Previous Issue

Table of Contents

Fermentation, Volume 4, Issue 4 (December 2018)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-7
Export citation of selected articles as:
Open AccessArticle Soaking in Aqueous Ammonia (SAA) Pretreatment of Whole Corn Kernels for Cellulosic Ethanol Production from the Fiber Fractions
Fermentation 2018, 4(4), 87; https://doi.org/10.3390/fermentation4040087
Received: 4 September 2018 / Revised: 11 October 2018 / Accepted: 12 October 2018 / Published: 16 October 2018
PDF Full-text (1181 KB) | HTML Full-text | XML Full-text
Abstract
Corn fiber is a co-product of commercial ethanol dry-grind plants, which is processed into distillers dried grains with solubles (DDGS) and used as animal feed, yet it holds high potential to be used as feedstock for additional ethanol production. Due to the tight
[...] Read more.
Corn fiber is a co-product of commercial ethanol dry-grind plants, which is processed into distillers dried grains with solubles (DDGS) and used as animal feed, yet it holds high potential to be used as feedstock for additional ethanol production. Due to the tight structural make-up of corn fiber, a pretreatment step is necessary to make the cellulose and hemicellulose polymers in the solid fibrous matrix more accessible to the hydrolytic enzymes. A pretreatment process was developed in which whole corn kernels were soaked in aqueous solutions of 2.5, 5.0, 7.5, and 10.0 wt% ammonia at 105 °C for 24 h. The pretreated corn then was subjected to a conventional mashing procedure and subsequent ethanol fermentation using a commercial strain of natural Saccharomyces cerevisiae with addition of a commercial cellulase. Pretreatment of the corn with 7.5 wt% ammonia solution plus cellulase addition gave the highest ethanol production, which improved the yield in fermentation using 25 wt% solid from 334 g ethanol/kg corn obtained in the control (no pretreatment and no cellulase addition) to 379 g ethanol/kg corn (a 14% increase). The process developed can potentially be implemented in existing dry-grind ethanol facilities as a “bolt-on” process for additional ethanol production from corn fiber, and this additional ethanol can then qualify as “cellulosic ethanol” by the Environmental Protection Agency’s (EPA’s) Renewable Fuels Standard and thereby receive RINs (Renewable Identification Numbers). Full article
(This article belongs to the Special Issue Ethanol and Value-Added Co-Products)
Figures

Graphical abstract

Open AccessFeature PaperArticle Co-Culture of Filamentous Feed-Grade Fungi and Microalgae as an Alternative to Increase Feeding Value of Ethanol Coproducts
Fermentation 2018, 4(4), 86; https://doi.org/10.3390/fermentation4040086
Received: 24 September 2018 / Revised: 5 October 2018 / Accepted: 9 October 2018 / Published: 11 October 2018
PDF Full-text (786 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Distiller’s grains, an important commodity in the feed and food chains, are currently underdosed in rations due to several factors, mainly nutrient imbalance. This study aimed to increase the linoleic acid content in distiller’s grains and decrease the excess nutrients in stillage water
[...] Read more.
Distiller’s grains, an important commodity in the feed and food chains, are currently underdosed in rations due to several factors, mainly nutrient imbalance. This study aimed to increase the linoleic acid content in distiller’s grains and decrease the excess nutrients in stillage water by the use of an artificial lichen, composed of fungi, algae, and a supporting matrix. A maximum concentration of 46.25% of linoleic acid in distiller’s grains was achieved with a combination of Mucor indicus and Chlorella vulgaris using corn-to-ethanol whole stillage as substrate. Microbial hydrolytic enzymes during fermentation were able to decrease the solids in whole stillage. Nitrogen depletion by microalgal uptake causes lipid-formation stress to Mucor indicus cells, increasing linoleic acid production to about 49% of the total lipids, potentially decreasing costs in the animal feed. The culture supernatant can potentially be recycled as process water to the ethanol fermentation tank, and enhanced distiller’s grains can replace animal-specific diets. This would reduce exogenous enzyme use and supplementation of unsaturated fatty acids from other sources. Full article
(This article belongs to the Special Issue Cultivation and Downstream Processing of Algal Biomass)
Figures

