Assessment of Volatile Compounds Evolution, Antioxidant Activity, and Total Phenolics Content during Cold Storage of Pomegranate Beverage Fermented by Lactobacillus paracasei K5
Abstract
:1. Introduction
2. Results and Discussion
2.1. Volatiles Composition and Sensory Evaluation
2.2. Total Phenolics Content (TPC) and Antioxidant Activity (AA)
2.3. Sensory Evaluation
3. Materials and Methods
3.1. Microbial Starter Culture Preparation
3.2. Pomegranate Beverage Production
3.3. Headspace Solid Phase Micro Extraction—Gas Chromatography/Mass Volatiles Analysis Using HS-SPME/GC-MS
3.4. Total Phenolics and Antioxidant Activity
3.5. Sensory Evaluation
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ye, Q.; Georges, N.; Selomulya, C. Microencapsulation of active ingredients in functional foods: From research stage to commercial food products. Trends Food Sci. Technol. 2018, 78, 167–179. [Google Scholar] [CrossRef]
- George Kerry, R.; Patra, J.K.; Gouda, S.; Park, Y.; Shin, H.-S.; Das, G. Benefaction of probiotics for human health: A review. J. Food Drug Anal. 2018, 26, 927–939. [Google Scholar] [CrossRef] [PubMed]
- Fernandes Pereira, A.L.; Rodrigues, S. Chapter 15—Turning Fruit Juice Into Probiotic Beverages. In Fruit Juices; Rajauria, G., Tiwari, B.K., Eds.; Academic Press: San Diego, CA, USA, 2018; pp. 279–287. [Google Scholar]
- Plessas, S.; Bosnea, L.; Alexopoulos, A.; Bezirtzoglou, E. Potential effects of probiotics in cheese and yogurt production: A review. Eng. Life Sci. 2012, 12, 433–440. [Google Scholar] [CrossRef]
- Perricone, M.; Bevilacqua, A.; Altieri, C.; Sinigaglia, M.; Corbo, R.M. Challenges for the Production of Probiotic Fruit Juices. Beverages 2015, 1, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Lebaka, V.R.; Wee, Y.J.; Narala, V.R.; Joshi, V.K. Chapter 4—Development of New Probiotic Foods—A Case Study on Probiotic Juices. In Therapeutic, Probiotic, and Unconventional Foods; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: San Diego, CA, USA, 2018; pp. 55–78. [Google Scholar]
- Plessas, S.; Nouska, C.; Karapetsas, A.; Kazakos, S.; Alexopoulos, A.; Mantzourani, I.; Chondrou, P.; Fournomiti, M.; Galanis, A.; Bezirtzoglou, E. Isolation, characterization and evaluation of the probiotic potential of a novel Lactobacillus strain isolated from Feta-type cheese. Food Chem. 2017, 226, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Nualkaekul, S.; Charalampopoulos, D. Survival of Lactobacillus plantarum in model solutions and fruit juices. Int. J. Food Microbiol. 2011, 146, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Karimi, M.; Sadeghi, R.; Kokini, J. Pomegranate as a promising opportunity in medicine and nanotechnology. Trends Food Sci. Technol. 2017, 69, 59–73. