Composite Contrast Enhancement of Hydrogel-Based Implants for Photon-Counting Computed Tomography Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Calibration of Material Determination by PCCT and Material Choice for Contrasted Implants
2.2. Preparation and Phantom PCCT Studies of Gelatin-Filled Implant Models
2.3. Synthesis and Characterization of Cross-Linked Ln2O3/PAM Samples
2.4. Preparation and Phantom PCCT Studies of PAM-Filled Implant Models
3. Conclusions
4. Materials and Methods
4.1. Synthesis of Cross-Linked Ln2O3/PAM Samples
4.1.1. Synthesis of Contrast Agents
4.1.2. Synthesis of PAM
4.1.3. Synthesis of Ln2O3/PAM Composites
4.2. Methods
4.3. PCCT Studies
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chamkouri, H.; Chamkouri, M. A Review of Hydrogels, Their Properties and Applications in Medicine. Am. J. Biomed. Sci. Res. 2021, 11, 485–493. [Google Scholar] [CrossRef]
- Peppas, N.A.; Hilt, J.Z.; Khademhosseini, A.; Langer, R. Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology. Adv. Mat. 2006, 18, 1345–1360. [Google Scholar] [CrossRef]
- Hameed, H.; Faheem, S.; Paiva-Santos, A.C.; Sarwar, H.S.; Jamshaid, M. A Comprehensive Review of Hydrogel-Based Drug Delivery Systems: Classification, Properties, Recent Trends, and Applications. AAPS PharmSciTech 2024, 25, 64. [Google Scholar] [CrossRef] [PubMed]
- Martinea, G.; Begines, B.; Pajuelo, E.; Vazquez, J.; Rodriguez-Alberlo, L.M.; Cofini, D.; Torres, Y.; Alcudia, A. Versatile Biodegradable Poly(acrylic acid)-Based Hydrogels Infiltrated in Porous Titanium Implants to Improve the Biofunctional Performance. Biomacromolecules 2023, 24, 4743–4758. [Google Scholar] [CrossRef]
- Wong, T.; Lo, L.W.; Fung, P.Y.E.; Lai, H.Y.M.; She, H.L.H.; Ng, W.K.C.; Kwok, K.M.K.; Lee, C.M. Magnetic resonance imaging of breast augmentation: A pictorial review. Insights Imaging 2016, 7, 399–410. [Google Scholar] [CrossRef]
- Dong, Y.C.; Bouché, M.; Uman, S.; Burdick, J.A.; Cormode, D.P. Cormode Detecting and Monitoring Hydrogels with Medical Imaging. ACS Biomater. Sci. Eng. 2021, 7, 4027. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.-H.; Weng, Y.-T.; Chou, Y.-Y.; Wang, C.-H. Rupture of 40-year-old silicone gel breast implants: A case report. BMC Geriatr. 2023, 23, 589. [Google Scholar] [CrossRef]
- Mottu, F.; Rüfenacht, D.A.; Doelker, E. Radiopaque polymeric materials for medical applications. Current aspects of biomaterial research. Investig. Radiol. 1999, 34, 323. [Google Scholar] [CrossRef]
- Li, Q.F.; Wang, J.T.; Wang, Z. Implementation of functional integration of hydrogel matrices with rare earth elements and related applications. J. Rare Earths2024, in press. [CrossRef]
- Koc, M.M.; Aslan, N.; Kao, A.P.; Barber, A.H. Evaluation of X-Ray tomography contrast agents: A review of production, protocols, and biological applications. Microsc. Res. Technol. 2019, 82, 812. [Google Scholar] [CrossRef]
- Becerra, C.F.; Silva, V.B.; Ahmed, E.; Bear, J.C.; Feng, Z.; Chau, D.Y.S.; Parker, S.G.; Halligan, S.; Lythgoe, M.F.; Stuckey, D.J.; et al. X-Ray Visible Protein Scaffolds by Bulk Iodination. Adv. Sci. 2024, 11, 2306246. [Google Scholar] [CrossRef] [PubMed]
