Polymer Entanglement-Induced Hydrogel Adhesion
Abstract
:1. Introduction
2. Results and Discussion
2.1. The 1H NMR Tests and Viscosity Tests of the Mixture Solution of M1 and M2
2.2. The 1H NMR Tests, FT-IR Tests, TGA Tests, and GPC Tests of the Mixture Solution of M1 and M2 After UV Light
2.3. The Tensile Tests of Hydrogels G01’, G02’, and G4
3. Conclusions
4. Materials and Methods
4.1. Synthesis and Characterization of M1 and M2
4.2. Preparation of Hydrogels G0, G1 and G2
4.3. Preparation of Hydrogels G01’, G02’ and G4
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, W.; Wang, R.; Sun, Z.; Zhu, X.; Zhao, Q.; Zhang, T.; Cholewinski, A.; Yang, F.; Zhao, B.; Pinnaratip, R.; et al. Catechol-Functionalized Hydrogels: Biomimetic Design, Adhesion Mechanism, and Biomedical Applications. Chem. Soc. Rev. 2020, 49, 433–464. [Google Scholar] [CrossRef]
- Lu, W.; Si, M.; Le, X.; Chen, T. Mimicking Color-Changing Organisms to Enable the Multicolors and Multifunctions of Smart Fluorescent Polymeric Hydrogels. Acc. Chem. Res. 2022, 55, 2291–2303. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, X.; Yuk, H.; Lin, S.; Liu, X.; Parada, G. Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties. Chem. Rev. 2021, 121, 4309–4372. [Google Scholar] [CrossRef]
- Vahdati, M.; Hourdet, D.; Creton, C. Soft Underwater Adhesives Based on Weak Molecular Interactions. Prog. Polym. Sci. 2023, 139, 101649. [Google Scholar] [CrossRef]
- Lu, W.; Wei, S.; Shi, H.; Le, X.; Yin, G.; Chen, T. Progress in Aggregation-Induced Emission-Active Fluorescent Polymeric Hydrogels. Aggregate 2021, 2, e37. [Google Scholar] [CrossRef]
- Sinawang, G.; Osaki, M.; Takashima, Y.; Yamaguchi, H.; Harada, A. Supramolecular Self-Healing Materials from Non-Covalent Cross-Linking Host–Guest Interactions. Chem. Commun. 2020, 56, 4381–4395. [Google Scholar] [CrossRef]
- Hu, Z.; Xu, S.; Zhang, H.; Ji, X. Aggregates of Fluorescent Gels Assembled by Interfacial Dynamic Bonds. Aggregate 2023, 4, e283. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, S.; Ren, X.; Zhang, J.; Lin, Q.; Zhao, Y. Supramolecular Adhesive Hydrogels for Tissue Engineering Applications. Chem. Rev. 2022, 122, 5604–5640. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, Q.; Deng, Y.; Li, X.; Luo, Z.; Zheng, B.; Dong, S. Assembly Pattern of Supramolecular Hydrogel Induced by Lower Critical Solution Temperature Behavior of Low-Molecular-Weight Gelator. J. Am. Chem. Soc. 2020, 142, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Li, C.; Zhu, L.; Zhou, X. Engineering Hydrogels by Soaking: From Mechanical Strengthening to Environmental Adaptation. Chem. Commun. 2020, 56, 13731–13747. [Google Scholar] [CrossRef]
- Dong, R.; Zhou, Y.; Zhu, X. Supramolecular Dendritic Polymers: From Synthesis to Applications. Acc. Chem. Res. 2014, 47, 2006–2016. [Google Scholar] [CrossRef]
- Bertsch, P.; Diba, M.; Mooney, D.J.; Leeuwenburgh, S.C.G. Self-Healing Injectable Hydrogels for Tissue Regeneration. Chem. Rev. 2023, 123, 834–873. [Google Scholar] [CrossRef]
- Jie, K.; Zhou, Y.; Yao, Y.; Huang, F. Macrocyclic Amphiphiles. Chem. Soc. Rev. 2015, 44, 3568–3587. [Google Scholar] [CrossRef] [PubMed]
- Xiao, T.; Xu, L.; Zhong, W.; Zhou, L.; Sun, X.-Q.; Hu, X.-Y.; Wang, L. Advanced Functional Materials Constructed from Pillar[n]arenes. Isr. J. Chem. 2018, 58, 1219–1229. [Google Scholar] [CrossRef]
- Ji, X.; Ahmed, M.; Long, L.; Khashab, N.M.; Huang, F.; Sessler, J.L. Adhesive Supramolecular Polymeric Materials Constructed from Macrocycle-Based Host–Guest Interactions. Chem. Soc. Rev. 2019, 48, 2682–2697. [Google Scholar] [CrossRef] [PubMed]