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic compounds as beneficial phytochemicals in pomegranate (Punica granatum L.) peel: A review. Food Chem. 2018, 261, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Valero-Cases, E.; Nuncio-Jáuregui, N.; Frutos, M.J. Influence of Fermentation with Different Lactic Acid Bacteria and in Vitro Digestion on the Biotransformation of Phenolic Compounds in Fermented Pomegranate Juices. J. Agric. Food Chem. 2017, 65, 6488–6496. [Google Scholar] [CrossRef] [PubMed]
- Murthy, S.N.; Patnaik, A.; Srinivasan, N.; Selvarajan, E.; Nivetha, A.; Mohanasrinivasan, V. Fermentative preparation of functional drink from Punica granatum using lactic acid bacteria and exploring its anti-tumor potential. Mater. Sci. Eng. 2017, 263, 022045. [Google Scholar] [CrossRef]
- Di Cagno, R.; Filannino, P.; Gobbetti, M. Lactic acid fermentation drives the optimal volatile flavor-aroma profile of pomegranate juice. Int. J. Food Microbiol. 2017, 248, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Filannino, P.; Azzi, L.; Cavoski, I.; Vincentini, O.; Rizzello, C.G.; Gobbetti, M.; Di Cagno, R. Exploitation of the health-promoting and sensory properties of organic pomegranate (Punica granatum L.) juice through lactic acid fermentation. Int. J. Food Microbiol. 2013, 163, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, J.C.; Obando-Ulloa, J.M. Not-from-concentrate pilot plant ‘Wonderful’ cultivar pomegranate juice changes: Volatiles. Food Chem. 2017, 229, 553–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allam, M.G.M.; Darwish, A.M.G.; Ayad, E.H.E.; Shokery, E.S.; Mashaly, R.E.; Darwish, S.M. In vivo evaluation of safety and probiotic traits of isolated Enterococcus feacium strain KT712. Res. J. Microbiol. 2016, 11, 169–177. [Google Scholar] [CrossRef]
- Beaulieu, J.C.; Stein-Chisholm, R.E. HS-GC–MS volatile compounds recovered in freshly pressed ‘Wonderful’ cultivar and commercial pomegranate juices. Food Chem. 2016, 190, 643–656. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.S. Analysis of volatile compounds in the root peel, stem peel, and fruit peel of pomegranate (Punica granatum) by TD GC/MS. J. Biosci. Biotechnol. 2014, 6, 169–181. [Google Scholar] [CrossRef]
- Andreu-Sevilla, A.J.; Mena, P.; Martí, N.; García Viguera, C.; Carbonell-Barrachina, Á.A. Volatile composition and descriptive sensory analysis of pomegranate juice and wine. Food Res. Int. 2013, 54, 246–254. [Google Scholar] [CrossRef]
- Bicas, J.L.; Molina, G.; Dionísio, A.P.; Barros, F.F.C.; Wagner, R.; Maróstica, M.R., Jr.; Pastore, G.M. Volatile constituents of exotic fruits from Brazil. Food Res. Int. 2011, 44, 1843–1855. [Google Scholar] [CrossRef]
- De Souza Sant’Ana, A. Special Issue on Exotic Fruits. Food Res. Int. 2011, 44, 1657. [Google Scholar] [CrossRef]