- Houston, K.R.; Brosnan, S.M.; Burk, L.M.; Lee, Y.Z.; Luft, J.C.; Ashby, V.S. Iodinated polyesters as a versatile platform for radiopaque biomaterials. J. Polym. Sci. A Polym. Chem. 2017, 55, 2171. [Google Scholar] [CrossRef]
- Kiran, S.; James, N.R.; Joseph, R.; Jayakrishnan, A. Synthesis and characterization of iodinated polyurethane with inherent radiopacity. Biomaterials 2009, 30, 5552. [Google Scholar] [CrossRef]
- Davy, K.W.M.; Anseau, M.R. Novel iodinated methacrylates as X-Ray opaque denture base polymers. J. Mater. Sci. Lett. 1996, 15, 686. [Google Scholar] [CrossRef]
- Barnett, B.P.; Arepally, A.; Stuber, M.; Arifin, D.R.; Kraitchman, D.L.; Bulte, J.W. Synthesis of magnetic resonance-, X-Ray- and ultrasound-visible alginate microcapsules for immunoisolation and noninvasive imaging of cellular therapeutics. Nat. Protoc. 2011, 6, 1142–1151. [Google Scholar] [CrossRef]
- Patrick, P.S.; Bear, J.C.; Fitzke, H.E.; Zaw-Thin, M.; Parkin, I.P.; Lythgoe, M.F.; Kalber, T.L.; Stuckey, D.J. Radio-metal cross-linking of alginate hydrogels for non-invasive in vivo imaging. Biomaterials 2020, 243, 119930. [Google Scholar] [CrossRef]
- Dong, Y.C.; Kumar, A.; Rosario-Berrios, D.N.; Si-Mohamed, S.; Hsu, J.C.; Nieves, L.M.; Douek, P.; Noёl, P.B.; Cormode, D.P. Ytterbium Nanoparticle Contrast Agents for Conventional and Spectral Photon-Counting CT and Their Applications for Hydrogel Imaging. ACS Appl. Mater. Interfaces 2022, 14, 39274. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Ye, Z.; Chen, J.; Deng, L.; Song, B. Photon Counting CT: Technical Principles, Clinical Applications, and Future Prospects. Acad. Radiol. 2023, 30, 2362–2382. [Google Scholar] [CrossRef]
- Willemink, M.J.; Persson, M.; Pourmorteza, A.; Pelc, N.J.; Fleischmann, D. Photon-counting CT: Technical Principles and Clinical Prospects. Radiology 2018, 289, 293–312. [Google Scholar] [CrossRef]
- Douek, P.C.; Boccalini, S.; Oei, E.; Cormode, D.; Pourmorteza, A.; Boussel, L.; Si-Mohamed, S.; Budde, R. Clinical Applications of Photon-counting CT: A Review of Pioneer Studies and a Glimpse into the Future. Radiology 2023, 309. [Google Scholar] [CrossRef]
- Bie, J.; Straten, M.; Booij, R.; Bos, D.; Dijkshoorn, M.L.; Hirsch, A.; Sharma, S.P.; Oei, E.H.G.; Budde, R.P.J. Photon-counting CT: Review of initial clinical results. Eur. J. Radiol. 2023, 163, 110829. [Google Scholar] [CrossRef] [PubMed]
- Lachance, C.; Horton, J. Photon-Counting CT: High Resolution, Less Radiation: Emerging Health Technologies; Report No.: EH0124; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, USA, 2024. [Google Scholar] [PubMed]
- Suslova, E.V.; Kozlov, A.P.; Shashurin, D.A.; Rozhkov, V.A.; Sotenskii, R.V.; Maximov, S.V.; Savilov, S.V.; Medvedev, O.S.; Chelkov, G.A. New Composite Contrast Agents Based on Ln and Graphene Matrix for Multi-Energy Computed Tomography. Nanomaterials 2022, 12, 4110. [Google Scholar] [CrossRef]
