Next Issue
Volume 11, January
Previous Issue
Volume 10, November
 
 

Gels, Volume 10, Issue 12 (December 2024) – 94 articles

Cover Story (view full-size image): This study extracted cellulose-rich fraction (CRF) from carob pulp waste, which accounted for 45% dry matter and contained 24% cellulose. The CRF had functional properties like swelling capacity, water retention, and fat adsorption. Gels made with potato peel flour and varying CRF levels (0–8% wet matter) were tested for viscosity, water distribution, and printability. Viscosity decreased and water retention increased with more CRF. Printability improved with 2–4% CRF but declined at 6–8%. Gels with 3–4% CRF had optimal textural properties for 3D printing. The study highlights the potential of carob cellulose gel in sustainable 3D food printing, reducing waste and promoting circular economy practices. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
12 pages, 3264 KiB  
Article
Injectable and In Situ Phospholipid-Based Phase Separation Gel for Sustained Delivery of Altrenogest
by Dongbo Li, Awn Abbas, Nanxin Li, Chao Li, Xiaoyang Ai, Lian Chen, Dongmei Dai, Gang Shu, Juchun Lin, Wei Zhang, Guangneng Peng, Haohuan Li, Funeng Xu and Hualin Fu
Gels 2024, 10(12), 847; https://doi.org/10.3390/gels10120847 - 23 Dec 2024
Cited by 1 | Viewed by 747
Abstract
Altrenogest is a key regulatory hormone for intensive and batch management of reserve sows in breeding farms. As a synthetic hormone, altrenogest could make ovaries stay at the initial stage of follicles and inhibit estrus and ovulation in animals. However, the currently used [...] Read more.
Altrenogest is a key regulatory hormone for intensive and batch management of reserve sows in breeding farms. As a synthetic hormone, altrenogest could make ovaries stay at the initial stage of follicles and inhibit estrus and ovulation in animals. However, the currently used oral altrenogest solution needs to be administered continuously every day for more than two weeks in clinical practice. In this study we developed a phospholipid-based injectable gel carrying altrenogest to decrease the number of administrations, sustain release of the drug, and enhance therapeutic efficacy for clinical use. The altrenogest gel had a viscosity of 100 cP before phase transition and over 1,000,000 cP after phase transition. In vitro, altrenogest can be continuously released from gel for over two weeks. The pharmacokinetic results showed that the AUC (0–∞) of the altrenogest gel was almost double that of the altrenogest solution. The MRT (0–∞) was 40.92 ± 7.21 h and the t1/2 of the altrenogest gel was 80.03 ± 20.79 h. The altrenogest gel demonstrated excellent fluidity, ease of injectability, high drug-loading capacity, and appropriate sustained-release characteristics both in vitro and in vivo, making it a potential drug delivery system for swine production. Full article
(This article belongs to the Special Issue Polymeric Hydrogels for Biomedical Application)
Show Figures

Graphical abstract

16 pages, 11348 KiB  
Article
Thermal Degradation Study of Hydrogel Nanocomposites Based on Polyacrylamide and Nanosilica Used for Conformance Control and Water Shutoff
by Aleksey Telin, Farit Safarov, Ravil Yakubov, Ekaterina Gusarova, Artem Pavlik, Lyubov Lenchenkova and Vladimir Dokichev
Gels 2024, 10(12), 846; https://doi.org/10.3390/gels10120846 - 22 Dec 2024
Cited by 2 | Viewed by 918
Abstract
The application of nanocomposites based on polyacrylamide hydrogels as well as silica nanoparticles in various tasks related to the petroleum industry has been rapidly developing in the last 10–15 years. Analysis of the literature has shown that the introduction of nanoparticles into hydrogels [...] Read more.
The application of nanocomposites based on polyacrylamide hydrogels as well as silica nanoparticles in various tasks related to the petroleum industry has been rapidly developing in the last 10–15 years. Analysis of the literature has shown that the introduction of nanoparticles into hydrogels significantly increases their structural and mechanical characteristics and improves their thermal stability. Nanocomposites based on hydrogels are used in different technological processes of oil production: for conformance control, water shutoff in production wells, and well killing with loss circulation control. In all these processes, hydrogels crosslinked with different crosslinkers are used, with the addition of different amounts of nanoparticles. The highest nanoparticle content, from 5 to 9 wt%, was observed in hydrogels for well killing. This is explained by the fact that the volumes of injection of block packs are counted only in tens of cubic meters, and for the sake of trouble-free workover, it is very important to preserve the structural and mechanical properties of block packs during the entire repair of the well. For water shutoff, the volumes of nanocomposite injection, depending on the well design, are from 50 to 150 m3. For conformance control, it is required to inject from one to several thousand cubic meters of hydrogel with nanoparticles. Naturally, for such operations, service companies try to select compositions with the minimum required nanoparticle content, which would ensure injection efficiency but at the same time would not lose economic attractiveness. The aim of the present work is to develop formulations of nanocomposites with increased structural and mechanical characteristics based on hydrogels made of partially hydrolyzed polyacrylamide crosslinked with resorcinol and paraform, with the addition of commercially available nanosilica, as well as to study their thermal degradation, which is necessary to predict the lifetime of gel shields in reservoir conditions. Hydrogels with additives of pyrogenic (HCSIL200, HCSIL300, RX380) and hydrated (white carbon black grades: ‘BS-50’, ‘BS-120 NU’, ‘BS-120 U’) nanosilica have been studied. The best samples in terms of their structural and mechanical properties have been established: nanocomposites with HCSIL200, HCSIL300, and BS-120 NU. The addition of hydrophilic nanosilica HCSIL200 in the amount of 0.4 wt% to a hydrogel consisting of partially hydrolyzed polyacrylamide (1%), resorcinol (0.04%), and paraform (0.09%) increased its elastic modulus by almost two times and its USS by almost three times. The thermal degradation of hydrogels was studied at 140 °C, and the experimental time was converted to the exposure time at 80 °C using Van’t Hoff’s rule. It was found that the nanocomposite with HCSIL200 retains its properties at a satisfactory level for 19 months. Filtration studies on water-saturated fractured reservoir models showed that the residual resistance factor and selectivity of the effect of nanocomposites with HCSIL200 on fractures are very high (226.4 and 91.6 for fracture with an opening of 0.05 cm and 11.0 for porous medium with a permeability of 332.3 mD). The selectivity of the isolating action on fractured intervals of the porous formation was noted. Full article
(This article belongs to the Special Issue Chemical and Gels for Oil Drilling and Enhanced Recovery)
Show Figures

Figure 1

19 pages, 15393 KiB  
Article
Processes of Obtaining Nanostructured Materialswith a Hierarchical Porous Structure on the Example of Alginate Aerogels
by Natalia Menshutina, Olga Fedotova, Andrey Abramov, Eldar Golubev, Yan Sulkhanov and Pavel Tsygankov
Gels 2024, 10(12), 845; https://doi.org/10.3390/gels10120845 - 20 Dec 2024
Viewed by 847
Abstract
Currently, materials with specific, strictly defined functional properties are becoming increasingly important. A promising strategy for achieving these properties involves developing methods that facilitate the formation of hierarchical porous materials that combine micro-, meso-, and macropores in their structure. Macropores facilitate effective mass [...] Read more.
Currently, materials with specific, strictly defined functional properties are becoming increasingly important. A promising strategy for achieving these properties involves developing methods that facilitate the formation of hierarchical porous materials that combine micro-, meso-, and macropores in their structure. Macropores facilitate effective mass transfer of substances to the meso- and micropores, where further adsorption or reaction processes can occur. Aerogels represent a promising class of materials for implementing this approach. The formation of hierarchical porous structures in aerogels can be achieved using soft and hard templating methods or by foaming techniques. This paper presents a comprehensive study of three methods for forming hierarchical porous structures in alginate aerogels: (1) employing surfactants (Pluronic F-68), (2) using zein as a pore-forming component, and (3) foaming in a carbon dioxide medium. The results of micro-CT showed that each of the methods contributes to the formation of macropores within the structure of the resulting aerogels. Size distribution curves of the detected macropores were obtained, showing the presence of macropores ranging from 16 to 323 μm in size for samples obtained using surfactants, from 5 to 195 μm for samples obtained using zein, and from 20 μm to 3 mm for samples obtained by foaming in a carbon dioxide medium. The SEM images demonstrated the macro- and mesoporous fibrous structure of the obtained materials. The nitrogen porosimetry results indicated that samples obtained using surfactants and zein are characterized by a high specific surface area (592–673 m2/g), comparable to the specific surface area for an alginate-based aerogel obtained without the use of pore-forming components. However, the use of the developed methods for the formation of a hierarchical porous structure contributes to an increase in the specific mesopores volume (up to 17.7 cm3/g). The materials obtained by foaming in a carbon dioxide medium are characterized by lower specific surface areas (112–239 m2/g) and specific mesopores volumes (0.6–2.1 cm3/g). Thus, this paper presents a set of methods for forming hierarchical porous structures that can obtain delivery systems for active substances with a controlled release profile and highly efficient platforms for cell culturing. Full article
(This article belongs to the Special Issue Synthesis and Application of Aerogel)
Show Figures