- Guiné, R.P.; Martín-Belloso, O.; Mínguez-Mosquera, M.I.; Paliyath, G.; Pessoa, F.L.; Le Quéré, J.L.; Sidhu, J.S.; Sinha, N.; Stanfield, P. Handbook of Fruit and Vegetable Flavors; John Wiley and Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Kafkas, E.; Cabaroglu, T.; Selli, S.; Bozdoǧan, A.; Kürkçüoǧlu, M.; Paydaş, S.; Başer, K.H.C. Identification of volatile aroma compounds of strawberry wine using solid-phase microextraction techniques coupled with gas chromatography-mass spectrometry. Flavour Fragr. J. 2006, 21, 68–71. [Google Scholar] [CrossRef]
- Servili, M.; Selvaggini, R.; Taticchi, A.; Begliomini, A.L.; Montedoro, G. Relationships between the volatile compounds evaluated by solid phase microextraction and the thermal treatment of tomato juice: Optimization of the blanching parameters. Food Chem. 2000, 71, 407–415. [Google Scholar] [CrossRef]
- Melgarejo, P.; Calín-Sánchez, Á.; Vázquez-Araújo, L.; Hernández, F.; Martínez, J.J.; Legua, P.; Carbonell-Barrachina, Á.A. Volatile Composition of Pomegranates from 9 Spanish Cultivars Using Headspace Solid Phase Microextraction. J. Food Sci. 2011, 76, S114–S120. [Google Scholar] [CrossRef] [PubMed]
- Luna, G.; Morales, M.T.; Aparicio, R. Characterisation of 39 varietal virgin olive oils by their volatile compositions. Food Chem. 2006, 98, 243–252. [Google Scholar] [CrossRef]
- Vázquez-Araújo, L.; Chambers, E.; Adhikari, K.; Carbonell-Barrachina, A.A. Physico-chemical and sensory properties of pomegranate juices with pomegranate albedo and carpellar membranes homogenate. LWT Food Sci. Technol. 2011, 44, 119–125. [Google Scholar] [CrossRef]
- Tripathi, J.; Chatterjee, S.; Gamre, S.; Chattopadhyay, S.; Variyar, P.S.; Sharma, A. Analysis of free and bound aroma compounds of pomegranate (Punica granatum L.). LWT Food Sci. Technol. 2014, 59, 461–466. [Google Scholar] [CrossRef]
- Coda, R.; Lanera, A.; Trani, A.; Gobbetti, M.; Di Cagno, R. Yogurt-like beverages made of a mixture of cereals, soy and grape must: Microbiology, texture, nutritional and sensory properties. Int. J. Food Microbiol. 2012, 155, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, Z.E.; Mousavi, S.M.; Razavi, S.H.; Emam-Djomeh, Z.; Kiani, H. Fermentation of pomegranate juice by probiotic lactic acid bacteria. World J. Microbiol. Biotechnol. 2011, 27, 123–128. [Google Scholar] [CrossRef]
- Reis, F.; Alcaire, F.; Deliza, R.; Ares, G. The role of information on consumer sensory, hedonic and wellbeing perception of sugar-reduced products: Case study with orange/pomegranate juice. Food Q. Prefer. 2017, 62, 227–236. [Google Scholar] [CrossRef]