Graphical abstract

Open AccessReview The Multiple and Versatile Roles of Aureobasidium pullulans in the Vitivinicultural Sector
Fermentation 2018, 4(4), 85; https://doi.org/10.3390/fermentation4040085
Received: 27 August 2018 / Revised: 2 October 2018 / Accepted: 4 October 2018 / Published: 9 October 2018
PDF Full-text (661 KB) | HTML Full-text | XML Full-text
Abstract
The saprophytic yeast-like fungus Aureobasidium pullulans has been well documented for over 60 years in the microbiological literature. It is ubiquitous in distribution, being found in a variety of environments (plant surfaces, soil, water, rock surfaces and manmade surfaces), and with a worldwide
[...] Read more.
The saprophytic yeast-like fungus Aureobasidium pullulans has been well documented for over 60 years in the microbiological literature. It is ubiquitous in distribution, being found in a variety of environments (plant surfaces, soil, water, rock surfaces and manmade surfaces), and with a worldwide distribution from cold to warm climates and wet/humid regions to arid ones. Isolates and strains of A. pullulans produce a wide range of natural products well documented in the international literature and which have been regarded as safe for biotechnological and environmental applications. Showing antagonistic activity against plant pathogens (especially post-harvest pathogens) is one of the major applications currently in agriculture of the fungus, with nutrient and space competition, production of volatile organic compounds, and production of hydrolytic enzymes and antimicrobial compounds (antibacterial and antifungal). The fungus also shows a positive role on mycotoxin biocontrol through various modes, with the most striking being that of binding and/or absorption. A. pullulans strains have been reported to produce very useful industrial enzymes, such as β-glucosidase, amylases, cellulases, lipases, proteases, xylanases and mannanases. Pullulan (poly-α-1,6-maltotriose biopolymer) is an A. pullulans trademark product with significant properties and biotechnological applications in the food, cosmetic and pharmaceutical industries. Poly (β-l-malic acid), or PMA, which is a natural biopolyester, and liamocins, a group of produced heavy oils and siderophores, are among other valuable compounds detected that are of possible biotechnological use. The fungus also shows a potential single-cell protein source capacity with high levels of nucleic acid components and essential amino acids, but this remains to be further explored. Last but not least, the fungus has shown very good biocontrol against aerial plant pathogens. All these properties are of major interest in the vitivinicultural sector and are thoroughly reviewed under this prism, concluding on the importance that A. pullulans may have if used at both vineyard and winery levels. This extensive array of properties provides excellent tools for the viticulturist/farmer as well as for the oenologist to combat problems in the field and create a high-quality wine. Full article
(This article belongs to the Special Issue Enological Repercussions of Non-Saccharomyces Species)
Figures

Figure 1

Open AccessArticle Wineinformatics: Regression on the Grade and Price of Wines through Their Sensory Attributes
Fermentation 2018, 4(4), 84; https://doi.org/10.3390/fermentation4040084
Received: 4 September 2018 / Revised: 22 September 2018 / Accepted: 24 September 2018 / Published: 29 September 2018
PDF Full-text (678 KB) | HTML Full-text | XML Full-text
Abstract
Wineinformatics is a field that uses machine-learning and data-mining techniques to glean useful information from wine. In this work, attributes extracted from a large dataset of over 100,000 wine reviews are used to make predictions on two variables: quality based on a “100-point
[...] Read more.
Wineinformatics is a field that uses machine-learning and data-mining techniques to glean useful information from wine. In this work, attributes extracted from a large dataset of over 100,000 wine reviews are used to make predictions on two variables: quality based on a “100-point scale”, and price per 750 mL bottle. These predictions were built using support vector regression. Several evaluation metrics were used for model evaluation. In addition, these regression models were compared to classification accuracies achieved in a prior work. When regression was used for classification, the results were somewhat poor; however, this was expected since the main purpose of the regression was not to classify the wines. Therefore, this paper also compares the advantages and disadvantages of both classification and regression. Regression models can successfully predict within a few points of the correct grade of a wine. On average, the model was only 1.6 points away from the actual grade and off by about $13 per bottle of wine. To the best of our knowledge, this is the first work to use a large-scale dataset of wine reviews to perform regression predictions on grade and price. Full article
(This article belongs to the Special Issue Bioprocess and Fermentation Monitoring)
Figures