Graphical abstract

15 pages, 11039 KiB  
Article
Enhanced Thermal Safety of Hydrophobic SiO2 Aerogels Through Introduction of Layered Double Oxides
by Lei Xu, Guanhua Sun, Jiahui Chen, Xiaoxu Wu, Min Hu, Fang Zhou and Zhi Li
Gels 2024, 10(12), 844; https://doi.org/10.3390/gels10120844 - 20 Dec 2024
Viewed by 610
Abstract
This research enhances the thermal safety of hydrophobic silica aerogel (HSA) by integrating layered double oxides (LDOs). XRD and FTIR confirm that the introduction of LDOs does not affect the formation of SA. The LDO/SA composites demonstrate a low density (0.14–0.16 g/cm3 [...] Read more.
This research enhances the thermal safety of hydrophobic silica aerogel (HSA) by integrating layered double oxides (LDOs). XRD and FTIR confirm that the introduction of LDOs does not affect the formation of SA. The LDO/SA composites demonstrate a low density (0.14–0.16 g/cm3), low thermal conductivity (23.28–28.72 mW/(m·K)), high porosity (93.4–96.1%), and a high surface area (899.2–1006.4 m2/g). The TG-DSC results reveal that LDO/SA shows enhanced thermal stability, with increases of 49 °C in the decomposition onset temperature and 47.4 °C in the peak decomposition temperature. The gross calorific value of LDO/SA-15% (with 15 wt% LDO) exhibits a 23.9% reduction in comparison to that of pure SA. The decrease in gross calorific value, along with improved thermal stability, indicates a boost in the thermal safety characteristics of the LDO/SA composites. This study demonstrates that incorporating LDOs enhances the thermal safety of HSA, while preserving its superior performance, thus broadening its potential applications in thermal insulation. Full article
Show Figures

Figure 1

18 pages, 9926 KiB  
Article
Cannabidiol-Loaded Lipid Nanoparticles Incorporated in Polyvinyl Alcohol and Sodium Alginate Hydrogel Scaffold for Enhancing Cell Migration and Accelerating Wound Healing
by Sarawut Lapmanee, Sakkarin Bhubhanil, Natthawut Charoenphon, Anjaree Inchan, Phichaporn Bunwatcharaphansakun, Mattaka Khongkow and Katawut Namdee
Gels 2024, 10(12), 843; https://doi.org/10.3390/gels10120843 - 20 Dec 2024
Cited by 3 | Viewed by 1547
Abstract
Chronic wounds represent a persistent clinical challenge due to prolonged inflammation and impaired tissue repair mechanisms. Cannabidiol (CBD), recognized for its anti-inflammatory and pro-healing properties, shows therapeutic promise in wound care. However, its delivery via lipid nanoparticles (LNPs) remains challenging due to CBD’s [...] Read more.
Chronic wounds represent a persistent clinical challenge due to prolonged inflammation and impaired tissue repair mechanisms. Cannabidiol (CBD), recognized for its anti-inflammatory and pro-healing properties, shows therapeutic promise in wound care. However, its delivery via lipid nanoparticles (LNPs) remains challenging due to CBD’s inherent instability and low bioavailability. This study developed and characterized a novel hydrogel scaffold composed of CBD-loaded LNPs (CBD/LNPs) integrated into a polyvinyl alcohol (PVA) and sodium alginate (SA) matrix, designed to enhance wound repair and mitigate inflammation. The characteristics of the hydrogel scaffold were observed including the degree of swelling and LNPs’ release profiles. Furthermore, in the results, CBD/LNPs displayed enhanced stability and reduced cytotoxicity compared to unencapsulated CBD. In vitro assays demonstrated that CBD/LNPs significantly promoted fibroblast migration in gap-closure wound models and reduced intracellular reactive oxygen species, supporting their potential as a biocompatible and efficacious agent for cellular repair and oxidative stress attenuation. In vivo experiments using adult male Wistar rats with aseptic cutaneous wounds revealed that treatment with CBD/LNP-PVA/SA hydrogel scaffold significantly accelerated wound closure relative to blank hydrogel controls, demonstrating a substantial reduction in the wound area over time. Histological analysis confirms notable improvements in skin morphology in wounds treated with CBD/LNP-PVA/SA hydrogel scaffold with evidence of accelerated epithelialization, enhanced collagen deposition, and increased dermal thickness and vascularization. Additionally, skin histology showed a more organized epidermal layer and reduced inflammatory cell infiltration in CBD/LNP-PVA/SA hydrogel scaffold-treated wounds, corresponding to a 35% increase in the wound closure rate by day 28 post-treatment. These findings suggest that CBD/LNP-PVA/SA hydrogel scaffolds facilitate inflammation resolution and structural wound healing through localized, sustained CBD delivery. The dual anti-inflammatory and wound-healing effects position CBD/LNP-PVA/SA hydrogel scaffold as a promising approach for chronic wound management. Future investigations are warranted to elucidate the mechanistic pathways by which CBD modulates the skin architecture and to explore its translational applications in clinical wound care. Full article
(This article belongs to the Special Issue Synthesis and Applications of Hydrogels (2nd Edition))
Show Figures

Graphical abstract

27 pages, 1421 KiB  
Review
Advances in Cellulose-Based Hydrogels: Current Trends and Challenges
by Bogdan-Marian Tofanica, Aleksandra Mikhailidi, Costel Samuil, Ovidiu C. Ungureanu, Maria E. Fortună and Elena Ungureanu
Gels 2024, 10(12), 842; https://doi.org/10.3390/gels10120842 - 20 Dec 2024
Cited by 2 | Viewed by 2991
Abstract
This paper provides a solid foundation for understanding the synthesis, properties, and applications of cellulose-based gels. It effectively showcases the potential of these gels in diverse applications, particularly in biomedicine, and highlights key synthesis methods and properties. However, to push the field forward, [...] Read more.
This paper provides a solid foundation for understanding the synthesis, properties, and applications of cellulose-based gels. It effectively showcases the potential of these gels in diverse applications, particularly in biomedicine, and highlights key synthesis methods and properties. However, to push the field forward, future research should address the gaps in understanding the environmental impact, mechanical stability, and scalability of cellulose-based gels, while also considering how to overcome barriers to their industrial use. This will ultimately allow for the realization of cellulose-based gels in large-scale, sustainable applications. Full article
(This article belongs to the Special Issue Cellulose-Based Gels: Synthesis, Properties, and Applications)
Show Figures