- Kazakos, S.; Mantzourani, I.; Nouska, C.; Alexopoulos, A.; Bezirtzoglou, E.; Bekatorou, A. Production of low-alcohol fruit beverages through fermentation of pomegranate and orange juices with kefir grains. Curr. Res. Nutr. Food Sci. 2016, 4, 19–26. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Miller, N.J.; Rice-Evans, C.A. Spectrophotometric determination of antioxidant activity. Redox Rep. 1996, 2, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Gentile, C.; Reig, C.; Corona, O.; Todaro, A.; Mazzaglia, A.; Perrone, A.; Gianguzzi, G.; Agusti, M.; Farina, V. Pomological Traits, Sensory Profile and Nutraceutical Properties of Nine Cultivars of Loquat (Eriobotrya japonica Lindl.) Fruits Grown in Mediterranean Area. Plant Foods Hum. Nutr. 2016, 71, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Schoina, V.; Terpou, A.; Bosnea, L.; Kanellaki, M.; Nigam, P.S. Entrapment of Lactobacillus casei ATCC393 in the viscus matrix of Pistacia terebinthus resin for functional myzithra cheese manufacture. LWT Food Sci. Technol. 2018, 89, 441–448. [Google Scholar] [CrossRef]
Compound | RI 1 | Normalized Peak Area % | Identification 2 | ||||||
---|---|---|---|---|---|---|---|---|---|
0 h | 24 h | First Week | Fourth Week | ||||||
FP | NFP | FP | NFP | FP | NFP | ||||
Alcohols | |||||||||
Ethyl alcohol | 467 | 0.4 ± 0.1 | 15.5 ± 0.5 a | 7.6 ± 0.3 b | 32.1 ± 2.3 a | 19 ± 1.8 b | 40.4 ± 1.5 a | 23.5 ± 0.8 b | MS, RI, ref |
1-Butanol | 633 | 3.9 ± 0.1 | 5.6 ± 0.1 a | 3.3 ± 0.2 b | 11.0 ± 0.3 a | 3.0 ± 0.1 b | 3.0 ± 0.1 b | 8.5 ± 0.1 a | MS, RI, ref |
3-Methyl-1-butanol | 726 | 2.8 ± 0.4 | 2.5 ± 0.3 a | <0.1 | 3.6 ± 0.5 a | nd | 2.4 ± 0.1 a | nd | MS, RI, ref |
2-Methyl-1-butanol | 728 | 0.4 ± 0.1 | <0.1 | 0.6 ± 0.1 a | 2.4 ± 0.3 a | 0.3 ± 0.1 b | 0.3 ± 0.1 a,b | 0.3 ± 0.1 a,b | MS, RI, ref |
3-Methyl-3-buten-1-ol | 724 | 1.2 ± 0.1 | 5.3 ± 0.3 a | 3.9 ± 0.4 b | 3.5 ± 0.1 a | nd | 0.5 ± 0.1 a | nd | MS, RI, ref |
(E)-3-Hexen-1-ol | 854 | 3.9 ± 0.1 | 2.3 ± 0.1 a | nd | 1.3 ± 0.1 a | nd | 2.3 ± 0.1 a | nd | MS, RI, ref |
(Z)-3-Hexen-1-ol | 864 | <0.1 | 0.3 ± 0.1 b | 6.5 ± 0.3 a | 0.5 ± 0.1 a | nd | 0.4 ± 0.1 a | nd | MS, RI, ref |
1-Hexanol | 869 | 15 ± 1.2 | 4.8 ± 0.2 a | nd | 6.5 ± 0.4 a | nd | 6.6 ± 0.3 a | nd | MS, RI, ref |
2-Heptanol | 903 | 0.4 ± 0.1 | <0.1 | 0.5 ± 0.1 a | 0.5 ± 0.1 a | nd | nd | nd | MS, RI, ref |
2-Ethyl-1-hexanol | 1032 | 0.6 ± 0.2 | 0.8 ± 0.1 a | nd | 0.5 ± 0.1 a | nd | 1.3 ± 0.1 a | nd | MS, RI, ref |
1-Nonanol | 1177 | 1.9 ± 0.2 | 0.3 ± 0.1 a | nd | 3.0 ± 0.1 a | nd | nd | nd | MS, RI, ref |
Aldehydes | |||||||||
Acetaldehyde | 459 | <0.1 | 0.7 ± 0.1 a | 0.3 ± 0.1 b | nd | <0.1 | <0.1 | nd | MS, RI |
3-Methyl-butanal | 615 | 0.9 ± 0.2 | 0.7 ± 0.1 b | 3.5 ± 0.3 a | 0.3 ± 0.1 b | 2.9 ± 0.1 a | 0.4 ± 0.1 b | 4.6 ± 0.3 a | MS, RI |
2-Methyl-butanal | 630 | 0.3 ± 0.1 | 0.3 ± 0.1 b | 2.1 ± 0.1 a | 0.3 ± 0.1 b | 3.2 ± 0.1 a | <0.1 | 5.1 ± 0.4 a | MS, RI |