- Kim, J.; Bar-Ness, D.; Si-Mohamed, S.; Coulon, P.; Blevis, I.; Douek, P.; Cormode, D.P. Assessment of candidate elements for development of spectral photon-counting CT specific contrast agents. Sci. Rep. 2018, 8, 12119. [Google Scholar] [CrossRef]
- Suslova, E.; Shashurin, D.; Kozlov, A.; Maximov, S.V.; Rozhkov, V.A.; Sotenskii, R.V.; Savilov, S.V.; Medvedev, O.S.; Chelkov, G.A. Development of La-graphene composite contrasting agents for photon-counting computed tomography. Funct. Mater. Lett. 2022, 15, 2250029. [Google Scholar] [CrossRef]
- Dunning, C.A.S.; O’connell, J.; Robinson, S.M.; Murphy, K.J.; Frencken, A.L.; van Veggel, F.C.J.M.; Iniewski, K.; Bazalova-Carter, M. Multi energy Computed Tomography of Lanthanide Contrast Agents with a High-Flux 330-Mm-Pitch Cadmium Zinc Telluride Detector in a Table-Top System. J. Med. Imaging 2022, 7, 033502. [Google Scholar] [CrossRef]
- Smith, K.; Getzin, M.; Garfield, J.J.; Suvarnapathaki, S.; Camci-Unal, G.; Wang, G.; Gkikas, M. Nanophosphor-Based Contrast Agents for Spectral X-Ray Imaging. Nanomaterials 2019, 9, 1092. [Google Scholar] [CrossRef] [PubMed]
- Richtsmeier, D.; Dunning, C.A.S.; Iniewski, K.; Bazalova-Carter, M. Multi-Contrast K-Edge Imaging on a Bench-Top Multi energy CT System: Acquisition Parameter Study. J. Instrum. 2020, 15, 10029. [Google Scholar] [CrossRef]
- Ostadhossein, F.; Tripathi, I.; Benig, L.; LoBato, D.; Moghiseh, M.; Lowe, C.; Raja, A.; Butler, A.; Panta, R.; Anjomrouz, M.; et al. Multi-“Color” Delineation of Bone Microdamages Using Ligand-Directed Sub-5 Nm Hafnia Nanodots and Photon Counting CT Imaging. Adv. Funct. Mater. 2020, 30, 1904936. [Google Scholar] [CrossRef]
- Amato, C.; Klein, L.; Wehrse, E.; Rotkopf, L.T.; Sawall, S.; Maier, J.; Ziener, C.H.; Schlemmer, H.; Kachelrieß, M. Potential of Contrast Agents Based on High-Z Elements for Contrast-enhanced Photon-counting Computed Tomography. Med. Phys. 2020, 47, 6179. [Google Scholar] [CrossRef]
- Cormode, D.P.; Roessl, E.; Thran, A.; Skajaa, T.; Gordon, R.E.; Schlomka, J.-P.; Fuster, V.; Fisher, E.A.; Mulder, W.J.M.; Proksa, R.; et al. Atherosclerotic Plaque Composition: Analysis with Multicolor CT and Targeted Gold Nanoparticles. Radiology 2020, 256, 774. [Google Scholar] [CrossRef]
- Do, C.; DeAguero, J.; Brearley, A.; Trejo, X.; Howard, T.; Escobar, G.P.; Wagner, B. Gadolinium-Based Contrast Agent Use, Their Safety, and Practice Evolution. Kidney360 2020, 1, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Holmes, B.; Sanampudi, S.; Ananthakrishnan, L. Diagnostic CT cystography with diluted gadolinium-based contrast: A viable alternative to an iodinated contrast-based cystogram. Urol. Case Rep. 2024, 26, 102856. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhao, Q.; Zang, Z.; Zhang, S.; Wang, Z.; Li, L.; Yu, X.; Yang, X.; Lu, Z.; Zhang, X. A dual-mode T1 MRI/CT contrast agent of Gd2O3/Au@MSNs for tumor imaging with high performance. Materialia 2022, 24, 101494. [Google Scholar] [CrossRef]
- Levine, D.; McDonald, R.J.; Kressel, H.Y. Gadolinium Retention After Contrast-Enhanced MRI. JAMA 2018, 320, 1853–1854. [Google Scholar] [CrossRef]