Graphical abstract

17 pages, 3249 KiB  
Article
Antimicrobial Zn2+-Carboxymethyl Chitosan Cryogel for Controlled Loading and Release of Ciprofloxacin via Coordination Bonds
by Svetlana Bratskaya, Andrey Boroda, Tamara Bogomaz, Yuliya Privar, Mariya Maiorova, Daniil Malyshev, Anastasiia Shindina, Anna Skatova and Roman Goncharuk
Gels 2024, 10(12), 841; https://doi.org/10.3390/gels10120841 - 20 Dec 2024
Viewed by 921
Abstract
The local application of broad-spectrum antibiotics via polymeric drug delivery systems is a promising alternative to their systemic administration in wound healing, prevention and treatment of infections associated with surgical implants. However, low and poorly controlled loading efficiency and 100% burst release are [...] Read more.
The local application of broad-spectrum antibiotics via polymeric drug delivery systems is a promising alternative to their systemic administration in wound healing, prevention and treatment of infections associated with surgical implants. However, low and poorly controlled loading efficiency and 100% burst release are common problems for the materials with weak physical interaction between antibiotics and polymeric matrices. Here, we report a new multifunctional carboxymethyl chitosan (CMC) cryogel, which efficiently prevents bacterial adhesion to the surface, kills bacteria in the solution via controlled release of ciprofloxacin (CIP), and promotes fibroblast proliferation. The suggested approach is based on CIP loading to Zn2+-chelated CMC cryogel via the ligand exchange reaction. We have shown that, due to the strong binding of Zn2+ to CMC, the antibacterial effect and toxicity to fibroblasts of CMC-Zn-CIP cryogels were mainly determined by the content of loaded CIP, which can be precisely controlled via Zn2+ content in cryogel. CMC cryogels containing 20 mgZn/g can be loaded with CIP amounts sufficient to completely suppress the growth of hospital strain Klebsiella oxytoca with MIC of 0.125 µg/mL, while maintaining a fibroblast viability at the level of 85–90%. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Graphical abstract

16 pages, 3199 KiB  
Article
The Influence of Protein Components on Quinoa Protein–Xanthan Gum Complex Gels at Different pH Levels
by Xinxia Zhang, Yafeng Ding, Jiangtao Zhou, Qianqian Xu, Ting Li and Li Wang
Gels 2024, 10(12), 840; https://doi.org/10.3390/gels10120840 - 19 Dec 2024
Cited by 2 | Viewed by 1206
Abstract
The study aimed to prepare complex gels of sonicated quinoa protein (QP) and polysaccharides, comparing the effects of different protein components and pH on gel properties. FTIR analysis demonstrated that the β-structure in protein at pH 7.0 was enhanced by ultrasonic treatment, which [...] Read more.
The study aimed to prepare complex gels of sonicated quinoa protein (QP) and polysaccharides, comparing the effects of different protein components and pH on gel properties. FTIR analysis demonstrated that the β-structure in protein at pH 7.0 was enhanced by ultrasonic treatment, which could promote the formation of a gel network. Moreover, XG-AG (gel prepared by xanthan gum and albumin) and XG-GG (gel prepared by xanthan gum and globulin) exhibited higher levels of disulfide bonds and free sulfhydryl groups in the gel, requiring more energy to break the intermolecular sulfide bonds during heating. Under the same heating conditions, the rheological properties and gel strength of XG-UQPG (gel prepared by xanthan gum and ultrasonically treated QP) were superior to those of XG-UGG (gel prepared by xanthan gum and ultrasonically treated globulin) and XG-UAG (gel prepared by xanthan gum and ultrasonically treated albumin). Additionally, XG-UGG (pH 7.0) demonstrated the highest water holding capacity (WHC) and oil holding capacity (OHC). This was attributed to the disulfide bonds created in the proteins by the ultrasound treatment, encouraging them to interact to form more uniform holes in gel that can hold more water/oil molecules. Conversely, at pH 4.5, the WHCs of the gels were reduced due to the presence of rougher protein structures. These findings shed light on the impact of protein composition on gel properties and offer insights into enhancing the quality of quinoa protein gel. Full article
(This article belongs to the Special Issue Protein-Based Gels: Synthesis, Properties, and Applications)
Show Figures

Figure 1

18 pages, 3212 KiB  
Article
Facile Hydrothermal Assisted Basic Catalyzed Sol Gel Synthesis for Mesoporous Silica Nanoparticle from Alkali Silicate Solutions Using Dual Structural Templates
by Khaled M. AlMohaimadi, Hassan M. Albishri, Khaled A. Thumayri, Awadh O. AlSuhaimi, Yassin T. H. Mehdar and Belal H. M. Hussein
Gels 2024, 10(12), 839; https://doi.org/10.3390/gels10120839 - 19 Dec 2024
Cited by 1 | Viewed by 1362
Abstract
This work presents a novel hydrothermally aided sol-gel method for preparation of mesoporous silica nanoparticles (MSNs) with a narrow particle size distribution and varied pore sizes. The method was carried out in alkaline media in presence of polyethylene glycol (PEG) and cetyltrimethylammonium chloride [...] Read more.
This work presents a novel hydrothermally aided sol-gel method for preparation of mesoporous silica nanoparticles (MSNs) with a narrow particle size distribution and varied pore sizes. The method was carried out in alkaline media in presence of polyethylene glycol (PEG) and cetyltrimethylammonium chloride (CTAC) as dual templates and permitted the synthesis of spherical mesoporous silica with a high surface area (1011.42 m2/g). The MSN materials were characterized by FTIR, Thermogravimetric (TG), Nitrogen adsorption and desorption and Field emission scanning electron microscopic analysis (FESEM). The materials feasibility as solid phase adsorbent has been demonstrated using cationic dyes; Rhodamine B (RB) and methylene blue (MB) as models. Due to the large surface area and variable pore width, the adsorption behaviors toward cationic dyes showed outstanding removal efficiency and a rapid sorption rate. The adsorption isotherms of RB and MB were well-fitted to the Langmuir and Freundlich models, while the kinetic behaviours adhered closely to the pseudo-second-order pattern. The maximum adsorption capacities were determined to be 256 mg/g for MB and 110.3 mg/g for RB. The findings suggest that MSNs hold significant potential as solid-phase nanosorbents for the extraction and purification of dye pollutants, particularly in the analysis and treatment of effluents containing cationic dyes. Full article
(This article belongs to the Special Issue Advanced Aerogels: From Design to Application)
Show Figures

Figure 1

21 pages, 6796 KiB  
Article
Whole-Cell Vaccine Preparation Through Prussian Blue Nanoparticles-Elicited Immunogenic Cell Death and Loading in Gel Microneedles Patches
by Wenxin Fu, Qianqian Li, Jingyi Sheng, Haoan Wu, Ming Ma and Yu Zhang
Gels 2024, 10(12), 838; https://doi.org/10.3390/gels10120838 - 19 Dec 2024
Cited by 1 | Viewed by 948
Abstract
Tumor whole-cell vaccines are designed to introduce a wide range of tumor-associated antigens into the body to counteract the immunosuppression caused by tumors. In cases of lymphoma of which the specific antigen is not yet determined, the tumor whole-cell vaccine offers distinct advantages. [...] Read more.
Tumor whole-cell vaccines are designed to introduce a wide range of tumor-associated antigens into the body to counteract the immunosuppression caused by tumors. In cases of lymphoma of which the specific antigen is not yet determined, the tumor whole-cell vaccine offers distinct advantages. However, there is still a lack of research on an effective preparation method for the lymphoma whole-cell vaccine. To solve this challenge, we prepared a whole-cell vaccine derived from non-Hodgkin B-cell lymphoma (A20) via the photothermal effect mediated by Prussian blue nanoparticles (PBNPs). The immune activation effect of this vaccine against lymphoma was verified at the cellular level. The PBNPs-treated A20 cells underwent immunogenic cell death (ICD), causing the loss of their ability to form tumors while retaining their ability to trigger an immune response. A20 cells that experienced ICD were further ultrasonically crushed to prepare the A20 whole-cell vaccine with exposed antigens and enhanced immunogenicity. The A20 whole-cell vaccine was able to activate the dendritic cells (DCs) to present antigens to T cells and trigger specific immune responses against lymphoma. Whole-cell vaccines are primarily administered through direct injection, a method that often results in low delivery efficiency and poor patient compliance. Comparatively, the microneedle patch system provides intradermal delivery, offering enhanced lymphatic absorption and improved patient adherence due to its minimally invasive approach. Thus, we developed a porous microneedle patch system for whole-cell vaccine delivery using Gelatin Methacryloyl (GelMA) hydrogel and n-arm-poly(lactic-co-glycolic acid) (n-arm-PLGA). This whole-cell vaccine combined with porous gel microneedle patch delivery system has the potential to become a simple immunotherapy method with controllable production and represents a promising new direction for the treatment of lymphoma. Full article
(This article belongs to the Special Issue Gel-Based Drug Delivery Systems for Cancer Treatment (2nd Edition))
Show Figures