- Harada, A.; Kobayashi, R.T.; Akashima1, Y.; Hashidzume, A.; Yamaguchi, H. Macroscopic Self-Assembly through Molecular Recognition. Nat. Chem. 2011, 3, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Jie, K.; Zhou, Y.; Li, E.; Huang, F. Nonporous Adaptive Crystals of Pillararenes. Acc. Chem. Res. 2018, 51, 2064–2072. [Google Scholar] [CrossRef]
- Xiao, T.; Xu, L.; Zhou, L.; Sun, X.-Q.; Lin, C.; Wang, L. Dynamic Hydrogels Mediated by Macrocyclic Host–Guest Interactions. J. Mater. Chem. B 2019, 7, 1526–1540. [Google Scholar] [CrossRef]
- Lai, J.; Huang, S.; Wu, S.; Li, F.; Dong, S. Adhesion Behaviour of Bulk Supramolecular Polymers via Pillar[5]Arene-Based Molecular Recognition. Chem. Commun. 2021, 57, 13317–13320. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Peng, H.-Q.; Niu, L.-Y.; Yang, Q.-Z. Modulation of Aggregation-Induced Emission by Excitation Energy Transfer: Design and Application. Top. Curr. Chem. 2021, 379, 18. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xie, L.; Lin, K.; Ma, W.; Zhao, T.; Ji, X.; Alyami, M.; Khashab, N.M.; Wang, H.; Sessler, J.L. Calix[4]pyrrole-Crosslinked Porous Polymeric Networks for the Removal of Micropollutants from Water. Angew. Chem. Int. Ed. 2021, 60, 7188–7196. [Google Scholar] [CrossRef]
- Guo, W.-J.; Ma, S.; Wang, H.; Qiao, L.; Chen, L.; Hong, C.; Liu, B.; Zheng, X.; Peng, H.-Q. Unveiling Size-Fluorescence Correlation of Organic Nanoparticles and Its Use in Nanoparticle Size Determination. Aggregate 2024, 5, e415. [Google Scholar] [CrossRef]
- Harada, A.; Takashima, Y.; Nakahata, M. Supramolecular Polymeric Materials via Cyclodextrin-Guest Interactions. Acc. Chem. Res. 2014, 47, 2128–2140. [Google Scholar] [CrossRef]
- Ju, G.; Zhang, Q.; Guo, F.; Xie, P.; Cheng, M.; Shi, F. Macroscopic Supramolecular Assembly of Rigid Hydrogels Assisted by a Flexible Spacing Coating. J. Mater. Chem. B 2019, 7, 1684–1689. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Wu, R.-T.; Long, L.; Ke, X.-S.; Guo, C.; Ghang, Y.-J.; Lynch, V.M.; Huang, F.; Sessler, J.L. Encoding, Reading, and Transforming Information Using Multifluorescent Supramolecular Polymeric Hydrogels. Adv. Mater. 2018, 30, 1705480. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Pan, S.; Wu, L.; Tan, L.; Chen, D.; Huang, S.; Zhang, Y.; He, P. A Self-Adhesive Wearable Strain Sensor Based on a Highly Stretchable, Tough, Self-Healing and Ultra-Sensitive Ionic Hydrogel. J. Mater. Chem. C 2020, 8, 17349–17364. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Q.; Yang, S.; Wang, T.; Sun, W.; Tong, Z. Unique Self-Reinforcing and Rapid Self-Healing Polyampholyte Hydrogels with a pH-Induced Shape Memory Effect. Macromolecules 2021, 54, 5218–5228. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, L.; Wang, T. Supramolecular Chirality in Self-Assembled Systems. Chem. Rev. 2015, 115, 7304–7397. [Google Scholar] [CrossRef]
- Wu, S.; Wang, W.; Cai, C.; Li, F.; Dong, S. Low-Molecular-Weight Supramolecular Adhesive with Resistance to Low Temperatures. Chin. Chem. Lett. 2023, 34, 107830. [Google Scholar] [CrossRef]
- Wang, R.; Lu, W.; Zhang, Y.; Li, W.; Wang, W.; Chen, T. Lanthanide Coordinated Multicolor Fluorescent Polymeric Hydrogels for Bio-Inspired Shape/Color Switchable Actuation Through Local Diffusion of Tb3+/Eu3+ ions. Chin. Chem. Lett. 2023, 34, 108086. [Google Scholar] [CrossRef]
- Sun, J.; Wu, T.; Sun, Y.; Wang, Z.; Zhang, X.; Shen, J.; Sun, J.; Cao, W. Fabrication of a Covalently Attached Multilayer via Photolysis of Layer-by-Layer Self-Assembled Films Containing Diazo-Resins. Chem. Commun. 1998, 17, 1853–1854. [Google Scholar] [CrossRef]
- Tamesue, S.; Yasuda, K.; Endo, T. Adhesive Hydrogel System Based on the Intercalation of Anionic Substituents into Layered Double Hydroxides. ACS Appl. Mater. Interfaces 2018, 10, 29925–29932. [Google Scholar] [CrossRef]
- Zhao, W.; Tropp, J.; Qiao, B.; Pink, M.; Azoulay, J.D.; Flood, A.H. Tunable Adhesion from Stoichiometry-Controlled and Sequence-Defined Supramolecular Polymers Emerges Hierarchically from Cyanostar-Stabilized Anion–Anion Linkages. J. Am. Chem. Soc. 2020, 142, 2579–2591. [Google Scholar] [CrossRef] [PubMed]
- Chi, X.; Xu, D.; Yan, X.; Chen, J.; Zhang, M.; Hu, B.; Yu, Y.; Huang, F. A Water-Soluble, Shape-Persistent, Mouldable Supramolecular Polymer with Redox-Responsiveness in the Presence of a Molecular Chaperone. Polym. Chem. 2013, 4, 2767–2772. [Google Scholar] [CrossRef]
- Liu, H.; Hu, R.; Hu, Z.; Ji, X. Construction of Supramolecular Polymers and Covalent Polymers via the Same Monomers. Chem.-Eur. J. 2024, 30, e202400394. [Google Scholar] [CrossRef]
- Chen, J.; Cao, W. Fabrication of a Covalently Attached Self-Assembly Multilayer Film via H-Bonding Attraction and Subsequent UV-Irradiation. Chem. Commun. 1999, 17, 1711–1712. [Google Scholar] [CrossRef]
- Heppe, B.; Dzombic, N.; Keil, J.; Sun, X.-L.; Ao, G. Solvent Isotope Effects on the Creation of Fluorescent Quantum Defects in Carbon Nanotubes by Aryl Diazonium Chemistry. J. Am. Chem. Soc. 2023, 145, 25621–25631. [Google Scholar] [CrossRef]
- Yi, Q.; Sukhorukov, G.B. Externally Triggered Dual Function of Complex Microcapsules. ACS Nano 2013, 7, 8693–8705. [Google Scholar] [CrossRef]
- Puza, F.; Zheng, Y.; Han, L.; Xue, L.; Cui, J. Physical Entanglement Hydrogels: Ultrahigh Water Content but Good Toughness and Stretchability. Polym. Chem. 2020, 11, 2339–2345. [Google Scholar] [CrossRef]
- Tsukeshiba, H.; Huang, M.; Na, Y.-H.; Kurokawa, T.; Kuwabara, R.; Tanaka, Y.; Furukawa, H.; Osada, Y.; Gong, J. Effect of Polymer Entanglement on the Toughening of Double Network Hydrogels. J. Phys. Chem. B 2005, 109, 16304–16309. [Google Scholar] [CrossRef]
- Pierce, F.; Perahia, D.; Grest, S.G. Interdiffusion of Short Chain Oligomers into an Entangled Polymer Film. Macromolecules 2009, 42, 7969–7973. [Google Scholar] [CrossRef]
- Chu, L.; Zhao, Y.; Graf, R.; Wang, X.-L.; Yao, Y.-F. Unexpected Role of Short Chains in Entangled Polymer Networks. ACS Macro Lett. 2022, 11, 669–674. [Google Scholar] [CrossRef]
- Hai, M.; Zhang, Q.; Li, Z.; Cheng, M.; Kuehne, J.C.A.; Shi, F. Visualizing Polymer Diffusion in Hydrogel Self-Healing. Supramol. Mater. 2022, 1, 100009. [Google Scholar] [CrossRef]
- Qi, Q.; Yang, B.; Wang, H.; Zhang, D.-W.; Li, Z.-T. Supramolecular Polymers from Coronene Multicarboxylates and Multipyridiniums in Water Stabilized by Ion-Pair Attraction and Aromatic Stacking. Tetrahedron 2018, 74, 2792–2796. [Google Scholar] [CrossRef]
- Wang, M.; Yueh, W.; Gonsalves, K.E. Novel Ionic Photoacid Generators (PAGs) and Corresponding PAG Bound Polymers. J. Photopolym. Sci. Tec. 2007, 20, 751–755. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, K.; Li, Q.; Ji, X. Polymer Entanglement-Induced Hydrogel Adhesion. Gels 2024, 10, 822. https://doi.org/10.3390/gels10120822
Hu K, Li Q, Ji X. Polymer Entanglement-Induced Hydrogel Adhesion. Gels. 2024; 10(12):822. https://doi.org/10.3390/gels10120822
Chicago/Turabian StyleHu, Kai, Qingyun Li, and Xiaofan Ji. 2024. "Polymer Entanglement-Induced Hydrogel Adhesion" Gels 10, no. 12: 822. https://doi.org/10.3390/gels10120822
APA StyleHu, K., Li, Q., & Ji, X. (2024). Polymer Entanglement-Induced Hydrogel Adhesion. Gels, 10(12), 822. https://doi.org/10.3390/gels10120822