Figure 1

Open AccessReview Discovering the Health Promoting Potential of Fermented Papaya Preparation—Its Future Perspectives for the Dietary Management of Oxidative Stress During Diabetes
Fermentation 2018, 4(4), 83; https://doi.org/10.3390/fermentation4040083
Received: 24 July 2018 / Revised: 4 September 2018 / Accepted: 27 September 2018 / Published: 28 September 2018
PDF Full-text (1328 KB) | HTML Full-text | XML Full-text
Abstract
The simplistic morphological characteristics of Carica papaya fruit or “pawpaw” should not be the cause for underestimating its potential as a nutraceutical. The market for papaya has been expanding at a staggering rate, partly due to its applicability as a biofortified product, but
[...] Read more.
The simplistic morphological characteristics of Carica papaya fruit or “pawpaw” should not be the cause for underestimating its potential as a nutraceutical. The market for papaya has been expanding at a staggering rate, partly due to its applicability as a biofortified product, but also due to its phytochemical properties and traditional health benefits. Papaya or formulations of fermented papaya promotion (FPP) display effective free radical scavenging abilities thought to be influenced by its phenolic, carotenoid, flavonoid, or amino acid profile. The antioxidant properties of FPP have been extensively reported in literature to potently target a broad spectrum of free radical-induced diseases ranging from neurological impairments, such as senile dementia, to systemic diseases, to its interference at the cellular level and the support of normal biological ageing processes. FPP has thus been extensively investigated for its ability to exert cellular protective effects and reduce oxidative stress via the mitigation of genetic damage, reduction of lipid peroxidation, and enzymatic inactivation in specific diseases. The focus of this review is to appraise the potential of oxidative stress reduction strategies of FPP and discuss its holistic approach in disease prevention and management, with a particular focus on diabetes and cancer. However, with the current lack of information surrounding its mechanism of action, this review wishes to set the stage and aspire researchers to more profoundly investigate molecular pathways related to how FPP can unequivocally contribute to wellness in an aging population. Full article
(This article belongs to the Special Issue Safety and Microbiological Quality)
Figures

Graphical abstract

Open AccessArticle Wineinformatics: A Quantitative Analysis of Wine Reviewers
Fermentation 2018, 4(4), 82; https://doi.org/10.3390/fermentation4040082
Received: 31 July 2018 / Revised: 14 September 2018 / Accepted: 17 September 2018 / Published: 25 September 2018
PDF Full-text (2216 KB) | HTML Full-text | XML Full-text
Abstract
Data Science is a successful study that incorporates varying techniques and theories from distinct fields including Mathematics, Computer Science, Economics, Business and domain knowledge. Among all components in data science, domain knowledge is the key to create high quality data products by data
[...] Read more.
Data Science is a successful study that incorporates varying techniques and theories from distinct fields including Mathematics, Computer Science, Economics, Business and domain knowledge. Among all components in data science, domain knowledge is the key to create high quality data products by data scientists. Wineinformatics is a new data science application that uses wine as the domain knowledge and incorporates data science and wine related datasets, including physicochemical laboratory data and wine reviews. This paper produces a brand-new dataset that contains more than 100,000 wine reviews made available by the Computational Wine Wheel. This dataset is then used to quantitatively evaluate the consistency of the Wine Spectator and all of its major reviewers through both white-box and black-box classification algorithms. Wine Spectator reviewers receive more than 87% accuracy when evaluated with the SVM method. This result supports Wine Spectator’s prestigious standing in the wine industry. Full article
(This article belongs to the Special Issue Bioprocess and Fermentation Monitoring)
Figures

Figure 1

Open AccessArticle Intensive Production of Carboxylic Acids Using C. butyricum in a Membrane Bioreactor (MBR)
Fermentation 2018, 4(4), 81; https://doi.org/10.3390/fermentation4040081
Received: 13 August 2018 / Revised: 18 September 2018 / Accepted: 19 September 2018 / Published: 21 September 2018
PDF Full-text (1976 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
This work reports on the use of a bench-scale chemostat (CSTR) in continuous mode and of a pilot-scale membrane bioreactor (MBR) in fed-batch mode to intensively produce acetic and butyric acids using C. butyricum grown on synthetic media. These studies were then used
[...] Read more.
This work reports on the use of a bench-scale chemostat (CSTR) in continuous mode and of a pilot-scale membrane bioreactor (MBR) in fed-batch mode to intensively produce acetic and butyric acids using C. butyricum grown on synthetic media. These studies were then used to perform a cost estimation study of the MBR system to assess the potential economic impact of this proposed methodology, regarding the production of carboxylic acids. The MBR system was found to be highly productive, reaching 37.88 g L−1 h−1 of acetic and 14.44 g L−1 h−1 of volumetric cell productivity, favoring acetic acid production over butyric acid at a ratio of 3 moles to 1. The cost of preparation and production of carboxylic acid using this system was found to be 0.0062 £PS/kg with up to 99% carbon recovery. Full article
Figures

Graphical abstract

Back to Top