Graphical abstract

17 pages, 4670 KiB  
Article
Supersaturated Gel Formulation (SGF) of Atorvastatin at a Maximum Dose of 80 mg with Enhanced Solubility, Dissolution, and Physical Stability
by Jin Woo Park, Sa-Won Lee, Jun Hak Lee, Sung Mo Park, Sung Jun Cho, Han-Joo Maeng and Kwan Hyung Cho
Gels 2024, 10(12), 837; https://doi.org/10.3390/gels10120837 - 19 Dec 2024
Viewed by 1012
Abstract
The objective of this work was to develop a supersaturated gel formulation (SGF) loaded with the maximum atorvastatin calcium trihydrate (ATR) dose. The maximum dose strength of ATR needs to be reduced through improving solubility and dissolution rate to mitigate side effects due [...] Read more.
The objective of this work was to develop a supersaturated gel formulation (SGF) loaded with the maximum atorvastatin calcium trihydrate (ATR) dose. The maximum dose strength of ATR needs to be reduced through improving solubility and dissolution rate to mitigate side effects due to the necessity of taking high doses. ATR has highly pH-dependent solubility at 37 °C, leading to poor solubility (<10 μg/mL) in stomach acid (pH 1.2). Among the various molecular weights of polyethylene glycols (PEGs) and surfactants, PEG 200 and d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) were selected as the solubilizer and precipitation inhibitor for ATR, respectively. PEG 200 demonstrated very high solubility for ATR (>60%, w/w), and the combined use of TPGS and PEG 200 formed an organogel state and suppressed ATR precipitation, showing 15-fold higher dispersion solubility in buffer solution at pH 1.2 compared to the formulation with PEG 200 alone. The optimal SGF composition (ATR/PEG 200/TPGS = 10/60/30, w/w) exhibited an over 95% dissolution rate within 2 h at pH 1.2, compared to less than 50% for the original commercial product. In a transmission electron microscope analysis, the SGF suppressed ATR precipitation and revealed smaller precipitated particles (<300 nm) compared to the control samples. In the XRD analysis, the SGF was physically stable for 100 days at room temperature without the recrystallization of ATR. In conclusion, the SGF suggested in this work would be an alternative formulation for the treatment of dyslipidemia with enhanced solubility, dissolution, and physical stability. Full article
(This article belongs to the Special Issue Recent Research on Medical Hydrogels)
Show Figures

Graphical abstract

14 pages, 3185 KiB  
Article
Natural Epithelial Barrier Integrity Enhancers—Citrus medica and Origanum dayi Extracts
by Sarah Coopersmith, Valeria Rahamim, Eliyahu Drori, Rachel Miloslavsky, Rima Kozlov, Jonathan Gorelick and Aharon Azagury
Gels 2024, 10(12), 836; https://doi.org/10.3390/gels10120836 - 19 Dec 2024
Viewed by 928
Abstract
Buccal drug delivery offers a promising alternative for avoiding gastrointestinal degradation and first-pass metabolism. However, enhancing the buccal epithelial barrier’s permeability remains challenging. This study explores the effects of ethanolic extracts from Citrus medica var. Balady (CM), Citrus medica var. Calabria (CMC), and [...] Read more.
Buccal drug delivery offers a promising alternative for avoiding gastrointestinal degradation and first-pass metabolism. However, enhancing the buccal epithelial barrier’s permeability remains challenging. This study explores the effects of ethanolic extracts from Citrus medica var. Balady (CM), Citrus medica var. Calabria (CMC), and Origanum dayi (ORD) on buccal epithelium permeability in vitro using a TR146 cell-based model. The cell viability assay revealed that the extracts were non-toxic at the concentration range tested (<0.5% w/v). Surprisingly, none of the tested extracts significantly enhanced the buccal permeability of 40 kDa Fluorescein Isothiocyanate Dextran (FD40). However, the CMC and ORD extracts significantly reduced the epithelial permeability of FD40, mirroring the effects of hyaluronic acid (HA), a known barrier integrity enhancer. The total phenolic content (TPC) analysis suggested a potential link between the phenolic concentration and epithelial barrier reinforcement. The rapid colorimetric response method was applied to assess the interaction of these extracts with biological membranes. The results indicated that HA interacts with cellular membranes via lipid bilayer penetration, whereas the extracts likely influence the barrier integrity through alternative mechanisms, such as ligand–receptor interactions or extracellular matrix modulation. These findings highlight the potential of CMC and ORD extracts as natural agents to enhance buccal epithelial integrity. In conclusion, incorporating these extracts into formulations, such as hydrogels, could offer a cost-effective and biocompatible alternative to HA for improving buccal cavity health. Full article
(This article belongs to the Special Issue Functional Gels Applied in Drug Delivery)
Show Figures

Graphical abstract

14 pages, 6402 KiB  
Article
3D-Printed Hydrogel Scaffolds Loaded with Flavanone@ZIF-8 Nanoparticles for Promoting Bacteria-Infected Wound Healing
by Jian Yu, Xin Huang, Fangying Wu, Shasha Feng, Rui Cheng, Jieyan Xu, Tingting Cui and Jun Li
Gels 2024, 10(12), 835; https://doi.org/10.3390/gels10120835 - 18 Dec 2024
Cited by 2 | Viewed by 1191
Abstract
Bacterial-infected skin wounds caused by trauma remain a significant challenge in modern medicine. Clinically, there is a growing demand for wound dressings with exceptional antibacterial activity and robust regenerative properties. To address the need, this study proposes a novel multifunctional dressing designed to [...] Read more.
Bacterial-infected skin wounds caused by trauma remain a significant challenge in modern medicine. Clinically, there is a growing demand for wound dressings with exceptional antibacterial activity and robust regenerative properties. To address the need, this study proposes a novel multifunctional dressing designed to combine efficient gas exchange, effective microbial barriers, and precise drug delivery capabilities, thereby promoting cell proliferation and accelerating wound healing. This work reports the development of a 3D-printed hydrogel scaffold incorporating flavanone (FLA)-loaded ZIF-8 nanoparticles (FLA@ZIF-8 NPs) within a composite matrix of κ-carrageenan (KC) and konjac glucomannan (KGM). The scaffold forms a stable dual-network structure through the chelation of KC with potassium ions and intermolecular hydrogen bonding between KC and KGM. This dual-network structure not only enhances the mechanical stability of the scaffold but also improves its adaptability to complex wound environments. In mildly acidic wound conditions, FLA@ZIF-8 NPs release Zn2+ and flavanone in a controlled manner, providing sustained antibacterial effects and promoting wound healing. In vivo studies using a rat full-thickness infected wound model demonstrated that the FLA@ZIF-8/KC@KGM hydrogel scaffold significantly accelerated wound healing, showcasing its superior performance in the treatment of infected wounds. Full article
(This article belongs to the Special Issue Properties and Structure of Hydrogel-Related Materials (2nd Edition))
Show Figures