- Fatima, A.; Ahmad, M.W.; Al Saidi, A.K.A.; Choudhury, A.; Chang, Y.; Lee, G.H. Recent Advances in Gadolinium Based Contrast Agents for Bioimaging Applications. Nanomaterials 2021, 11, 2449. [Google Scholar] [CrossRef]
- Wang, F.; Peng, E.; Zheng, B.; Li, S.F.Y.; Xue, J.M. Synthesis of Water-Dispersible Gd2O3/GO Nanocomposites with Enhanced MRI T1 Relaxivity. J. Phys. Chem. C 2015, 119, 23735–23742. [Google Scholar] [CrossRef]
- Pellico, J.; Ellis, C.M.; Davis, J.J. Nanoparticle-Based Paramagnetic Contrast Agents for Magnetic Resonance Imaging. Contrast Media Mol. Imaging 2019, 2019, 1845637. [Google Scholar] [CrossRef]
- Li, Z.; Guo, J.; Zhang, M.; Li, G.; Hao, L. Gadolinium-Coated Mesoporous Silica Nanoparticle for Magnetic Resonance Imaging. Front. Chem. 2022, 10, 837032. [Google Scholar] [CrossRef] [PubMed]
- Miao, X.; Ho, S.L.; Tegafaw, T.; Cha, H.; Chang, Y.; Oh, I.T.; Yaseen, A.M.; Marasini, S.; Ghazanfari, A.; Yue, H.; et al. Stable and non-toxic ultrasmall gadolinium oxide nanoparticle colloids (coating material = polyacrylic acid) as high-performance T1 magnetic resonance imaging contrast agents. RSC Adv. 2018, 8, 3189–3197. [Google Scholar] [CrossRef]
- Davies, J.; Siebenhandl-Wolff, P.; Tranquart, F.; Jones, P.; Evans, P. Gadolinium: Pharmacokinetics and toxicity in humans and laboratory animals following contrast agent administration. Arch. Toxicol. 2022, 96, 403–429. [Google Scholar] [CrossRef]
- Gadavist (Gadobutrol) Injection, for Intravenous Use. Labelling Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/201277s000lbl.pdf (accessed on 28 November 2024).
- Akhtar, M.J.; Ahamed, M.; Alhadlaq, H.; Alrokayan, S. Toxicity Mechanism of Gadolinium Oxide Nanoparticles and Gadolinium Ions in Human Breast Cancer Cells. Curr. Drug Metab. 2019, 20, 907–917. [Google Scholar] [CrossRef] [PubMed]
- Sotenskii, R.V.; Rozhkov, V.A.; Shashurin, D.A.; Suslova, E.V.; Chelkov, G.A. Novel algorithm for qualitative and quantitative material analysis by the K-edges for photon-counting computed tomography. JINST 2024, 19, P04009. [Google Scholar] [CrossRef]
- Bateman, C.J.; Knight, D.; Brandwacht, B.; Mc Mahon, J.; Healy, J.; Panta, R.; Aamir, R.; Rajendran, K.; Moghiseh, M.; Ramyar, M.; et al. MARS-MD: Rejection based image domain material decomposition. JINST 2018, 13, P05020. [Google Scholar] [CrossRef]
- Suslova, E.; Shashurin, D.; Zoirova, Z.; Shumyantsev, A.; Medvedev, O.; Chelkov, G. Gd2O3-based contrasting agents for photon-counting computed tomography: Effect of structure, composition, and particle size. Mater. Chem. Phys. 2024, 313, 128733. [Google Scholar] [CrossRef]
- Mikhnevich, E.A.; Safronov, A.P.; Beketov, I.V.; Medvedev, A.I. Carbon coated Nickel Nanoparticles in Polyacrylamide Ferrogels: Interaction with Polymeric Network and Impact on Swelling. Chim. Techno Acta 2020, 7, 116. [Google Scholar] [CrossRef]
- Olăreț, E.; Voicu, Ș.I.; Oprea, R.; Miculescu, F.; Butac, L.; Stancu, I.C.; Serafim, A. Nanostructured Polyacrylamide Hydrogels with Improved Mechanical Properties and Antimicrobial Behavior. Polymers 2022, 14, 2320. [Google Scholar] [CrossRef] [PubMed]