Hexanal | 795 | 1.1 ± 0.2 | 0.8 ± 0.1 a | 0.3 ± 0.1 b | 0.3 ± 0.1 b | 1.2 ± 0.1 a | 0.7 ± 0.1 b | 3.1 ± 0.1 a | MS, RI, ref |
Heptanal | 903 | <0.1 | <0.1 | 7.5 ± 08 | nd | 12.5 ± 0.1 a | nd | 12.5 ± 0.1 a | MS, RI |
Benzaldehyde | 957 | <0.1 | <0.1 | 14 ± 1.1 a | nd | 2.1 ± 0.1 a | nd | 0.6 ± 0.1 a | MS, RI, ref |
Octanal | 1004 | <0.1 | <0.1 | 2.7 ± 0.4 a | nd | 12.5 ± 0.1 a | nd | 9.9 ± 0.8 a | MS, RI, ref |
Benzeneacetaldehyde | 1042 | <0.1 | 1.5 ± 0.1 b | 12.4 ± 0.8 a | 0.8 ± 0.1 b | 13.9 ± 0.1 a | 1.2 ± 0.2 a | 13.1 ± 0.3 a | MS, RI |
Nonanal | 1105 | 0.6 ± 0.1 | 11.4 ± 0.1 a | 8.2 ± 0.4 b | 5.0 ± 0.1 b | 8.8 ± 0.1 a | 10.7 ± 0.1 b | 8.0 ± 0.4 a | MS, RI |
Undecanal | 1310 | <0.1 | <0.1 | 2.4 ± 0.4 a | nd | 2.1 ± 0.1 a | nd | 2.1 ± 0.3 a | MS, RI |
Dodecanal | 1412 | <0.1 | <0.1 | 4.8 ± 0.3 a | nd | 1.6 ± 0.1 a | nd | 2.1 ± 0.2 a | MS, RI |
Ketones | |||||||||
2,3-Butanedione | 533 | 0.4 ± 0.1 | <0.1 | 0.3 ± 0.1 a | 1.2 ± 0.2 a | <0.1 | <0.1 | nd | MS, RI, ref |
2-Butanone | 542 | 2.2 ± 0.5 | 0.6 ± 0.1 b | 1.5 ± 0.2 a | 0.5 ± 0.1 a,b | 0.5 ± 0.1 a,b | 0.5 ± 0.1 a | nd | MS, RI |
2-Pentanone | 678 | 2.9 ± 0.3 | 1.2 ± 0.2 a | 0.5 ± 0.1 b | 0.7 ± 0.1 a | 0.2 ± 0.1 b | 0.9 ± 0.1 a | nd | MS, RI |
3-Pentanone | 700 | 2.5 ± 0.1 | 3.8 ± 0.1 a | <0.1 | 3.2 ± 0.1 a | 0.7 ± 0.1 b | 3.7 ± 0.1 a | nd | MS, RI |
3-Hexanone | 777 | 1.1 ± 0.2 | 0.9 ± 0.1 a | 0.4 ± 0.1 b | 0.8 ± 0.1 a | 0.7 ± 0.1 b | 0.5 ± 0.1 a | nd | MS, RI |
2-Hexanone | 784 | 1.1 ± 0.1 | 1.7 ± 0.1 a,b | 1.6 ± 0.1 a,b | 1.6 ± 0.1 a,b | 1.6 ± 0.1 a,b | 1.4 ± 0.1 a | nd | MS, RI |
2-Heptanone | 893 | 0.4 ± 0.1 | 0.4 ± 0.1 a,b | 0.4 ± 0.1 a,b | 0.3 ± 0.1 a | <0.1 | 0.6 ± 0.1 a | <0.1 | MS, RI |
3-Heptanone | 887 | 0.3 ± 0.1 | 0.3 ± 0.1 b | 0.6 ± 0.1 a | 0.3 ± 0.1 a | <0.1 | 0.4 ± 0.1 a | <0.1 | MS, RI |
4-Methyl-2-heptanone | 939 | 14.5 ± 1.4 | 13.1 ± 0.3 a | 0.9 ± 0.1 a | 2.5 ± 0.1 a | nd | 8.4 ± 0.4 a | nd | MS, RI |
6-Methyl-5-hepten-2-one | 990 | 0.4 ± 0.1 | 0.4 ± 0.1 b | 0.8 ± 0.1 a | 0.5 ± 0.1 a,b | 0.5 ± 0.1 a,b | nd | 0.5 ± 0.1 a | MS, RI |
2-Nonanone | 1094 | <0.1 | 0.7 ± 0.1 b | 1.6 ± 0.1 a | 0.3 ± 0.1 b | 0.6 ± 0.1 a | nd | 0.6 ± 0.1 a | MS, RI |
Esters | |||||||||
Methyl acetate | 494 | 1.5 ± 0.2 | 0.3 ± 0.1 a,b | 0.3 ± 0.1 a,b | 0.8 ± 0.1 a | 0.3 ± 0.1 b | 0.3 ± 0.1 a,b | 0.3 ± 0.1 a,b | MS, RI, ref |
Ethyl acetate | 560 | 2.7 ± 0.4 | 2.8 ± 0.1 a | 2.8 ± 0.1 b | 1.2 ± 0.1 a | 1.4 ± 0.1 b | 1.5 ± 0.1 a | 1.6 ± 0.1 b | MS, RI, ref |
n-Propyl acetate | 711 | 0.6 ± 0.1 | 0.9 ± 0.1 a | nd | <0.1 | nd | 0.9 ± 0.1 a | nd | MS, RI, ref |
Ethyl propanoate | 709 | <0.1 | 1.0 ± 0.1 a | <0.1 | 1.0 ± 0.1 a | nd | 0.5 ± 0.1 a | nd | MS, RI, ref |
Isobutyl acetate | 765 | 1.2 ± 0.3 | 1.3 ± 0.1 a | 0.7 ± 0.1 b | 0.5 ± 0.1 a | nd | 1.2 ± 0.1 a | nd | MS, RI, ref |
2-Methyl-2-butyl acetate | 805 | 1.6 ± 0.3 | 1.5 ± 0.1 a | 0.4 ± 0.1 b | 1.8 ± 0.1 a | nd | 1.3 ± 0.1 a | nd | MS, RI, ref |
3-Methyl-1-butyl acetate | 877 | 1.1 ± 0.2 | 1.5 ± 0.1 b | 0.9 ± 0.1 a | 0.7 ± 0.1 a | <0.1 | nd | nd | MS, RI, ref |
Methyl benzoate | 1093 | 1.0 ± 0.2 | 1.4 ± 0.1 a | nd | 0.9 ± 0.1 a | nd | 1.1 ± 0.2 a | nd | MS, RI |
Ethyl octanoate | 1201 | <0.1 | 1.0 ± 0.1 a | nd | 0.6 ± 0.1 a | nd | nd | nd | MS, RI |
Ethyl decanoate | 1400 | 0.4 ± 0.1 | 0.7 ± 0.1 a | nd | 0.5 ± 0.1 a | nd | 0.3 ± 0.1 a | nd | MS, RI |
Terpenoids | |||||||||
p-Cymene | 1021 | 1.4 ± 0.1 | 2.4 ± 0.3 a | <0.1 | 2.8 ± 0.1 a | 0.5 ± 0.1 b | 1.0 ± 0.1 a | 0.5 ± 0.1 b | MS, RI, ref |
d-Limonene | 1025 | 0.4 ± 0.1 | 3.8 ± 0.7 a | 0.3 ± 0.1 b | 1.2 ± 0.1 a | 0.3 ± 0.1 b | 1.8 ± 0.1 a | 0.9 ± 0.1 b | MS, RI, ref |
Eucalyptol | 1027 | 0.4 ± 0.1 | 0.8 ± 0.1 a | <0.1 | 0.8 ± 0.1 a | 0.3 ± 0.1 b | 2.0 ± 0.3 a | 0.4 ± 0.1 b | MS, RI, ref |
Linalool | 1100 | 0.3 ± 0.1 | 1.2 ± 0.2 a | 0.4 ± 0.1 b | 0.4 ± 0.1 a | <0.1 | nd | <0.1 | MS, RI, ref |
Camphor | 1139 | 0.6 ± 0.1 | 0.8 ± 0.1 a,b | 0.8 ± 0.1 a,b | 0.7 ± 0.1 a | nd | 0.6 ± 0.1 a | nd | MS, RI, ref |
Terpinen-4-ol | 1174 | 0.3 ± 0.1 | 1.2 ± 0.1 a | 0.7 ± 0.1 b | 0.9 ± 0.1 a | 0.4 ± 0.1 b | nd | 0.5 ± 0.1 a | MS, RI, ref |
a-Terpineol | 1189 | 1.0 ± 0.1 | 1.2 ± 0.1 a | 0.6 ± 0.1 b | 0.8 ± 0.1 a | nd | 0.7 ± 0.1 a | nd | MS, RI |
Others | |||||||||
Furfural | 705 | 14.10 ± 0.1 | 0.8 ± 0.1 b | 2.9 ± 0.1 a | 0.7 ± 0.1 b | 8.9 ± 0.1 a | <0.1 | 1.3 ± 0.1 b | MS, RI, ref |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantzourani, I.; Kazakos, S.; Terpou, A.; Mallouchos, A.; Kimbaris, A.; Alexopoulos, A.; Bezirtzoglou, E.; Plessas, S. Assessment of Volatile Compounds Evolution, Antioxidant Activity, and Total Phenolics Content during Cold Storage of Pomegranate Beverage Fermented by Lactobacillus paracasei K5. Fermentation 2018, 4, 95. https://doi.org/10.3390/fermentation4040095
Mantzourani I, Kazakos S, Terpou A, Mallouchos A, Kimbaris A, Alexopoulos A, Bezirtzoglou E, Plessas S. Assessment of Volatile Compounds Evolution, Antioxidant Activity, and Total Phenolics Content during Cold Storage of Pomegranate Beverage Fermented by Lactobacillus paracasei K5. Fermentation. 2018; 4(4):95. https://doi.org/10.3390/fermentation4040095
Chicago/Turabian StyleMantzourani, Ioanna, Stavros Kazakos, Antonia Terpou, Athanasios Mallouchos, Athanasios Kimbaris, Athanasios Alexopoulos, Eugenia Bezirtzoglou, and Stavros Plessas. 2018. "Assessment of Volatile Compounds Evolution, Antioxidant Activity, and Total Phenolics Content during Cold Storage of Pomegranate Beverage Fermented by Lactobacillus paracasei K5" Fermentation 4, no. 4: 95. https://doi.org/10.3390/fermentation4040095