Graphical abstract

18 pages, 4909 KiB  
Article
Thermally Solvent-Free Cross-Linked pH/Thermosensitive Hydrogels as Smart Drug Delivery Systems
by Sanda Bucatariu, Bogdan Cosman, Marieta Constantin, Gabriela Liliana Ailiesei, Daniela Rusu and Gheorghe Fundueanu
Gels 2024, 10(12), 834; https://doi.org/10.3390/gels10120834 - 18 Dec 2024
Cited by 1 | Viewed by 1052
Abstract
An imbalance in the body’s pH or temperature may modify the immune response and result in ailments such as autoimmune disorders, infectious diseases, cancer, or diabetes. Dual pH- and thermo-responsive carriers are being evaluated as advanced drug delivery microdevices designed to release pharmaceuticals [...] Read more.
An imbalance in the body’s pH or temperature may modify the immune response and result in ailments such as autoimmune disorders, infectious diseases, cancer, or diabetes. Dual pH- and thermo-responsive carriers are being evaluated as advanced drug delivery microdevices designed to release pharmaceuticals in response to external or internal stimuli. A novel drug delivery system formulated as hydrogel was developed by combining a pH-sensitive polymer (the “biosensor”) with a thermosensitive polymer (the delivery component). Thus, the hydrogel was created by cross-linking, using a solvent-free thermal approach, of poly(N-isopropylacrylamide-co-N-hydroyethyl acrylamide), P(NIPAAm-co-HEAAm), and poly(methylvinylether-alt-maleic acid), P(MVE/MA). The chemical structure of the polymers and hydrogels was analyzed using Fourier-transform infrared (FTIR) and proton nuclear magnetic resonance (1H NMR) spectroscopies. The pH/thermosensitive hydrogel loses its thermosensitivity under physiological conditions but, remarkably, can recover the thermosensitive capabilities when certain physiologically active biomolecules, acting as triggering agents, electrostatically interact with pH-sensitive units. Our research aimed to develop a drug delivery system that could identify the disturbance of normal physiological parameters and instantaneously send a signal to thermosensitive units, which would collapse and modulate the release profiles of the drug. Full article
Show Figures

Figure 1

20 pages, 4591 KiB  
Article
“From Waste to Wonder”: Comparative Evaluation of Chinese Cabbage Waste and Banana Peel Derived Hydrogels on Soil Water Retention Performance
by Yufan Xie, Yuan Zhong, Jun Wu, Shiwei Fang, Liqun Cai, Minjun Li, Jun Cao, Hejie Zhao and Bo Dong
Gels 2024, 10(12), 833; https://doi.org/10.3390/gels10120833 - 18 Dec 2024
Viewed by 990
Abstract
Under the increasing severity of drought issues and the urgent need for the resourceful utilization of agricultural waste, this study aimed to compare the soil water retention properties of hydrogels prepared from Chinese cabbage waste (CW) and banana peel (BP) using grafting techniques [...] Read more.
Under the increasing severity of drought issues and the urgent need for the resourceful utilization of agricultural waste, this study aimed to compare the soil water retention properties of hydrogels prepared from Chinese cabbage waste (CW) and banana peel (BP) using grafting techniques with acrylic acid (AA) and acrylamide (AAm). Free radical polymerization was initiated with ammonium persulfate (APS), and N, N′-methylene bisacrylamide (MBA) served as the crosslinking agent to fabricate the grafted polymer hydrogels. The hydrogels were subjected to detailed evaluations of their water absorption, reusability, and water retention capabilities through indoor experiments. The optimal hydrogel was identified and its applicability in wheat seedling growth was assessed. The findings revealed that the CW-gel, with an equilibrium swelling ratio of 551.8 g/g in ultrapure water, demonstrated remarkable performance and sustained a high water retention of 57.6% even after drying, which was markedly superior to that of the BP-gel. The CW-gel with the best comprehensive properties significantly improved water retention in sandy soil by 78.2% and prolonged the retention time by five days, indicating its potential for long-term irrigation management. In contrast, the BP-gel showed better performance in clay soil, with an increased water-holding capacity of 43.3%. The application of a 1.5% CW-gel concentration under drought stress significantly improved wheat seedling growth, highlighting the role of hydrogels in agriculture and providing a new path for sustainable water resource management in dryland farming. Full article
(This article belongs to the Special Issue Gel-Based Adsorbent Materials for Environmental Remediation)
Show Figures

Figure 1

16 pages, 5502 KiB  
Article
Hydration Mechanisms of Gelled Paste Backfills for Potash Mines Using Lime as a Gel Material
by Rongzhen Jin, Xue Wang, Xuming Ma, Huimin Huo, Siqi Zhang, Jiajie Li and Wen Ni
Gels 2024, 10(12), 832; https://doi.org/10.3390/gels10120832 - 18 Dec 2024
Cited by 1 | Viewed by 742
Abstract
This paper investigates the flow performance and mechanical properties of underground gelled filling materials made from potash mine tailings, using lime as a gel. It demonstrates the feasibility of using lime as a gel, potash mine tailings as aggregate, and replacing water with [...] Read more.
This paper investigates the flow performance and mechanical properties of underground gelled filling materials made from potash mine tailings, using lime as a gel. It demonstrates the feasibility of using lime as a gel, potash mine tailings as aggregate, and replacing water with potash mine tailings to create filling materials that meet design requirements for flow and compressive strength. The role of lime in the hardening process is explored through X-ray diffraction, scanning electron microscopy with energy-dispersive X-ray spectroscopy, thermogravimetric analysis, and infrared analysis. Results show that hydration products vary with lime dosage. With 9% lime (L9), the products are primarily ghiaraite (CaCl2·4H2O) and carnallite (KMgCl3·6H2O); with 5% lime (L5), tachyhydrite (CaMg2Cl6·12H2O) predominates, along with minor amounts of antarcticite (CaCl2·6H2O) and korshunovskite (Mg2Cl(OH)3·4H2O); and with 2.6% lime (L2.6), the products include tachyhydrite, ghiaraite, bischofite (MgCl2·6H2O), and korshunovskite. These hydration products form a dense, interwoven structure, enhancing the strength of the filling material. This study offers a theoretical foundation for using lime gel as a filling material in potash mining, with significant implications for sustainable mining practices. Full article
(This article belongs to the Special Issue Advances in Composite Gels (3rd Edition))
Show Figures

Figure 1

20 pages, 3395 KiB  
Article
Innovative Ink-Based 3D Hydrogel Bioprinted Formulations for Tissue Engineering Applications
by Ana Catarina Sousa, Grace Mcdermott, Fraser Shields, Rui Alvites, Bruna Lopes, Patrícia Sousa, Alícia Moreira, André Coelho, José Domingos Santos, Luís Atayde, Nuno Alves, Stephen M. Richardson, Marco Domingos and Ana Colette Maurício
Gels 2024, 10(12), 831; https://doi.org/10.3390/gels10120831 - 17 Dec 2024
Cited by 3 | Viewed by 1358
Abstract
Three-dimensional (3D) models with improved biomimicry are essential to reduce animal experimentation and drive innovation in tissue engineering. In this study, we investigate the use of alginate-based materials as polymeric inks for 3D bioprinting of osteogenic models using human bone marrow stem/stromal cells [...] Read more.
Three-dimensional (3D) models with improved biomimicry are essential to reduce animal experimentation and drive innovation in tissue engineering. In this study, we investigate the use of alginate-based materials as polymeric inks for 3D bioprinting of osteogenic models using human bone marrow stem/stromal cells (hBMSCs). A composite bioink incorporating alginate, nano-hydroxyapatite (nHA), type I collagen (Col) and hBMSCs was developed and for extrusion-based printing. Rheological tests performed on crosslinked hydrogels confirm the formation of solid-like structures, consistently indicating a superior storage modulus in relation to the loss modulus. The swelling behavior analysis showed that the addition of Col and nHA into an alginate matrix can enhance the swelling rate of the resulting composite hydrogels, which maximizes cell proliferation within the structure. The LIVE/DEAD assay outcomes demonstrate that the inclusion of nHA and Col did not detrimentally affect the viability of hBMSCs over seven days post-printing. PrestoBlueTM revealed a higher hBMSCs viability in the alginate-nHA-Col hydrogel compared to the remaining groups. Gene expression analysis revealed that alginate-nHA-col bioink favored a higher expression of osteogenic markers, including secreted phosphoprotein-1 (SPP1) and collagen type 1 alpha 2 chain (COL1A2) in hBMSCs after 14 days, indicating the pro-osteogenic differentiation potential of the hydrogel. This study demonstrates that the incorporation of nHA and Col into alginate enhances osteogenic potential and therefore provides a bioprinted model to systematically study osteogenesis and the early stages of tissue maturation in vitro. Full article
(This article belongs to the Special Issue Recent Research on Alginate Hydrogels in Bioengineering Applications)
Show Figures