- Porwal, S.; Diwedi, A.; Kamal, M. 13C NMR and Raman Studies of Fullerene-Based Poly (Acrylamides). Int. J. Org. Chem. 2012, 2, 377–386. [Google Scholar] [CrossRef]
- Wu, W.; Wu, X.; He, M.; Yuan, X.; Lai, J.; Sun, H. A novel carbon dot/polyacrylamide composite hydrogel film for reversible detection of the antibacterial drug ornidazole. RSC Adv. 2021, 11, 22993. [Google Scholar] [CrossRef]
- Abo-Zahra, S.F.; Abdelmonem, I.M.; Siyam, T.E.; El-Masry, A.M.; Abdel-Aziz, H.M. Radiation synthesis of polyacrylamide/functionalized multiwalled carbon nanotubes composites for the adsorption of Cu(II) metal ions from aqueous solution. Polym. Bull. 2022, 79, 4395. [Google Scholar] [CrossRef]
- El-Sweify, F.H.; Abdelmonem, I.M.; El-Masry, A.M.; Siyam, T.E.; Abo-Zahra, S.F. Adsorption Behavior of Co(II) and Eu(III) on Polyacrylamide/Multiwalled Carbon Nanotube Composites. Radiochemistry 2019, 61, 323. [Google Scholar] [CrossRef]
- Cheng, M.-M.; Huang, L.-J.; Wang, Y.-X.; Zhao, Y.-C.; Tang, J.-G.; Wang, Y.; Zhang, Y.; Hedayati, M.; Kipper, M.J.; Wickramasinghe, S.R. Synthesis of graphene oxide/polyacrylamide composite membranes for organic dyes/water separation in water purification. J. Mater. Sci. 2019, 54, 252. [Google Scholar] [CrossRef]
- Yu, S.; Li, N.; Higgins, D.; Li, D.; Li, Q.; Xu, H.; Spendelow, J.S.; Wu, G. Self-Assembled Reduced Graphene Oxide/Polyacrylamide Conductive Composite Films. ACS Appl. Mater. Interfaces 2014, 6, 19783. [Google Scholar] [CrossRef] [PubMed]
- Gayathri, K.; Palanisamy, N. Methylene blue adsorption onto an eco-friendly modified polyacrylamide/graphite composites: Investigation of kinetics, equilibrium, and thermodynamic studies. Sep. Sci. Technol. 2020, 55, 266. [Google Scholar] [CrossRef]
- Xie, S.; Chen, Y.; Guo, Z.; Luo, Y.; Tan, H.; Xu, L.; Xu, J.; Zheng, J. Agar/carbon dot crosslinked polyacrylamide double-network hydrogels with robustness, self-healing, and stimulus-response fluorescence for smart anti-counterfeiting. Mater. Chem. Front. 2021, 5, 5418–5428. [Google Scholar] [CrossRef]
- Suslova, E.V.; Ulyanov, A.N.; Kozlov, A.P.; Shashurin, D.A.; Savilov, S.V.; Chelkov, G.A. Composition and Electronic Structure of La2O3/CNFs@C Core-Shell Nanoparticles with Variable Oxygen Content. Nanomaterials 2023, 13, 2945. [Google Scholar] [CrossRef]
- Kozlov, A.; Suslova, E.; Maksimov, S.; Isaikina, O.; Maslakov, K.; Shashurin, D.; Savilov, S.; Shelkov, G. The Preparation of Nanocomposite with a Core–Shell Structure Made of Carbon Matrices and Lanthanum Nanoparticles. Phys. Part. Nucl. Lett. 2023, 20, 1254. [Google Scholar] [CrossRef]
- Suslova, E.V.; Kozlov, A.P.; Shashurin, D.A.; Maximov, S.V.; Maslakov, K.I.; Savilov, S.V. La2O3-carbon composite with core–shell structure and features of its gas-phase oxidation. Mendeleev Commun. 2024, 34, 90. [Google Scholar] [CrossRef]
