, LOHAS representatives, and designers. Next, 219 LOHAS subjects were required to carry out a semantic differential assessment of each of the 66 proposed pictures with the six key images, and then two types of analyses on the collected data from the semantic differential assessment. Through mean analysis and grey correlation analysis, the recommended pictures representing LOHAS or six key adjective images were selected. The research results put forward three database application models. The results of this study are expected to be used by designers, users, manufacturers, and educators to help improve product design efficiency in the future. Full article
Show Figures

Graphical abstract

Open AccessArticle
Planning the Future Electricity Mix for Countries in the Global South: Renewable Energy Potentials and Designing the Use of Artificial Neural Networks to Investigate Their Use Cases
Designs 2020, 4(3), 20; https://doi.org/10.3390/designs4030020 - 01 Jul 2020
Viewed by 158
Abstract
Due to a symbiotic relationship, economic growth leads to greater energy consumption in transportation, manufacturing, and domestic sectors. Electricity consumption in the global south is rising as nations in the region strive for economic development. Due to the high costs of fossil fuels [...] Read more.
Due to a symbiotic relationship, economic growth leads to greater energy consumption in transportation, manufacturing, and domestic sectors. Electricity consumption in the global south is rising as nations in the region strive for economic development. Due to the high costs of fossil fuels and environmental issues, these countries are planning exploitation of their renewable energy potential for meeting their energy needs. In this paper, we take Myanmar as a case study for which photovoltaic (PV) is seen as the preferred technology owing to its modular nature and Myanmar’s tremendous PV potential. To create sustainable systems, the impact of diurnal PV profiles on electricity demand profiles needs investigating. Accurate load forecasts lead to significant savings in operation and planning and maintenance. Artificial neural networks (ANNs) can easily be used for load profile forecasting. This work proposes a three-stage systematic approach which could be employed by global south countries for designing ANN load forecasting models with the aim of simplifying the design process. While the results of this work demonstrate that PV is a suitable energy source for countries like Myanmar, they also point to the importance of including annual load increase rate and PV output degradation rate in system planning. Full article
Show Figures

Figure 1

Open AccessConcept Paper
A Shape Optimization Method for Part Design Derived from the Buildability Restrictions of the Directed Energy Deposition Additive Manufacturing Process
Designs 2020, 4(3), 19; https://doi.org/10.3390/designs4030019 - 01 Jul 2020
Viewed by 134
Abstract
The design methodologies and part shape algorithms for additive manufacturing (AM) are rapidly growing fields, proven to be of critical importance for the uptake of additive manufacturing of parts with enhanced performance in all major industrial sectors. The current trend for part design [...] Read more.
The design methodologies and part shape algorithms for additive manufacturing (AM) are rapidly growing fields, proven to be of critical importance for the uptake of additive manufacturing of parts with enhanced performance in all major industrial sectors. The current trend for part design is a computationally driven approach where the parts are algorithmically morphed to meet the functional requirements with optimized performance in terms of material distribution. However, the manufacturability restrictions of AM processes are not considered at the primary design phases but at a later post-morphed stage of the part’s design. This paper proposes an AM design method to ensure: (1) optimized material distribution based on the load case and (2) the part’s manufacturability. The buildability restrictions from the direct energy deposition (DED) AM technology were used as input to the AM shaping algorithm to grant high AM manufacturability. The first step of this work was to define the term of AM manufacturability, its effect on AM production, and to propose a framework to estimate the quantified value of AM manufacturability for the given part design. Moreover, an AM design method is proposed, based on the developed internal stresses of the build volume for the load case. Stress tensors are used for the determination of the build orientation and as input for the part morphing. A top-down mesoscale geometric optimization is used to realize the AM part design. The DED Design for Additive Manufacturing (DfAM) rules are used to delimitate the morphing of the part, representing at the same time the freeform mindset of the AM technology. The morphed shape of the part is optimized in terms of topology and AM manufacturability. The topology optimization and AM manufacturability indicator (TMI) is introduced to screen the percentage of design elements that serve topology optimization and the ones that serve AM manufacturability. In the end, a case study for proof of concept is realized. Full article
(This article belongs to the Special Issue 3D Printing Functionality: Materials, Sensors, Electromagnetics)
Show Figures

Figure 1

Open AccessConcept Paper
Intelligence Comes from Within—Personality as a UI Paradigm for Smart Spaces
Designs 2020, 4(3), 18; https://doi.org/10.3390/designs4030018 - 01 Jul 2020
Viewed by 148
Abstract
The buzzword “smart home” promises an intelligent, helpful environment in which technology makes life easier, simpler or safer for its inhabitants. On a technical level, this is currently achieved by many networked devices interacting with each other, working on shared protocols and standards. [...] Read more.
The buzzword “smart home” promises an intelligent, helpful environment in which technology makes life easier, simpler or safer for its inhabitants. On a technical level, this is currently achieved by many networked devices interacting with each other, working on shared protocols and standards. From a user experience (UX) perspective, however, the interaction with such a collection of devices has become so complex that it currently rather stands in the way of widespread adoption and use. So far, it does not seem likely that a common user interface (UI) concept will emerge as a quasi-standard, as the desktop interface did for graphical UIs. Therefore, our research follows a different approach. Instead of many singular intelligent devices, we envision a UI concept for smart environments that integrates diverse pieces of technology in a coherent mental model of an embodied “room intelligence” (RI). RI will combine smart machinery, mobile robotic arms and mundane physical objects, thereby blurring the line between the physical and the digital world. The present paper describes our vision and emerging research questions and presents the initial steps of technical realization. Full article
Show Figures

Figure 1

Open AccessArticle
A Conceptual Framework to Support Digital Transformation in Manufacturing Using an Integrated Business Process Management Approach
Designs 2020, 4(3), 17; https://doi.org/10.3390/designs4030017 - 27 Jun 2020
Viewed by 223
Abstract
Digital transformation is no longer a future trend, as it has become a necessity for businesses to grow and remain competitive in the market. The fourth industrial revolution, called Industry 4.0, is at the heart of this transformation, and is supporting organizations in [...] Read more.
Digital transformation is no longer a future trend, as it has become a necessity for businesses to grow and remain competitive in the market. The fourth industrial revolution, called Industry 4.0, is at the heart of this transformation, and is supporting organizations in achieving benefits that were unthinkable a few years ago. The impact of Industry 4.0 enabling technologies in the manufacturing sector is undeniable, and their correct use offers benefits such as improved productivity and asset performance, reduced inefficiencies, lower production and maintenance costs, while enhancing system agility and flexibility. However, organizations have found the move towards digital transformation extremely challenging for several reasons, including a lack of standardized implementation protocols, emphasis on the introduction of new technologies without assessing their role within the business, the compartmentalization of digital initiatives from the rest of the business, and the large-scale implementation of digitalization without a realistic view of return on investment. To instill confidence and reduce the anxiety surrounding Industry 4.0 implementation in the manufacturing sector, this paper presents a conceptual framework based on business process management (BPM). The framework is informed by a content-centric literature review of Industry 4.0 technologies, its design principles, and BPM method. This integrated framework incorporates the factors that are often overlooked during digital transformation and presents a structured methodology that can be employed by manufacturing organizations to facilitate their transition towards Industry 4.0. Full article
Show Figures

Graphical abstract

Previous Issue
Back to TopTop