Graphical abstract

2 pages, 1143 KiB  
Correction
Correction: Mallphanov et al. Novel Approach to Increasing the Amplitude of the Mechanical Oscillations of Self-Oscillating Gels: Introduction of Catalysts Both as Pendant Groups and as Crosslinkers. Gels 2024, 10, 727
by Ilya L. Mallphanov, Michail Y. Eroshik, Dmitry A. Safonov, Alexander V. Sychev, Vyacheslav E. Bulakov and Anastasia I. Lavrova
Gels 2024, 10(12), 830; https://doi.org/10.3390/gels10120830 - 16 Dec 2024
Viewed by 445
Abstract
In the original publication [...] Full article
Show Figures

Figure 1

17 pages, 5375 KiB  
Article
Tunable Alginate-Polyvinyl Alcohol Bioinks for 3D Printing in Cartilage Tissue Engineering
by Alexandra Hunter Aitchison, Nicholas B. Allen, Kishen Mitra, Bijan Abar, Conor N. O’Neill, Kian Bagheri, Albert T. Anastasio and Samuel B. Adams
Gels 2024, 10(12), 829; https://doi.org/10.3390/gels10120829 - 14 Dec 2024
Cited by 2 | Viewed by 1388
Abstract
This study investigates 3D extrusion bioinks for cartilage tissue engineering by characterizing the physical properties of 3D-printed scaffolds containing varying alginate and polyvinyl alcohol (PVA) concentrations. We systematically investigated the effects of increasing PVA and alginate concentrations on swelling, degradation, and the elastic [...] Read more.
This study investigates 3D extrusion bioinks for cartilage tissue engineering by characterizing the physical properties of 3D-printed scaffolds containing varying alginate and polyvinyl alcohol (PVA) concentrations. We systematically investigated the effects of increasing PVA and alginate concentrations on swelling, degradation, and the elastic modulus of printed hydrogels. Swelling decreased significantly with increased PVA concentrations, while degradation rates rose with higher PVA concentrations, underscoring the role of PVA in modulating hydrogel matrix stability. The highest elastic modulus value was achieved with a composite of 5% PVA and 20% alginate, reaching 0.22 MPa, which approaches that of native cartilage. These findings demonstrate that adjusting PVA and alginate concentrations enables the development of bioinks with tailored physical and mechanical properties, supporting their potential use in cartilage tissue engineering and other biomedical applications. Full article
(This article belongs to the Special Issue Hydrogel for Tissue Regeneration (2nd Edition))
Show Figures

Figure 1

14 pages, 1576 KiB  
Article
Preparation and Characterization of Ultrasonically Modified Peanut Protein–Guar Gum Composite Emulsion Gels for 3D Printing
by Hong-Yan Yan and Shao-Bing Zhang
Gels 2024, 10(12), 828; https://doi.org/10.3390/gels10120828 - 14 Dec 2024
Cited by 1 | Viewed by 946
Abstract
This study aimed to prepare ultrasonically modified peanut protein–guar gum composite emulsion gels for 3D printing. The composition of the composite emulsion gels was determined in single-factor and orthogonal experiments. The results revealed that the optimal composite emulsion gels consisted of 6% peanut [...] Read more.
This study aimed to prepare ultrasonically modified peanut protein–guar gum composite emulsion gels for 3D printing. The composition of the composite emulsion gels was determined in single-factor and orthogonal experiments. The results revealed that the optimal composite emulsion gels consisted of 6% peanut protein, 50% oil and 0.2% guar gum. After crushing pretreatment for 45 s, the printing deviation of the composite emulsion gels was reduced to 8.58 ± 0.20%. Moreover, after ultrasonic treatment (200 W for 20 min) of peanut proteins, the obtained composite emulsion gels presented the highest yield stress, hardness and G’ values, as well as a denser and more homogeneous microstructure. After protein ultrasonic modification (200 W or 600 W for 20 min), the printing accuracy and self-supporting properties of the composite emulsion gels for printing complex shapes significantly improved, which was attributed to their stronger textural and rheological properties; however, ultrasonically modified peanut protein–guar gum composite emulsion gels were not suitable for printing products with smooth surfaces. Full article
(This article belongs to the Special Issue Recent Trends in Gels for 3D Printing)
Show Figures

Graphical abstract

23 pages, 7544 KiB  
Article
Lignin Polyurethane Aerogels: Influence of Solvent on Textural Properties
by Razan Altarabeen, Dmitri Rusakov, Erik Manke, Lara Gibowsky, Baldur Schroeter, Falk Liebner and Irina Smirnova
Gels 2024, 10(12), 827; https://doi.org/10.3390/gels10120827 - 14 Dec 2024
Viewed by 1678
Abstract
This study explores the innovative potential of native lignin as a sustainable biopolyol for synthesizing polyurethane aerogels with variable microstructures, significant specific surface areas, and high mechanical stability. Three types of lignin—Organosolv, Aquasolv, and Soda lignin—were evaluated based on structural characteristics, Klason lignin [...] Read more.
This study explores the innovative potential of native lignin as a sustainable biopolyol for synthesizing polyurethane aerogels with variable microstructures, significant specific surface areas, and high mechanical stability. Three types of lignin—Organosolv, Aquasolv, and Soda lignin—were evaluated based on structural characteristics, Klason lignin content, and particle size, with Organosolv lignin being identified as the optimal candidate. The microstructure of lignin polyurethane samples was adjustable by solvent choice: Gelation in DMSO and pyridine, with high affinity to lignin, resulted in dense materials with low specific surface areas, while the use of the low-affinity solvent e.g acetone led to aggregated, macroporous materials due to microphase separation. Microstructural control was achieved by use of DMSO/acetone and pyridine/acetone solvent mixtures, which balanced gelation and phase separation to produce fine, homogeneous, mesoporous materials. Specifically, a 75% DMSO/acetone mixture yielded mechanically stable lignin polyurethane aerogels with a low envelope density of 0.49 g cm−3 and a specific surface area of ~300 m2 g−1. This study demonstrates a versatile approach to tailoring lignin polyurethane aerogels with adjustable textural and mechanical properties by simple adjustment of the solvent composition, highlighting the critical role of solvent–lignin interactions during gelation and offering a pathway to sustainable, high-performance materials. Full article
(This article belongs to the Special Issue Aerogels—Preparation and Properties)
Show Figures

Graphical abstract

14 pages, 5384 KiB  
Article
Preparation of Chitosan Oleogel from Capillary Suspension and Its Application in Pork Meatballs
by Shishuai Wang, Zhongqin Fan, Xinya Huang, Yue Gao, Hongwei Sui, Jun Yang and Bin Li
Gels 2024, 10(12), 826; https://doi.org/10.3390/gels10120826 - 14 Dec 2024
Viewed by 846
Abstract
In the oil dispersion of chitosan, the formation of a capillary bridge was triggered by adding a small amount of water to obtain an oleogel. With this method, the types of liquid oil and the ratio of oil/chitosan/water were explored to achieve an [...] Read more.
In the oil dispersion of chitosan, the formation of a capillary bridge was triggered by adding a small amount of water to obtain an oleogel. With this method, the types of liquid oil and the ratio of oil/chitosan/water were explored to achieve an optimal oleogel. MCT performed best, followed by soybean oil, which was chosen for its edibility and cost. Increasing chitosan from 15% to 45% reduced oil loss from 46% to 13%, and raising the water/chitosan ratio from 0 to 0.8 lowered oil loss from 37% to 13%. After normalization, the optimal soybean oil, chitosan, and water ratio was 1:0.45:0.36, yielding a solid-like appearance, minimal oil loss of 13%, and maximum gel strength and viscosity. To assess the potential application of the optimized oleogel, it was incorporated into pork meatballs as a replacement for pork fat. Textural and cooking experiments revealed that as the oleogel content increased, the hardness of the pork meatballs increased, while the cooking loss decreased. It suggested that the chitosan oleogel could enhance the quality of pork meatballs while also contributing to a healthier product by reducing saturated fat content. Full article
Show Figures