- Sivtsov, E.V.; Kalinin, A.V.; Gostev, A.I.; Smirnov, A.V.; Agibalova, L.V.; Shumilov, F.A. In Situ Preparation of Polymer Nanocomposites Based on Sols of Surface-Modified Detonation Nanodiamonds by Classical and Controlled Radical Polymerization. Polym. Sci. Ser. B 2020, 62, 734. [Google Scholar] [CrossRef]
- Hamon, M.A.; Chen, J.; Hu, H.; Chen, Y.; Itkis, M.E.; Rao, A.M.; Eklund, P.C.; Haddon, R.C. Dissolution of Single-Walled Carbon Nanotubes. Adv. Mater. 1999, 11, 834. [Google Scholar] [CrossRef]
- Sudesh; Kumar, N.; Das, S.; Bernhard, C.; Varma, G.D. Effect of graphene oxide doping on superconducting properties of bulk MgB2. Supercond. Sci. Technol. 2013, 26, 095008. [Google Scholar] [CrossRef]
- Brusko, V.; Khannanov, A.; Rakhmatullin, A.; Dimiev, A.M. Unraveling the infrared spectrum of graphene oxide. Carbon 2024, 229, 119507. [Google Scholar] [CrossRef]
- Savilov, S.V.; Ivanov, A.S.; Chernyak, S.A.; Kirikova, M.N.; Ni, J.; Lunin, V.V. Features of the oxidation of multiwalled carbon nanotubes. Russ. J. Phys. Chem. 2015, 89, 1989. [Google Scholar] [CrossRef]
- Il’ves, V.G.; Sokovnin, S.Y.; Uporov, S.A.; Zuev, M.G. Properties of the amorphous-nanocrystalline Gd2O3 powder prepared by pulsed electron beam evaporation. Phys. Solid State 2013, 55, 1262. [Google Scholar] [CrossRef]
- Gayathri, T.; Kumar, R.A.; Dhilipkumaran, S.; Jayasankar, C.K.; Saravanan, P.; Devanand, B. Microwave-assisted combustion synthesis of silica-coated Eu:Gd2O3 nanoparticles for MRI and optical imaging of cancer cells. J. Mater. Sci. Mater. Electron. 2019, 30, 6860. [Google Scholar] [CrossRef]
- Li, J.P.H.; Zhou, X.; Pang, Y.; Zhu, L.; Vovk, E.I.; Cong, L.; van Bavel, A.P.; Li, S.; Yang, Y. Understanding of Binding Energy Calibration in XPS of Lanthanum Oxide by In Situ Treatment. Phys. Chem. Chem. Phys. 2019, 21, 22351–22358. [Google Scholar] [CrossRef]
- Uranta, K.G.; Rezaei-Gomari, S.; Russell, P.; Hamad, F. Studying the Effectiveness of Polyacrylamide (PAM) Application in Hydrocarbon Reservoirs at Different Operational Conditions. Energies 2018, 11, 2201. [Google Scholar] [CrossRef]
- Gaabour, L.H. Spectroscopic and thermal analysis of polyacrylamide/chitosan (PAM/CS) blend loaded by gold nanoparticles. Res. Phys. 2017, 7, 2153. [Google Scholar] [CrossRef]
- Xu, S.; Wang, Y.; Hu, J.; Liu, Z. Atomic Understanding of the Swelling and Phase Transition of Polyacrylamide Hydrogel. Int. J. Appl. Mech. 2016, 8, 1640002. [Google Scholar] [CrossRef]
- Dehkordi, N.K.; Shojaei, S.; Asefnejad, A.; Hassani, K.; Benisi, S.Z. The effect of three types of cross-linked hydrogels and volume fraction of polyacrylamide on the swelling and thermal behavior using molecular dynamics simulation. J. Mater. Res. Technol. 2023, 24, 4627–4638. [Google Scholar] [CrossRef]
- Sawall, S.; Amato, C.; Klein, L.; Wehrse, E.; Maier, J.; Kachelrieß, M. Toward molecular imaging using spectral photon-counting computed tomography? Curr. Opin. Chem. Biol. 2021, 63, 163–170. [Google Scholar] [CrossRef]
- Hemmer, E.; Yamano, T.; Kishimoto, H.; Venkatachalam, N.; Hyodo, H.; Soga, K. Cytotoxic aspects of gadolinium oxide nanostructures for up-conversion and NIR bioimaging. Acta Biomater. 2013, 9, 4734–4743. [Google Scholar] [CrossRef] [PubMed]
- Savilov, S.V.; Strokova, N.E.; Ivanov, A.S.; Arkhipova, E.A.; Desyatov, A.V.; Hui, X.; Aldoshin, S.M.; Lunin, V.V. Nanoscale Carbon Materials from Hydrocarbons Pyrolysis: Structure, Chemical Behavior, Utilisation for Non-Aqueous Supercapacitors. Mater. Res. Bull. 2015, 69, 13. [Google Scholar] [CrossRef]
- Shabadrov, P.A.; Safronov, A.P. Superswelling of Hydrogels Based on the Copolymer of Acrylamide and Methacrylic Acid. Polym. Sci. Ser. A 2018, 60, 628. [Google Scholar] [CrossRef]
- Neamtu, I.; Chiriac, A.P.; Nita, L.E. Characterization of poly(acrylamide) as temperature-sensitive hydrogel. J. Optoelectron. Adv. Mater. 2006, 8, 1939. [Google Scholar]
- Shen, J.; Yan, B.; Li, T.; Long, Y.; Li, N.; Ye, M. Study on graphene-oxide-based polyacrylamide composite hydrogels. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1476. [Google Scholar] [CrossRef]
- Thakur, S.; Arotiba, O. Synthesis, Characterization and Adsorption Studies of an Acrylic Acid-Grafted Sodium Alginate-Based TiO2 Hydrogel Nanocomposite. Adsorpt. Sci. Technol. 2018, 36, 458. [Google Scholar] [CrossRef]
- Marsh, J.F.; Jorgensen, S.M.; Rundle, D.S.; Vercnocke, A.J.; Leng, S.; Butler, P.H.; McCollough, C.H.; Ritman, E.L. Evaluation of a photon counting Medipix3RX cadmium zinc telluride spectral X-Ray detector. J. Med. Imaging 2018, 5, 043503. [Google Scholar] [CrossRef]
Shell | CT Number (HU) | Filling | CT Number (HU) |
---|---|---|---|
Silicone | 649 ± 43 | Gelatin | 75 ± 5 |
Gd2O3-doped silicone | 1041 ± 69 | Gelatin capsules | 356 ± 28 |
Yb2O3-doped silicone | 1056 ± 71 | La2O3-doped gelatin | 2211 ± 119 |
Shell | CT Number (HU) | Filling | CT Number (HU) |
---|---|---|---|
Silicone | 1025 ± 84.6 | PAM | 1104 ± 985 |
(La2O3/GNFs)@C-COOCH2C2H3/PAM | 264 ± 25 | ||
Gd2O3/GNFs)@C-COOCH2C2H3/PAM | 171 ± 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suslova, E.V.; Shashurin, D.A.; Maslakov, K.I.; Kupreenko, S.Y.; Luneva, T.O.; Medvedev, O.S.; Chelkov, G.A. Composite Contrast Enhancement of Hydrogel-Based Implants for Photon-Counting Computed Tomography Studies. Gels 2024, 10, 807. https://doi.org/10.3390/gels10120807
Suslova EV, Shashurin DA, Maslakov KI, Kupreenko SY, Luneva TO, Medvedev OS, Chelkov GA. Composite Contrast Enhancement of Hydrogel-Based Implants for Photon-Counting Computed Tomography Studies. Gels. 2024; 10(12):807. https://doi.org/10.3390/gels10120807
Chicago/Turabian StyleSuslova, Evgeniya V., Denis A. Shashurin, Konstantin I. Maslakov, Stepan Yu. Kupreenko, Tatyana O. Luneva, Oleg S. Medvedev, and Georgy A. Chelkov. 2024. "Composite Contrast Enhancement of Hydrogel-Based Implants for Photon-Counting Computed Tomography Studies" Gels 10, no. 12: 807. https://doi.org/10.3390/gels10120807
APA StyleSuslova, E. V., Shashurin, D. A., Maslakov, K. I., Kupreenko, S. Y., Luneva, T. O., Medvedev, O. S., & Chelkov, G. A. (2024). Composite Contrast Enhancement of Hydrogel-Based Implants for Photon-Counting Computed Tomography Studies. Gels, 10(12), 807. https://doi.org/10.3390/gels10120807