Figure 1

22 pages, 4853 KiB  
Article
Plant-Based Sunscreen Emulgel: UV Boosting Effect of Bilberry and Green Tea NaDES Extracts
by Milica Martinović, Ivana Nešić, Dragica Bojović, Ana Žugić, Slavica Blagojević, Stevan Blagojević and Vanja M. Tadić
Gels 2024, 10(12), 825; https://doi.org/10.3390/gels10120825 - 13 Dec 2024
Viewed by 1264
Abstract
Natural deep eutectic solvents (NaDES) were employed for the extraction of bilberry and green tea leaves. This study explored the incorporation of these NaDES extracts into various carrier systems: hydrogels, emulsions, and emulgels stabilized with hydroxyethyl cellulose or xanthan gum. The results demonstrated [...] Read more.
Natural deep eutectic solvents (NaDES) were employed for the extraction of bilberry and green tea leaves. This study explored the incorporation of these NaDES extracts into various carrier systems: hydrogels, emulsions, and emulgels stabilized with hydroxyethyl cellulose or xanthan gum. The results demonstrated that, when combined with synthetic UV filters, the NaDES extracts significantly enhanced the SPF and improved the antioxidant properties of the formulation. Although NaDES extracts cannot fully replace synthetic UV filters (homosalate, ethylhexyl methoxycinnamate, and benzophenone-4), they can serve as effective UV boosters, significantly enhancing the SPFs of formulations containing UV filters. Hence, the SPF of the formulation could be improved without increasing the concentrations of synthetic filters. Moreover, NaDES extracts, unlike UV filters, significantly increased the antioxidant potential of the formulations. Among the carriers, hydrogels with xanthan gum and emulgels with hydroxyethyl cellulose achieved the highest SPFs when containing both NaDES extracts and synthetic filters. A texture analysis further revealed that the NaDES extracts positively impacted the mechanical properties of the formulations by increasing their cohesiveness, thus enhancing their physical stability under mechanical pressure. These findings pave the way for further research into NaDES-based formulations, including in vivo testing, to optimize and confirm their efficacy on human skin and validate NaDES extracts as eco-friendly ingredients in cosmetics, with antioxidant and UV boosting potential. Full article
(This article belongs to the Special Issue Recent Advances in Biopolymer Gels)
Show Figures

Figure 1

16 pages, 2283 KiB  
Article
ISO 10993-4 Compliant Hemocompatibility Evaluation of Gellan Gum Hybrid Hydrogels for Biomedical Applications
by Mthabisi Talent George Moyo, Terin Adali and Oğuz Han Edebal
Gels 2024, 10(12), 824; https://doi.org/10.3390/gels10120824 - 13 Dec 2024
Cited by 1 | Viewed by 1125
Abstract
This study examines the hemocompatibility of gellan-gum-based hybrid hydrogels, with varying gellan-gum concentrations and constant sodium alginate and silk fibroin concentrations, respectively, in accordance with ISO 10993-4 standards. While previous studies have focused on cytocompatibility, the hemocompatibility of these hydrogels remains underexplored. Hydrogels [...] Read more.
This study examines the hemocompatibility of gellan-gum-based hybrid hydrogels, with varying gellan-gum concentrations and constant sodium alginate and silk fibroin concentrations, respectively, in accordance with ISO 10993-4 standards. While previous studies have focused on cytocompatibility, the hemocompatibility of these hydrogels remains underexplored. Hydrogels were formulated with 0.3%, 0.5%, 0.75%, and 1% gellan gum combined with 3% silk fibroin and 4.2% sodium alginate separately, using physical and ionic cross-linking. Swelling behavior was analyzed in phosphate (pH 7.4) and acetic (pH 1.2) buffers and surface morphology was examined by scanning electron microscopy (SEM). Hemocompatibility tests included complete blood count (CBC), coagulation assays, hemolysis index, erythrocyte morphology, and platelet adhesion analysis. Results showed that gellan gum–sodium alginate hydrogels exhibited faster swelling than gellan gum–silk fibroin formulations. SEM indicated smoother surfaces with sodium alginate, while silk fibroin increased roughness, further amplified by higher gellan-gum concentrations. Hemocompatibility assays confirmed normal profiles in formulations with 0.3%, 0.5%, and 0.75% gellan gum, while 1% gellan gum caused significant hemolytic and thrombogenic activity. These findings highlight the excellent hemocompatibility of gellan-gum-based hydrogels, especially the sodium alginate variants, supporting their potential in bioengineering, tissue engineering, and blood-contacting biomedical applications. Full article
(This article belongs to the Special Issue Recent Research on Alginate Hydrogels in Bioengineering Applications)
Show Figures

Graphical abstract

13 pages, 1757 KiB  
Article
Development and Bioavailability Assessment of an Estriol-Containing Vaginal Hydrogel
by Peter Takacs, Barbara Kozma, Dávid Rátonyi, Bence Kozma, Kiss-Szikszai Attila, Ferenc Fenyvesi and Attila G. Sipos
Gels 2024, 10(12), 823; https://doi.org/10.3390/gels10120823 - 13 Dec 2024
Cited by 3 | Viewed by 1111
Abstract
Genitourinary syndrome of menopause (GSM) affects a significant percentage of postmenopausal women and manifests as vaginal dryness, irritation, and urinary discomfort, typically treated with vaginal estrogens. Hydrogels are preferred over creams due to their superior comfort and mucoadhesive properties. This study introduces a [...] Read more.
Genitourinary syndrome of menopause (GSM) affects a significant percentage of postmenopausal women and manifests as vaginal dryness, irritation, and urinary discomfort, typically treated with vaginal estrogens. Hydrogels are preferred over creams due to their superior comfort and mucoadhesive properties. This study introduces a novel vaginal gel formulation containing hydroxyethyl cellulose (HEC) and estriol-hydroxypropyl-β-cyclodextrin complex (E3-HPBCD) for the treatment of GSM. The estriol (E3) release profile of the gel was evaluated using a Franz diffusion cell system, and its permeability was tested on reconstructed human vaginal epithelium. Biocompatibility was assessed using (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) (MTT), lactate dehydrogenase (LDH) assays, and real-time cell analysis (RTCA) on human skin keratinocyte (HaCaT) cells, which showed increased cell viability and no obvious cytotoxicity. The results indicated that efficient E3 release and satisfactory epithelial permeability with HPBCD provide the bioavailability of E3. These results suggest the potential of the gel as a biocompatible and effective alternative for the treatment of GSM. Further studies are required to assess the long-term safety and clinical efficacy. Full article
(This article belongs to the Section Gel Processing and Engineering)
Show Figures

Figure 1

12 pages, 4288 KiB  
Article
Polymer Entanglement-Induced Hydrogel Adhesion
by Kai Hu, Qingyun Li and Xiaofan Ji
Gels 2024, 10(12), 822; https://doi.org/10.3390/gels10120822 - 13 Dec 2024
Viewed by 1120
Abstract
Hydrogels are widely used in the field of adhesive materials. However, hydrogel adhesion has previously required the covalent graft of supramolecular groups on polymeric chains. In contrast to that, here, a hydrogel adhesion induced by covalent polymer entanglement between two hydrogel networks was [...] Read more.
Hydrogels are widely used in the field of adhesive materials. However, hydrogel adhesion has previously required the covalent graft of supramolecular groups on polymeric chains. In contrast to that, here, a hydrogel adhesion induced by covalent polymer entanglement between two hydrogel networks was reported. Hydrogels G1 and G2 contain the monomers M1, with diazonium groups, and M2, with sulfonate groups, respectively. When the two hydrogels come into contact, the monomers diffuse into each other’s networks and assemble into supramolecular polymers (SPs) based on electrostatic interactions, threading the two hydrogel networks. Subsequently, SPs convert into covalent polymers (CPs) under UV light stimulation due to the reaction between the diazonium groups and sulfonate groups, leading to the entanglement of the two hydrogel networks and the production of an adhesive effect. This finding provides a novel strategy for hydrogel adhesion. Full article
Show Figures

Graphical abstract

16 pages, 3434 KiB  
Article
Dynamic Double-Networked Hydrogels by Hybridizing PVA and Herbal Polysaccharides: Improved Mechanical Properties and Selective Antibacterial Activity
by Weidong Liu, Chuying Yao, Daohang Wang, Guangyan Du, Yutian Ji and Quan Li
Gels 2024, 10(12), 821; https://doi.org/10.3390/gels10120821 - 13 Dec 2024
Viewed by 986
Abstract
Chinese herbal medicine has offered an enormous source for developing novel bio-soft materials. In this research, the natural polysaccharide isolated from the Chinese herbal medicine Dendrobium was employed as the secondary building block to fabricate a “hybrid” hydrogel with synthetic poly (vinyl alcohol) [...] Read more.
Chinese herbal medicine has offered an enormous source for developing novel bio-soft materials. In this research, the natural polysaccharide isolated from the Chinese herbal medicine Dendrobium was employed as the secondary building block to fabricate a “hybrid” hydrogel with synthetic poly (vinyl alcohol) (PVA) polymers. Thanks to the presence of mannose units that contain cis-diol motifs on the chain of the Dendrobium polysaccharides, efficient crosslinking with the borax is allowed and reversible covalent borate ester bonds are formed. Eventually, highly dynamic and double-networked hydrogels were successfully prepared by the integration of Dendrobium polysaccharides and PVA. Interestingly, the introduction of polysaccharides has given rise to more robust and dynamic hydrogel networks, leading to enhanced thermal stability, mechanical strength, and tensile capacity (>1000%) as well as the rapid self-healing ability (<5 s) of the “hybrid” hydrogels compared with the PVA/borax single networked hydrogel. Moreover, the polysaccharides/PVA double network hydrogel showed selective antibacterial activity towards S. aureus. The reported polysaccharides/PVA double networked hydrogel would provide a scaffold to hybridize bioactive natural polysaccharides and synthetic polymers for developing robust but dynamic multiple networked hydrogels that are tailorable for biomedical applications. Full article
Show Figures

Graphical abstract

16 pages, 4724 KiB  
Article
Various Hydrogel Types as a Potential In Vitro Angiogenesis Model
by Chloé Radermacher, Annika Rohde, Vytautas Kucikas, Eva Miriam Buhl, Svenja Wein, Danny Jonigk, Willi Jahnen-Dechent and Sabine Neuss
Gels 2024, 10(12), 820; https://doi.org/10.3390/gels10120820 - 12 Dec 2024
Cited by 1 | Viewed by 1341
Abstract
Angiogenesis, the formation of new blood vessels, is a fundamental process in both physiological repair mechanisms and pathological conditions, including cancer and chronic inflammation. Hydrogels are commonly used as in vitro models to mimic the extracellular matrix (ECM) and support endothelial cell behavior [...] Read more.
Angiogenesis, the formation of new blood vessels, is a fundamental process in both physiological repair mechanisms and pathological conditions, including cancer and chronic inflammation. Hydrogels are commonly used as in vitro models to mimic the extracellular matrix (ECM) and support endothelial cell behavior during angiogenesis. Mesenchymal stem cells further augment cell and tissue growth and are therefore widely used in regenerative medicine. Here we examined the combination of distinct hydrogel types—fibrin, collagen, and human platelet lysate (HPL)—on the formation of capillaries in a co-culture system containing human umbilical vein endothelial cells (HUVECs) and bone marrow-derived mesenchymal stem cells (BM-MSCs). The mechanical properties and structural changes of the hydrogels were characterized through scanning electron microscopy (SEM) and nanoindentation over 10 days. Fibrin and HPL gels sustained complex network formations, with HPL gels promoting even vascular tube formation of up to 10-fold capillary caliber. Collagen gels supported negligible angiogenesis. Our results suggest that HPL gels in combination with MSC-EC co-culture may be employed to obtain robust vascularization in tissue engineering. This study provides a comparative analysis of fibrin, collagen, and HPL hydrogels, focusing on their ability to support angiogenesis under identical conditions. Our findings demonstrate the superior performance of HPL gels in promoting robust vascular structures, highlighting their potential as a versatile tool for in vitro angiogenesis modeling. Full article
Show Figures

Graphical abstract

21 pages, 2496 KiB  
Review
Exploring the Feasibility of Direct-Dispersion Oleogels in Healthier Sausage Formulations
by Niaz Mahmud, Md. Jannatul Ferdaus and Roberta Claro da Silva
Gels 2024, 10(12), 819; https://doi.org/10.3390/gels10120819 - 12 Dec 2024
Cited by 4 | Viewed by 1565
Abstract
Oleogels developed through the direct-dispersion method offer an innovative, scalable, and efficient alternative to traditional fats in sausage production, providing a solution to health concerns associated with the high saturated fat content of conventional formulations. By closely mimicking the texture, stability, and mouthfeel [...] Read more.
Oleogels developed through the direct-dispersion method offer an innovative, scalable, and efficient alternative to traditional fats in sausage production, providing a solution to health concerns associated with the high saturated fat content of conventional formulations. By closely mimicking the texture, stability, and mouthfeel of animal fats, these oleogels provide a novel approach to improving the nutritional profile of sausages while maintaining desirable sensory characteristics. This review critically evaluates cutting-edge research on oleogels, emphasizing innovations in their ability to enhance emulsion stability, increase cooking yield, reduce processing weight loss, and optimize fatty acid composition by reducing overall fat and saturated fat levels. Despite their potential, sausage formulations with oleogel still face challenges in achieving consistent sensory properties, texture, and oxidative stability, often failing to fully replicate the sensory qualities and shelf-life of animal fats. To push the boundaries of oleogel technology and meet the increasing demand for healthier, high-quality sausage products, we propose focused innovations in refining oil-to-gelator ratios, exploring a wider range of novel gelators, optimizing production methods, and developing cost-effective, scalable strategies. These advancements hold significant potential for revolutionizing the sausage industry by improving both the technological and nutritional qualities of oleogels. Full article
Show Figures

Graphical abstract

16 pages, 1498 KiB  
Article
The Use of Gel Electrophoresis to Separate Multiplex Polymerase Chain Reaction Amplicons Allows for the Easy Identification and Assessment of the Spread of Toxigenic Clostridioides difficile Strains
by Tomasz Bogiel, Patrycja Kwiecińska, Robert Górniak, Piotr Kanarek and Agnieszka Mikucka
Gels 2024, 10(12), 818; https://doi.org/10.3390/gels10120818 - 12 Dec 2024
Viewed by 1639
Abstract
Clostridioides difficile is a common etiological factor of hospital infections, which, in extreme cases, can lead to the death of patients. Most strains belonging to this bacterium species synthesize very dangerous toxins: toxin A (TcdA) and B (TcdB) and binary toxin (CDT). The [...] Read more.
Clostridioides difficile is a common etiological factor of hospital infections, which, in extreme cases, can lead to the death of patients. Most strains belonging to this bacterium species synthesize very dangerous toxins: toxin A (TcdA) and B (TcdB) and binary toxin (CDT). The aim of this study was to assess the suitability of agarose gel electrophoresis separation of multiplex PCR amplicons to investigate the toxinogenic potential of C. difficile strains. Additionally, the frequency of C. difficile toxin genes and the genotypes of toxin-producing strains were determined. Ninety-nine C. difficile strains were used in the detection of the presence of genes encoding all of these toxins using the multiplex PCR method. In 85 (85.9%) strains, the presence of tcdA genes encoding enterotoxin A was detected. In turn, in 66 (66.7%) isolates, the gene encoding toxin B (tcdB) was present. The lowest number of strains tested was positive for genes encoding a binary toxin. Only 31 (31.3%) strains possessed the cdtB gene and 22 (22.2%) contained both genes for the binary toxin subunits (the cdtB and cdtA genes). A relatively large number of the strains tested had genes encoding toxins, whose presence may result in a severe course of disease. Therefore, the accurate diagnosis of patients, including the detection of all known C. difficile toxin genes, is very important. The multiplex PCR method allows for the quick and accurate determination of whether the tested strains of this bacterium contain toxin genes. Agarose gel electrophoresis is a useful tool for visualizing amplification products, allowing one to confirm the presence of specific C. difficile toxin genes as well as investigate their dissemination for epidemiological purposes. Full article
(This article belongs to the Special Issue Gels in Separation Science)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop