Next Issue
Volume 14, July-1
Previous Issue
Volume 14, June-1
 
 

Plants, Volume 14, Issue 12 (June-2 2025) – 155 articles

Cover Story (view full-size image): Pummelo (Citrus maxima) is a citrus ancestral species, that by being crossed with wild mandarins (C. reticulata) has given rise to several major citrus crops, such as sweet orange (C. sinensis) and grapefruit (C. paradisi). Pummelo can be distinguished from other citrus species by two reproductive traits: allogamous reproduction and the absence of asexual multiplication. Fifty-eight pummelo or grapefruit accessions were maintained in the French citrus germplasm in Corsica. A prerequisite genetic study of SSR marker diversity made it possible to determine the taxonomic position of these accessions and thus guarantee the true chemical diversity of the composition of pummelo essential oils from leaves and zest. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
30 pages, 1989 KiB  
Review
Plant Microbiomes Alleviate Abiotic Stress-Associated Damage in Crops and Enhance Climate-Resilient Agriculture
by Fazal Ullah, Sajid Ali, Muhammad Siraj, Muhammad Saeed Akhtar and Wajid Zaman
Plants 2025, 14(12), 1890; https://doi.org/10.3390/plants14121890 - 19 Jun 2025
Viewed by 271
Abstract
Plant microbiomes, composed of a diverse array of microorganisms such as bacteria, fungi, archaea, and microalgae, are critical to plant health and resilience, playing key roles in nutrient cycling, stress mitigation, and disease resistance. Climate change is expected to intensify various abiotic stressors, [...] Read more.
Plant microbiomes, composed of a diverse array of microorganisms such as bacteria, fungi, archaea, and microalgae, are critical to plant health and resilience, playing key roles in nutrient cycling, stress mitigation, and disease resistance. Climate change is expected to intensify various abiotic stressors, such as drought, salinity, temperature extremes, nutrient deficiencies, and heavy metal toxicity. Plant-associated microbiomes have emerged as a promising natural solution to help mitigate these stresses and enhance agricultural resilience. However, translating laboratory findings into real-world agricultural benefits remains a significant challenge due to the complexity of plant–microbe interactions under field conditions. We explore the roles of plant microbiomes in combating abiotic stress and discuss advances in microbiome engineering strategies, including synthetic biology, microbial consortia design, metagenomics, and CRISPR-Cas, with a focus on enhancing their practical application in agriculture. Integrating microbiome-based solutions into climate-smart agricultural practices may contribute to long-term sustainability. Finally, we underscore the importance of interdisciplinary collaboration in overcoming existing challenges. Microbiome-based solutions hold promise for improving global food security and promoting sustainable agricultural practices in the face of climate change. Full article
Show Figures

Figure 1

16 pages, 2571 KiB  
Article
Plasticity of Root Architecture and ROS–Auxin Regulation in Paeonia ostii Under Root-Zone Restriction
by Qiang Xing, Ruotong Zhao, Peng Zhou, Jun Qin, Heming Liu, Shuiyan Yu, Bin Zhao and Yonghong Hu
Plants 2025, 14(12), 1889; https://doi.org/10.3390/plants14121889 - 19 Jun 2025
Viewed by 170
Abstract
Root zone restriction (RZR) technology optimizes plant growth and quality. However, the fleshy root system of Paeonia ostii exhibits sensitivity to spatial constraints, and research on the plasticity of its root architecture and adaptation mechanisms remains inadequate. This study provides a functional analysis [...] Read more.
Root zone restriction (RZR) technology optimizes plant growth and quality. However, the fleshy root system of Paeonia ostii exhibits sensitivity to spatial constraints, and research on the plasticity of its root architecture and adaptation mechanisms remains inadequate. This study provides a functional analysis of biomass allocation and root architectural responses to the root-zone restriction (RZR) in P. ostii, comparing three container volumes (8.5, 17, and 34 L). While the total biomass increased with root zone volume (e.g., shoot biomass rose from 9.30 g to 59.94 g), RZR induced a 44.8% increase in root-to-shoot ratio, indicating carbon reallocation to enhance belowground resource acquisition. The principal component analysis identified root biomass, volume, and surface area as key plasticity drivers. Optimal root efficiency occurred at 26.09–28.23 L, where root length and tip/fork numbers peaked. Mechanistically, RZR elevated superoxide dismutase (SOD) activity by 49.74% but reduced catalase (CAT) by 74.24%, disrupting H2O2 homeostasis. Concurrently, auxin transporter genes (PIN1, AUX1) were upregulated, promoting root elongation and lateral branching through auxin redistribution. We hypothesize that ROS–auxin crosstalk mediates architectural reconfiguration to mitigate spatial stress, with thickened roots enhancing structural stability in restricted environments. The study underscores the need to optimize root zone volume in woody species cultivation, providing thresholds (e.g., >28 L for mature plants) to balance biomass yield and physiological costs in horticultural management. Full article
(This article belongs to the Special Issue Plant Stress Physiology and Molecular Biology—2nd Edition)
Show Figures

Figure 1

12 pages, 1493 KiB  
Article
Exploring the Genetic Variability of Gmelina arborea Roxb. in Mexico with Molecular Markers to Establish an Efficient Improvement Program
by Marynor E. Ortega-Ramírez, Anuar Magaña-Álvarez, Daisy Pérez-Brito, Alberto Cortés-Velázquez, Ángel Nexticapan-Garcéz, Raúl Tapia-Tussell and Rodolfo Martín-Mex
Plants 2025, 14(12), 1888; https://doi.org/10.3390/plants14121888 - 19 Jun 2025
Viewed by 181
Abstract
Melina (Gmelina arborea Roxb.) is a tree native to Asia, whose timber is not utilized in that region for a variety of reasons. However, the tree’s fast growth and extensive range of applications have increased its acceptance in other world’regions. G. arborea [...] Read more.
Melina (Gmelina arborea Roxb.) is a tree native to Asia, whose timber is not utilized in that region for a variety of reasons. However, the tree’s fast growth and extensive range of applications have increased its acceptance in other world’regions. G. arborea was introduced to Mexico in 1971, and it is currently the fifth most utilized forest species in commercial forest plantations (CFPs). However, its genetic diversity has not been evaluated in Mexico. The objective of this research was to investigate the genetic variability of Melina in Mexico using molecular markers. This investigation was undertaken to acquire valuable insights for the implementation of effective improvement strategies. A total of 85 Melina samples were collected from various locations in southeastern Mexico between 2017 and 2022. Genetic fingerprints were obtained using ten simple primer amplification reactions (SPARs): five Directed Amplification of Minisatellite DNA regions (DAMD), and five Inter-Simple Sequence Repeats (ISSRs). The polymorphic information content (PIC) was 0.940 and 0.950 for the DAMD and ISSR, respectively, and the similarity coefficients ranged from 0.12 to 0.88, indicating a high degree of polymorphism in the species under investigation. This is the first attempt to ascertain the genetic variability of Gmelina arborea in Mexico. Full article
(This article belongs to the Special Issue Molecular Marker-Assisted Technologies for Crop Breeding)
Show Figures

Figure 1

21 pages, 2428 KiB  
Article
Optimizing Valerianella locusta L. Growth and Metabolism by Combining Red and Blue LED Light: Insights into Plant Physiology, Biochemistry, and Nutraceutical Value
by Sonia Monterisi, Carmen Rebollo Vicioso, Monica Yorlady Alzate Zuluaga, Sofia Melchior, Biancamaria Senizza, Gokhan Zengin, Roberto Fattorini, Umberto Lanza, Talita de Oliveira Caretta, Lara Manzocco, Luigi Lucini, Stefano Cesco and Youry Pii
Plants 2025, 14(12), 1887; https://doi.org/10.3390/plants14121887 - 19 Jun 2025
Viewed by 261
Abstract
Environmental and health concerns have increased the demand for ready-to-eat vegetables rich in bioactive compounds. This study explores the impact of red and blue (R:B) LED light on the metabolic responses of lamb’s lettuce (Valerianella locusta L.), focusing on sugars, organic acids, [...] Read more.
Environmental and health concerns have increased the demand for ready-to-eat vegetables rich in bioactive compounds. This study explores the impact of red and blue (R:B) LED light on the metabolic responses of lamb’s lettuce (Valerianella locusta L.), focusing on sugars, organic acids, total phenolics, antioxidant activity, and enzyme inhibition. Post-harvest analyses were also conducted to assess shelf-life and microbiological characteristics of the product. The R:B LED treatment significantly enhanced plant growth, with a 133% and 68% increase in shoot fresh and dry weights, respectively, and a 21% increase in leaf area compared to controls (white LED light). Biochemical profiling revealed substantial increases in fructose (255%), sucrose (169%), citric acid (350%), and malic acid (868%) under R:B LED light. Additionally, phenolic content increased by 30%, alongside a notable modulation of 258 secondary metabolites, including flavonoid glycosides, alkaloids, and terpenoids. These biochemical changes contributed to a marked improvement in antioxidant capacity (12–45% across multiple assays) and a 300% increase in α-glucosidase inhibition, suggesting potential antidiabetic properties. Furthermore, post-harvest analysis revealed comparable shelf-life and microbiological safety between R:B and white LED-grown samples. The research highlights the potential of LED light to enhance plant biochemical responses and improve crop quality without affecting post-harvest quality, paving the way for sustainable agricultural innovations. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

21 pages, 3112 KiB  
Article
Effects of Temperature Fluctuations on Cabernet Sauvignon Branches and Wine Grape Appellation Yields: An Analysis Based on the Standardized Temperature Adaptation Index
by Yunlong Ma, Jinyue Yang, Ping Wang, Guoli Cheng and Qinming Sun
Plants 2025, 14(12), 1886; https://doi.org/10.3390/plants14121886 - 19 Jun 2025
Viewed by 203
Abstract
Climate fluctuations due to global warming significantly impact the wine grape industry. This study introduces the Standardized Temperature Adaptation Index (STAI), which is specifically designed to isolate temperature trends and quantify the effects of temperature fluctuations on low-temperature stress affecting Cabernet Sauvignon branches [...] Read more.
Climate fluctuations due to global warming significantly impact the wine grape industry. This study introduces the Standardized Temperature Adaptation Index (STAI), which is specifically designed to isolate temperature trends and quantify the effects of temperature fluctuations on low-temperature stress affecting Cabernet Sauvignon branches and yields in the wine grape production regions of Xinjiang. A low-temperature fluctuation experiment was conducted on Cabernet Sauvignon branches to simulate the temperature conditions and fluctuations experienced by wine grapes during the overwintering period. The treated branches then underwent recovery growth experiments, during which key physiological stress parameters were measured to assess the impact of temperature fluctuations on grape growth and development during overwintering. The results indicated that under identical low-temperature conditions, increased temperature fluctuations led to a 62% reduction in the budding rate of Cabernet Sauvignon branches, a 6% increase in relative conductivity, and elevated levels of proline, malondialdehyde, and soluble proteins. Additionally, the activities of superoxide dismutase, peroxidase, and catalase initially rose and then declined, indicating that temperature fluctuations intensified low-temperature stress. Data analysis from four wine grape production regions in Xinjiang between 2000 and 2020 revealed that temperature fluctuations corresponded with the peaks and troughs of yield fitting curves, demonstrating a negative correlation. As temperature fluctuations increased, yields decreased. The STAI introduced in this study is a straightforward, standardized measure that accurately reflects the effects of temperature fluctuations on grapes and is a valuable tool for future research on temperature variability and its impacts. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

19 pages, 2879 KiB  
Article
Metabolomic Insights into Sexual Multi-Morphism of Sinomenine Accumulation in Sinomenium acutum
by Yanxian Luo, Wen Xu, Yanling Fan, Xinyu Ma, Qian Deng, Meng Li and Wei Sun
Plants 2025, 14(12), 1885; https://doi.org/10.3390/plants14121885 - 19 Jun 2025
Viewed by 226
Abstract
Sinomenium acutum is the main raw material for sinomenine. Empirical evidence indicates a marked disparity in sinomenine content among S. acutum plants with different genders, resulting in varying medicinal potential of the processing products. However, the mechanism underlying gender-determined differences in sinomenine accumulation [...] Read more.
Sinomenium acutum is the main raw material for sinomenine. Empirical evidence indicates a marked disparity in sinomenine content among S. acutum plants with different genders, resulting in varying medicinal potential of the processing products. However, the mechanism underlying gender-determined differences in sinomenine accumulation is still elusive. In this study, untargeted metabolomics was performed among female, male, and undifferentiated S. acutum plants. In total, 1213 metabolites were identified, and most of them vary in the roots but not in the leaves among the different genders. Integrated correlation analysis on the DAMs (differentially accumulated metabolites) enriched in the isoquinoline alkaloid biosynthesis pathway suggests coclaurine as an intermediate determining gender-dependent sinomenine variation. Furthermore, hormonal profiling revealed 34 endogenous phytohormones exhibiting significant gender-based discrepancy in the roots. Among these, ABA (abscisic acid) and 5-DS (5-deoxystrigol) show significant positive correlation with sinomenine content. Then, exogenous ABA with gradient concentration was applied on S. acutum plants, and the sinomenine content in the roots increased from 31% to 166% under treatment. Our findings demonstrate that coclaurine might serve as a pivotal intermediate during sinomenine biosynthesis in S. acutum. Meanwhile, it is speculated that ABA is a key factor regulating different sinomenine accumulation, which provide a potential method to improve the yield of sinomenine. Full article
(This article belongs to the Special Issue Applications of Omics and Bioinformatics in Medicinal Plants)
Show Figures

Figure 1

25 pages, 10409 KiB  
Article
Comprehensive Genome-Wide Characterization of L-Type Lectin Receptor-like Kinase (L-LecRLK) Genes in Wheat (Triticum aestivum L.) and Their Response to Abiotic Stress
by Wan Zhao, Fuyan Zhang, Jiahuan Wang, Shuai Fang, Zhongjie Cheng, Xuhui Ma, Jialin Fan, Zhaoshi Xu and Xiaojie Chen
Plants 2025, 14(12), 1884; https://doi.org/10.3390/plants14121884 - 19 Jun 2025
Viewed by 259
Abstract
L-type lectin receptor-like kinases (L-LecRLKs) play key roles in plant responses to environmental stresses and the regulation of growth and development. However, comprehensive studies of the L-LecRLK gene family in wheat (Triticum aestivum L.) are still limited. In this study, 248 L-LecRLK [...] Read more.
L-type lectin receptor-like kinases (L-LecRLKs) play key roles in plant responses to environmental stresses and the regulation of growth and development. However, comprehensive studies of the L-LecRLK gene family in wheat (Triticum aestivum L.) are still limited. In this study, 248 L-LecRLK candidate genes were identified in wheat, which is the largest number reported in any species to date. Phylogenetic analysis grouped these genes into four clades (I–IV), with Group IV exhibiting significant monocot-specific expansion. Gene duplication analysis revealed that both whole-genome/segmental and tandem duplications contributed to family expansion, while Ka/Ks ratio analysis suggested that the genes have undergone strong purifying selection. The TaL-LecRLK genes displayed diverse exon-intron structures and conserved motif compositions. Promoter analysis revealed a cis-element associated with hormone signaling and abiotic stress responses. Transcriptome profiling showed that TaL-LecRLKs exhibit tissue- and stage-specific expression patterns. RNA-Seq data revealed that, under drought and heat stress conditions, TaL-LecRLK35-3D and TaL-LecRLK67-6B exhibited synergistic expression patterns, whereas TaL-LecRLK67-6A demonstrated antagonistic expression. A qRT-PCR further demonstrated that six TaL-LecRLKs may function through ABA-independent regulatory mechanisms. These findings provide valuable gene candidates for stress-resistant wheat breeding and shed light on the evolution and functional diversity of L-LecRLKs in plants. Full article
Show Figures

Figure 1

16 pages, 1983 KiB  
Article
Genome-Wide Identification of Wheat Gene Resources Conferring Resistance to Stripe Rust
by Qiaoyun Ma, Dong Yan, Binshuang Pang, Jianfang Bai, Weibing Yang, Jiangang Gao, Xianchao Chen, Qiling Hou, Honghong Zhang, Li Tian, Yahui Li, Jizeng Jia, Lei Zhang, Zhaobo Chen, Lifeng Gao and Xiangzheng Liao
Plants 2025, 14(12), 1883; https://doi.org/10.3390/plants14121883 - 19 Jun 2025
Viewed by 200
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), threatens global wheat production. Breeding resistant varieties is a key to disease control. In this study, 198 modern wheat varieties were phenotyped with the prevalent Pst races CYR33 and CYR34 at [...] Read more.
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), threatens global wheat production. Breeding resistant varieties is a key to disease control. In this study, 198 modern wheat varieties were phenotyped with the prevalent Pst races CYR33 and CYR34 at the seedling stage and with mixed Pst races at the adult-plant stage. Seven stable resistance varieties with infection type (IT) ≤ 2 and disease severity (DS) ≤ 20% were found, including five Chinese accessions (Zhengpinmai8, Zhengmai1860, Zhoumai36, Lantian36, and Chuanmai32), one USA accession (GA081628-13E16), and one Pakistani accession (Pa12). The genotyping applied a 55K wheat single-nucleotide polymorphism (SNP) array. A genome-wide association study (GWAS) identified 14 QTL using a significance threshold of p ≤ 0.001, which distributed on chromosomes 1B (4), 1D (2), 2B (4), 6B, 6D, 7B, and 7D (4 for CYR33, 7 for CYR34, 3 for mixed Pst races), explaining 6.04% to 18.32% of the phenotypic variance. Nine of these QTL were potentially novel, as they did not overlap with the previously reported Yr or QTL loci within a ±5.0 Mb interval (consistent with genome-wide LD decay). The haplotypes and resistance effects were evaluated to identify the favorable haplotype for each QTL. Candidate genes within the QTL regions were inferred based on their transcription levels following the stripe rust inoculation. These resistant varieties, QTL haplotypes, and favorable alleles will aid in wheat breeding for stripe rust resistance. Full article
(This article belongs to the Special Issue Improvement of Agronomic Traits and Nutritional Quality of Wheat)
Show Figures

Figure 1

15 pages, 2553 KiB  
Article
Identification and Expression Profiles of Xyloglucan Endotransglycosylase/Hydrolase Family in Response to Drought Stress in Larix kaempferi
by Yan Jiang, Ruodong Qin, Yuqian Wang, Cuishuang Liu and Ying Gai
Plants 2025, 14(12), 1882; https://doi.org/10.3390/plants14121882 - 19 Jun 2025
Viewed by 213
Abstract
Xyloglucan endotransglucosylase/hydrolase (XTH) is a crucial enzyme in plant cell wall remodeling, which contributes to plant growth, development, and stress response. Based on the transcriptome data of Larix kaempferi, this study identified and analyzed 16 XTH genes. Sequence alignment and phylogenetic analysis [...] Read more.
Xyloglucan endotransglucosylase/hydrolase (XTH) is a crucial enzyme in plant cell wall remodeling, which contributes to plant growth, development, and stress response. Based on the transcriptome data of Larix kaempferi, this study identified and analyzed 16 XTH genes. Sequence alignment and phylogenetic analysis indicated that the LkXTH gene family can be divided into three subfamilies, namely the Early Diverging Group, Group I/II, and Group III, all of which share highly conserved motifs and structural features. Expression profiling demonstrated that LkXTH genes are actively expressed in the roots, stems, and leaves of L. kaempferi. Under drought stress, the expression of LkXTH1, LkXTH2, LkXTH3, LkXTH4, LkXTH6, LkXTH14, LkXTH15, LkXTH17, and LkXTH18 increased rapidly in roots. Meanwhile, the expression levels of LkXTH5, LkXTH7, LkXTH8, and LkXTH13 exhibited significant upregulation in leaves. Notably, LkXTH11 and LkXTH16 significantly increased in both roots and leaves, with a more pronounced increase in leaves, but LkXTH10 displayed significant upregulation in the stems. Furthermore, the heterologous expression of LkXTH1 and LkXTH17 in yeast significantly enhances drought tolerance. These findings indicate that individual LkXTH genes exhibit distinct organ-specific responses to drought stress, thereby advancing our understanding of their functional roles in larch drought response. Full article
Show Figures

Figure 1

20 pages, 2415 KiB  
Article
Cyprus St. John’s Wort, Hypericum repens L.: Major Constituents, Antioxidant, Antimicrobial, and Anticholinesterase Activities
by Despina Charalambous, Eleni Kakouri, Antonis Ververis, Irene Zorba, Dionisis Chatzidakis, Marios Andreou, Kyproula Christodoulou, George A. Karikas and Petros A. Tarantilis
Plants 2025, 14(12), 1881; https://doi.org/10.3390/plants14121881 - 19 Jun 2025
Viewed by 568
Abstract
Chemical analysis of the hydroethanolic Hypericum repens L. extracts was performed using the LC/Q-TοF/HRMS technique. The majority of compounds identified belonged to phenolics, particularly flavonoids. The extract was also studied for its possible bioactivities, demonstrating high antioxidant properties compared to the control (IC [...] Read more.
Chemical analysis of the hydroethanolic Hypericum repens L. extracts was performed using the LC/Q-TοF/HRMS technique. The majority of compounds identified belonged to phenolics, particularly flavonoids. The extract was also studied for its possible bioactivities, demonstrating high antioxidant properties compared to the control (IC50 values ranging from 4.6 to 9.42 μg/mL). Significant antibacterial activity was also detected against Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, and Salmonella enteritidis, with MIC values from 125 to 625 μg/mL. S. aureus presented the highest susceptibility among all bacteria tested. Additionally, the extract showed very mild anticholinesterase activity in the AChE and BChE inhibition assays. These findings provide the first insights into the phytochemical composition, as well as the antioxidant, antimicrobial, and anticholinesterase activities of H. repens extract, suggesting that the endemic Cyprus H. repens is a valuable natural rich source of bioactive compounds with a potentially broad range of bioactivities. Full article
Show Figures

Figure 1

20 pages, 4826 KiB  
Article
The Antibacterial and Anti-Inflammatory Potential of Cinnamomum camphora chvar. Borneol Essential Oil In Vitro
by Shanshan Xiao, Hang Yu, Yahui Guo, Yuliang Cheng and Weirong Yao
Plants 2025, 14(12), 1880; https://doi.org/10.3390/plants14121880 - 19 Jun 2025
Viewed by 294
Abstract
Cinnamomum camphora chvar. Borneol essential oil (BEO, 16.4% borneol) is a by-product obtained during the steam distillation process used to produce natural crystalline borneol (NCB, 98.4% purity). This study aimed to compare the antibacterial activity of BEO and NCB against Staphylococcus epidermidis, [...] Read more.
Cinnamomum camphora chvar. Borneol essential oil (BEO, 16.4% borneol) is a by-product obtained during the steam distillation process used to produce natural crystalline borneol (NCB, 98.4% purity). This study aimed to compare the antibacterial activity of BEO and NCB against Staphylococcus epidermidis, and to evaluate the anti-inflammatory effect of BEO in vitro. Minimum inhibitory concentrations (MICs), determined by broth microdilution, were identical for both BEO and NCB (0.5 mg/mL). Despite this, BEO exhibited stronger antibacterial activity, suggesting synergistic enhancement by other components. Mechanistic studies revealed that BEO disrupted the bacterial cell wall, causing leakage of nucleic acids and proteins, and ultimately bacterial death. In LPS-induced RAW 264.7 macrophages, BEO dose-dependently reduced the production of TNF-α, IL-1β, and IL-6 (r = −0.9847, −0.9456, −0.9315). Network pharmacology, combined with primary and secondary factor analysis, was employed to identify anti-inflammatory pathways and key active compounds. Borneol contributed over 50% to the anti-inflammatory effect, followed by β-caryophyllene, limonene, camphor, and γ-terpinene. These findings highlight the potential enhanced bioactivity of BEO due to multi-component synergy. Full article
Show Figures

Graphical abstract

17 pages, 1484 KiB  
Article
Genotypic Variation in Drought-Season Stress Responses Among Traditional Fig (Ficus carica L.) Varieties from Mediterranean Transition Zones of Northern Morocco
by Mohammed Elmeknassia, Abdelali Boussakouran, Rachid Boulfia and Yahia Rharrabti
Plants 2025, 14(12), 1879; https://doi.org/10.3390/plants14121879 - 19 Jun 2025
Viewed by 266
Abstract
The fig (Ficus carica L.) is one of the oldest fruit crops cultivated in arid and semi-arid regions, valued for both its nutritional and economic importance; thus, ensuring sustainable fig production under climate change conditions is very important, as water scarcity increasingly [...] Read more.
The fig (Ficus carica L.) is one of the oldest fruit crops cultivated in arid and semi-arid regions, valued for both its nutritional and economic importance; thus, ensuring sustainable fig production under climate change conditions is very important, as water scarcity increasingly affects fruit quality and production. Selecting and preserving resilient varieties among traditional varieties, representing centuries of local adaptation, is a vital strategy for addressing the challenges driven by climate change. In this context, this study assessed the physiological and biochemical parameters of the leaves of four fig landrace varieties (Fassi, Ghouddane, Nabout, and Ounq Hmam) grown in three different Mediterranean transitional zones of northern Morocco (Chefchaouen, Taounate, and Taza), during a single timepoint assessment conducted in late August 2023. The combined effects of location, variety, and their interactions on chlorophyll fluorescence (Fv/Fm), Soil Plant Analysis Development (SPAD) index, total chlorophyll content (ChlT), canopy temperature depression (CTD), proline content, protein content, total soluble sugar (TSS), hydrogen peroxide (H2O2), and malondialdehyde (MDA) were determined. Significant variation was observed among varieties and locations, with the location effect being observed for proline content, protein content, TSS, CTD, and ChlT, while variety had a stronger influence on SPAD, Fv/Fm, H2O2, and MDA. The results showed that Nabout and Ounq Hmam varieties had the greatest photosynthetic efficiency, as indicated by their elevated SPAD index, ChlT, and Fv/Fm values, and showed lower sensitivity to oxidative stress (low proline content, H2O2, and MDA levels). In contrast, Ghouddane and Fassi displayed better stress tolerance, presenting higher levels of oxidative stress markers. Among locations, Chefchaouen showed the highest protein, TSS, H2O2, and MDA levels, reflecting active stress tolerance mechanisms. These variations were confirmed by principal component analysis, which revealed a clear separation between photosynthetically efficient varieties (Nabout and Ounq Hmam) and stress-tolerant varieties (Ghouddane and Fassi). More than a conventional crop physiology study, this work highlights the adaptive strategies in traditional Mediterranean fig germplasm that could be crucial for climate change adaptation. While our findings are limited to a single season, they offer valuable, practical insights that can inform grower decision-making in the near term, especially when considered alongside local knowledge and additional research. Full article
(This article belongs to the Special Issue Ecophysiology and Quality of Crops)
Show Figures

Figure 1

19 pages, 10413 KiB  
Article
The Growth-Promoting Effects of Piriformospora indica on Banana Under Different Concentrations of Phosphorus and Potassium Treatments
by Boxiang Zhao, Ruide Li, Na Tian, Qian Li, Chunzhen Cheng and Mingyuan Wang
Plants 2025, 14(12), 1878; https://doi.org/10.3390/plants14121878 - 19 Jun 2025
Viewed by 232
Abstract
Banana plants require substantial nutrients, and their growth is significantly hindered by nutrient deficiency. This study investigated the influences of Piriformospora indica colonization on the growth of clean river sand-cultivated banana plants under varying phosphorus (P) and potassium (K) levels. Banana plants without [...] Read more.
Banana plants require substantial nutrients, and their growth is significantly hindered by nutrient deficiency. This study investigated the influences of Piriformospora indica colonization on the growth of clean river sand-cultivated banana plants under varying phosphorus (P) and potassium (K) levels. Banana plants without (CK) and with P. indica colonization (PI) were watered using Hoagland solutions with four gradients of P or K (100%, 50%, 25%, and 0%). Results showed that P. indica colonization promoted the growth of banana plants under different concentrations of P and K treatments. Further analysis revealed that the pseudo-stem P and K contents were very significantly (p < 0.01) positively and positively correlated with biomass-related parameters (aboveground part fresh weight, root fresh weight, and total plant biomass), respectively. Root starch, sucrose, proline (PRO), and anthocyanins contents, as well as leaf malondialdehyde (MDA) and PRO contents, were positively correlated with most growth-related parameters. However, root and leaf flavonoid contents, total antioxidant capacity (T-AOC), and leaf anthocyanin content showed negative correlations with growth-related parameters. Moreover, a very significant negative correlation (p < 0.01) was identified between root T-AOC and root starch content. Additionally, P. indica altered the P and K reduction-caused starch content change patterns in both leaves and roots. Our study demonstrated that P. indica colonization promoted the growth of banana under different concentrations of P and K treatments by mediating the accumulation of carbohydrates, secondary metabolites, osmoprotectants, and so on. Full article
Show Figures

Figure 1

21 pages, 2566 KiB  
Article
Gene Localization and Functional Validation of GmPDH1 in Soybean Against Cyst Nematode Race 4
by Yuehua Dai, Yue Zhang, Chuhui Li, Kun Wan, Yan Chen, Mengen Nie and Haiping Zhang
Plants 2025, 14(12), 1877; https://doi.org/10.3390/plants14121877 - 19 Jun 2025
Viewed by 245
Abstract
To identify the key genes conferring resistance to soybean cyst nematode race 4 (SCN4, Heterodera glycines), this study utilized 280 recombinant inbred lines (RILs) derived from the resistant cultivar Huipizhiheidou (HPD) and the susceptible cultivar Jindou23 (JD23). Through phenotypic characterization and a [...] Read more.
To identify the key genes conferring resistance to soybean cyst nematode race 4 (SCN4, Heterodera glycines), this study utilized 280 recombinant inbred lines (RILs) derived from the resistant cultivar Huipizhiheidou (HPD) and the susceptible cultivar Jindou23 (JD23). Through phenotypic characterization and a genome-wide association study (GWAS), a genomic region (Gm18:1,223,546–1,782,241) on chromosome 18 was mapped, yielding 14 candidate genes. GmPDH1 was validated as a critical resistance gene using reverse transcription quantitative PCR (RT-qPCR) and Kompetitive Allele Specific PCR (KASP) marker M0526. RT-qPCR revealed that GmPDH1 expression in HPD roots was upregulated 9 days post-inoculation with SCN4 compared to uninoculated controls. KASP genotyping showed that marker M0526 efficiently distinguished between resistant and susceptible plants in natural populations: 71.05% of the resistant accessions exhibited resistant or moderately resistant genotypes, whereas 81.03% of the susceptible accessions showed susceptible or highly susceptible genotypes. Functional validation demonstrated that overexpression of GmPDH1 significantly enhanced SCN4 resistance in the susceptible cultivars JD23 and Jack, whereas CRISPR/Cas9-mediated knockout of GmPDH1 in HPD attenuated its resistance. This study confirmed GmPDH1 as a key gene governing SCN4 resistance and developed an efficient molecular marker, M0526, providing theoretical insights and technical tools for dissecting nematode resistance mechanisms and advancing soybean disease-resistant breeding. Full article
Show Figures

Figure 1

19 pages, 1295 KiB  
Article
Physiological, Chemical and Metabolite Profiling of Pectobacterium carotovorum-Inoculated Tomato Plants Grown in Nutrient-Amended Soils
by Sandra Maluleke, Udoka Vitus Ogugua, Njabulo Mdluli, Ntakadzeni Edwin Madala and Khayalethu Ntushelo
Plants 2025, 14(12), 1876; https://doi.org/10.3390/plants14121876 - 18 Jun 2025
Viewed by 242
Abstract
This study evaluated the effects of a plant pathogenic bacterium Pectobacterium carotovorum strain BD163 inoculation and nutrient solution (CaCO3 (2 mM), NaCl (1 mM) and K2Cr2O7 (0.001 mM)) on the growth, photosynthesis, nutrient uptake and metabolomics of [...] Read more.
This study evaluated the effects of a plant pathogenic bacterium Pectobacterium carotovorum strain BD163 inoculation and nutrient solution (CaCO3 (2 mM), NaCl (1 mM) and K2Cr2O7 (0.001 mM)) on the growth, photosynthesis, nutrient uptake and metabolomics of tomato seedlings. The experiment had four experimental treatments (1. solution + BD163 inoculation, 2. solution alone, 3. BD163 inoculation, 4. control). Plant growth and photosynthesis responses were minimal, and differences in nutrient assimilation and metabolite profiles were clear-cut. Of the photosynthesis parameters, only water use efficiency was impacted; it was higher in the bacterium-only treatment and unchanged in the other treatments. The quantities of boron, bismuth and nickel were affected, accumulating mostly in the “solution + BD163 inoculation” experimental set. Principal component analysis of metabolomics data separated the treatments into three groupings; group 1 was the double treatment, group 2 was the nutrient solution treatment and, finally, group 3 was the P. carotovorum and control treatments. Correlation analysis of the data showed an assumed interdependence of several plant factors. The authors concluded that the interaction between the bacterium, the plant and the nutrient solution is complex and more pronounced at the chemical and metabolite level than at the growth and photosynthesis level. Full article
Show Figures

Figure 1

26 pages, 10085 KiB  
Article
Characterizing the Flowering Phenology of Rosa rugosa Thunb. as an Ecosystem Service in the Context of Climate Change in Kupinovo (Vojvodina), Serbia
by Mirjana Ljubojević, Jelena Čukanović, Sara Đorđević, Djurdja Petrov, Nevenka Galečić, Dejan Skočajić and Mirjana Ocokoljić
Plants 2025, 14(12), 1875; https://doi.org/10.3390/plants14121875 - 18 Jun 2025
Viewed by 179
Abstract
Given the growing impact of climate change, this study examines the flowering phenology of Rosa rugosa Thunb. in Kupinovo (Vojvodina, Serbia). Data collected over 18 years (2007–2024) were analyzed to assess changes in primary flowering, while secondary flowering was monitored from 2022 to [...] Read more.
Given the growing impact of climate change, this study examines the flowering phenology of Rosa rugosa Thunb. in Kupinovo (Vojvodina, Serbia). Data collected over 18 years (2007–2024) were analyzed to assess changes in primary flowering, while secondary flowering was monitored from 2022 to 2025. Phenological stages were recorded every other day, and dates were converted into day-of-year (DOY) values. Heat accumulation (GDD) was calculated using daily max/min temperatures and thresholds. In 2024, R. rugosa exhibited a 37-day earlier onset and a 50.4-day later completion of primary flowering compared to previous years. The variability of key phenological events of primary flowering was observed in the interaction with climatic parameters, with regular fruiting. The species proved tolerant to heat and drought, suggesting potential range expansion. Optimal temperatures for secondary flowering were identified: abundant flowering occurred at 13.6 °C max and 4.9 °C min, while moderate flowering occurred at 9.0 °C max and 4.2 °C min. Regression analysis confirmed the positive effect of rising temperatures on flowering intensity. While freezing halted secondary flowering and damaged open buds, unopened buds remained unaffected. These findings highlight R. rugosa as a resilient, ornamental species, relevant to climate adaptation strategies, nature-based solutions, and the preservation of ecosystem services under global warming scenarios. Full article
(This article belongs to the Special Issue Sustainable Plants and Practices for Resilient Urban Greening)
Show Figures

Graphical abstract

26 pages, 1726 KiB  
Article
Growth-Promoting Effects of Ten Soil Bacterial Strains on Maize, Tomato, Cucumber, and Pepper Under Greenhouse Conditions
by Jovana Anđelković, Tatjana Mihajilov Krstev, Ivica Dimkić, Nikola Unković, Dalibor Stanković and Nataša Joković
Plants 2025, 14(12), 1874; https://doi.org/10.3390/plants14121874 - 18 Jun 2025
Viewed by 302
Abstract
Beneficial interactions between plants and bacteria are crucial in agricultural practices, as bacteria can improve soil fertility, promote plant growth, and protect plants from pathogens. This study aimed to molecularly identify and characterize soil bacterial isolates and evaluate their effect on the growth [...] Read more.
Beneficial interactions between plants and bacteria are crucial in agricultural practices, as bacteria can improve soil fertility, promote plant growth, and protect plants from pathogens. This study aimed to molecularly identify and characterize soil bacterial isolates and evaluate their effect on the growth of maize (Zea mays L.), tomato (Solanum lycopersici L.), cucumber (Cucumis sativus L.), and pepper (Capsicum annuum L.) under greenhouse conditions. Plant growth parameters, including plant height, root length, and fresh (FW) and dry (DW) weights, were measured. Additionally, pigment extraction and element content analysis using leaves were performed. Among the isolates, the most effective strain in the greenhouse experiment was Bacillus safensis SCF6, which significantly enhanced plant height and fresh weight across all tested plants, with the greatest influence observed in maize plant height (439.42 ± 6.42 mm), fresh weight (14.07 ± 0.87 g plant−1 FW), and dry weight (1.43 ± 0.17 g plant−1 DW) compared to the control (364.67 ± 10.33 mm, 9.20 ± 1.16 g plant−1 FW, and 0.92 ± 0.15 g plant−1 DW, respectively). Other strains also demonstrated notable results, with Microbacterium testaceum SCF4, Bacillus mojavensis SCF8, and Pseudomonas putida SCF9 showing the highest plant growth-promoting effects on pepper, tomato, and cucumber, respectively. Pseudomonas putida SCF9 demonstrated strong antifungal activity against Monilinia laxa, with a percentage of mycelial growth inhibition (PGI) of 72.62 ± 2.06%, while Bacillus subtilis SCF1 exhibited effects against Botrytis cinerea (PGI = 69.57 ± 4.35%) and Cercospora sp. (PGI = 63.11 ± 1.12%). The development and application of beneficial bacterial inoculants or their formulated products can contribute to environmentally friendly farming practices and global food security. Full article
(This article belongs to the Special Issue Advances in Microbial Solutions for Sustainable Agriculture)
Show Figures

Figure 1

15 pages, 2921 KiB  
Article
Genetic Analysis of Lodging Resistance in 1892S Based on the T2T Genome: Providing a Genetic Approach for the Improvement of Two-Line Hybrid Rice Varieties
by Wei Zhang, Liang Zhou, Dahu Ni, Jinlong Ni, Fengshun Song, Liansong Yang and Dewen Zhang
Plants 2025, 14(12), 1873; https://doi.org/10.3390/plants14121873 - 18 Jun 2025
Viewed by 232
Abstract
Successfully breeding high-yield, lodging-resistant hybrid rice varieties is critical for ensuring food security. Two-line hybrid rice system plays an essential role in rice breeding, and 1892S, an important two-line sterile line, has contributed significantly to the development of over 100 hybrid rice varieties [...] Read more.
Successfully breeding high-yield, lodging-resistant hybrid rice varieties is critical for ensuring food security. Two-line hybrid rice system plays an essential role in rice breeding, and 1892S, an important two-line sterile line, has contributed significantly to the development of over 100 hybrid rice varieties with superior agronomic traits, including lodging resistance. Despite its importance, a comprehensive understanding of the genomic basis underlying these traits in 1892S has been lacking due to the limitations of short-read sequencing technologies. To address this gap, we utilized advanced telomere-to-telomere (T2T) genome assembly techniques to generate a high-quality, gap-free genome of 1892S—the final genome comprises 12 complete chromosomes with 40,560 protein-coding genes. Comparative genomic analysis identified multiple known lodging resistance genes, including SD1, Sdt97, SBI, OsFBA2, APO1, and OsTB1, with unique allelic variations that may enhance resistance. The pan-genome analysis identified 2347 strain-specific genes in 1892S, further supporting its unique genetic advantages. This study represents the complete T2T genome assembly of a two-line sterile line and provides novel insights into the genetic foundation of lodging resistance in hybrid rice. This study highlights the genetic potential of 1892S in hybrid rice breeding and provides a model for the genomic analysis of other two-line sterile lines, offering valuable insights for improving in hybrid rice, including traits lodging resistance, yield stability, and adaptability, which are crucial for global food security. Full article
Show Figures

Figure 1

15 pages, 3440 KiB  
Article
“End-to-End Chromosome Fusion” as the Main Driver of Descending Dysploidy in Vigna lasiocarpa (Mart. ex Benth.) Verdc. (Leguminosae Juss.)
by Lazaro Serafim, Jarbson Henrique Silva, Sibelle Dias, Ana Rafaela da Silva Oliveira, Maria Clara Nunes, Antônio Félix da Costa, Ana Maria Benko-Iseppon, Jiming Jiang, Lívia do Vale Martins and Ana Christina Brasileiro-Vidal
Plants 2025, 14(12), 1872; https://doi.org/10.3390/plants14121872 - 18 Jun 2025
Viewed by 283
Abstract
The genus Vigna Savi (Leguminosae Juss.) comprises approximately 150 species, classified into five subgenera, most of which exhibit a diploid chromosome number of 2n = 22. However, the wild species Vigna lasiocarpa (Benth) Verdc. (V. subg. Lasiospron) is notable [...] Read more.
The genus Vigna Savi (Leguminosae Juss.) comprises approximately 150 species, classified into five subgenera, most of which exhibit a diploid chromosome number of 2n = 22. However, the wild species Vigna lasiocarpa (Benth) Verdc. (V. subg. Lasiospron) is notable for its dysploid chromosome number of 2n = 20. This study aimed to elucidate the chromosomal events involved in the karyotype evolution of V. lasiocarpa (Vla). We used oligopainting probes from chromosomes 1, 2, 3, and 5 of Phaseolus vulgaris L. and two barcode probes from the genome of V. unguiculata (L.) Walp. Additionally, bacterial artificial chromosomes (BACs) from V. unguiculata and P. vulgaris, along with a telomeric probe from Arabidopsis thaliana (L.) Heynh., were hybridized to V. lasiocarpa metaphase chromosomes to characterize Vla3, Vla7/5, and Vla9. Our findings revealed conserved oligo-FISH patterns on chromosomes 2, 6, 8, 10, and 11 between V. unguiculata and V. lasiocarpa. Paracentric and pericentric inversions were identified for Vla3 and Vla9, respectively. Our integrative approach revealed that the dysploid chromosome originated from an “end-to-end fusion” of homoeologous chromosomes 5 and 7. This is the first report on the chromosomal mechanisms underlying descending dysploidy in Vigna, providing new insights into the evolutionary dynamics of the genus. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

20 pages, 6360 KiB  
Article
Regulatory Effects of Companion Plants (Maize (Zea mays) and Perilla frutescens) on American Ginseng Growth and Microbiome in Root Rot-Infested Field
by Dan Luo, Dengqun Liao, Tingting Han, Changhao Ji, Chao He and Xianen Li
Plants 2025, 14(12), 1871; https://doi.org/10.3390/plants14121871 - 18 Jun 2025
Viewed by 233
Abstract
American ginseng (AG) cultivation suffers from severe diseases, requiring heavy pesticide use. This study aimed to explore whether companion planting with maize (AG-maize) or Perilla frutescens (AG-perilla) could enhance AG growth and alter rhizosphere/root microbiomes in a root rot-infested field. Compared to monoculture [...] Read more.
American ginseng (AG) cultivation suffers from severe diseases, requiring heavy pesticide use. This study aimed to explore whether companion planting with maize (AG-maize) or Perilla frutescens (AG-perilla) could enhance AG growth and alter rhizosphere/root microbiomes in a root rot-infested field. Compared to monoculture (CK), companion planting significantly improved AG growth and survival rate at wither stage, with AG-maize showing the superior efficacy- increasing root length and fresh weight, and plant height by 39.04%, 46.10%, and 48.69%, respectively, while raising survival rate from 1.51% to 14.54%. Microbial analysis revealed that companion planting increased microbiome diversity and network complexity. At green fruit stage, AG-perilla increased rhizosphere fungal Chao1 index by 42.6%, while AG-maize and AG-perilla elevated endophytic fungal Shannon indices by 46.68% and 74.84%, respectively. At wither stage, AG-maize notably enriched beneficial microbes (e.g., soil Pseudomonas +108.49%, Bacillus +200.73%) while reducing pathogens (soil Fusarium −20.04%, root endophytic Alternaria −54.55%). Structural equation model indicated AG-maize improved AG survival via core species-driven antibiosis and nutrient regulation, with keystone species Lysobacter sp. RHLT3-4 and Verrucomicrobium sp. IMCC25902 significantly correlating with AG health. The AG-maize system fostered synergistic microbial networks, enriching beneficial taxa and suppressing pathogens. These findings provide a foundation for developing eco-friendly disease management and high-yield AG cultivation strategies. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

19 pages, 5293 KiB  
Article
Root Ethylene and Abscisic Acid Responses to Flooding Stress in Styrax japonicus: A Transcriptomic Perspective
by Chao Han, Jinghan Dong, Gaoyuan Zhang, Qinglin Zhu and Fangyuan Yu
Plants 2025, 14(12), 1870; https://doi.org/10.3390/plants14121870 - 18 Jun 2025
Viewed by 239
Abstract
Global climate change has led to an increased frequency of extreme weather events, with flooding caused by heavy rainfall posing a significant threat to plant growth and survival. Styrax japonicus, a species of ecological and economic importance, exhibits stronger flooding tolerance compared [...] Read more.
Global climate change has led to an increased frequency of extreme weather events, with flooding caused by heavy rainfall posing a significant threat to plant growth and survival. Styrax japonicus, a species of ecological and economic importance, exhibits stronger flooding tolerance compared to its congener Styrax tonkinensis. Endogenous hormonal systems in plants are indispensable for integrating growth dynamics, developmental transitions, and ecological stress perception-transduction pathways. To investigate the response of S. japonicus to flooding stress at both hormonal and molecular levels, this study utilized annual seedlings of S. japonicus as experimental material. Two levels of flooding stress, waterlogging and submergence, were applied to examine the variations in endogenous hormone levels in S. japonicus roots under different stress conditions and durations. Combined with transcriptome sequencing, critical genes associated with hormone-mediated signaling and biosynthetic processes were identified. The results showed that the content of the ethylene precursor ACC exhibited a trend of “increase–decrease–increase”, with an earlier decline under submergence compared to waterlogging stress by approximately 10 days. Abscisic acid content sharply decreased at 5 d, followed by an initial increase and subsequent decrease, with higher ABA levels observed under waterlogging stress than under submergence. GA content significantly decreased after 10 d in both stress conditions. KEGG enrichment analysis revealed that the most prominently enriched pathway for DEGs was plant hormone signal transduction under both waterlogging and submergence stress, with 314 and 370 DEGs identified, respectively. Analysis of common genes indicated their association with ethylene, ABA, auxin, and BRs. After further investigation of DEGs in the ethylene and ABA biosynthesis process, we identified key enzyme genes encoding ACS, ACO, and NCED, which are critical for their biosynthesis. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

13 pages, 8146 KiB  
Communication
A Morphometric Analysis of Starch Granules from Two Dioscorea Species
by Sara Rickett, Lisbeth A. Louderback and Adrian V. Bell
Plants 2025, 14(12), 1869; https://doi.org/10.3390/plants14121869 - 18 Jun 2025
Viewed by 255
Abstract
Dioscorea is a genus comprising over 600 species, many of which possess edible tubers that are commonly referred to as yams. While Dioscorea is a significant crop across the globe, it holds a unique cultural significance to the people of Tonga in western [...] Read more.
Dioscorea is a genus comprising over 600 species, many of which possess edible tubers that are commonly referred to as yams. While Dioscorea is a significant crop across the globe, it holds a unique cultural significance to the people of Tonga in western Polynesia. Presently, Dioscorea is known for its essential role in festivals and ceremonies, as well as for its nutritional contributions to Tongan diets. To understand and to assess the significance of Dioscorea in the distant past, however, archeologists rely on plant residues (e.g., starch granules) preserved on ancient tools. This study provides the necessary first step in archeological starch analysis by examining the granule morphometrics of two culturally significant Dioscorea species, D. alata and D. bulbifera from Tonga. Tubers from three individuals of each species were collected on the island of Vava’u and processed for starch granule extraction and analysis. Morphometric characteristics, including two novel that describe shape (eccentricity ratio and hilum angle), were measured on approximately 300 granules per species. When statistically compared, these novel characteristics allow D. alata and D. bulbifera to be readily distinguished from one another, and therefore increase confidence in assigning archeological granules to a specific taxon. Full article
(This article belongs to the Special Issue Advances in Vegetation History and Archaeobotany)
Show Figures

Figure 1

14 pages, 1118 KiB  
Article
Microbial-Mediated Soil Nutrient Enhancement in Moso Bamboo–Liquidambar formosana vs. Phoebe chekiangensis Mixed Plantings
by Anming Zhu, Lili Fan, Gang Lu, Liangjin Yao and Jianzhong Fan
Plants 2025, 14(12), 1868; https://doi.org/10.3390/plants14121868 - 18 Jun 2025
Viewed by 217
Abstract
This study investigated how Moso bamboo (Phyllostachys edulis)–broadleaf mixed forests influence soil properties and microbial communities to support ecological function and sustainable bamboo forest management. Three forest types were examined: pure Moso bamboo stands (MB) and mixed stands with Liquidambar formosana [...] Read more.
This study investigated how Moso bamboo (Phyllostachys edulis)–broadleaf mixed forests influence soil properties and microbial communities to support ecological function and sustainable bamboo forest management. Three forest types were examined: pure Moso bamboo stands (MB) and mixed stands with Liquidambar formosana (LB) or Phoebe chekiangensis (PB). Soil chemical properties, microbial diversity, and community composition were assessed using high-throughput sequencing, and functional taxa were correlated with soil nutrients. The results showed that mixed forests significantly influenced soil chemical properties. PB showed the lowest pH and highest total nitrogen (TN), while MB exhibited the highest soil organic matter (SOM) and total potassium (TK). LB maintained moderate TN, high SOM and TK, and stable pH, indicating a balanced nutrient profile. Although α-diversity did not differ significantly, β-diversity analysis revealed distinct microbial community structure (p < 0.01). LB was enriched with carbon-decomposing taxa (Terriglobales and Sphingomonas), PB with acid-tolerant, nitrogen-cycling groups (Candidatus Binatus), and MB with nitrogen-fixing taxa (Nitrobacteraceae and Bradyrhizobium). Co-occurrence network and functional pathway analyses indicated group-specific microbial associations and greater metabolic diversity in LB and PB. In conclusion, mixed Moso bamboo with broadleaf species significantly modified soil chemical properties and microbial community structure, with the Moso bamboo—L. formosana combination showing potential for improving soil nutrient status and microbial function. Full article
(This article belongs to the Special Issue Nutrient Management on Soil Microbiome Dynamics and Plant Health)
Show Figures

Figure 1

18 pages, 7427 KiB  
Article
Genome-Wide Analysis of Soybean Polyamine Oxidase Genes Reveals Their Roles in Flower Development and Response to Abiotic Stress
by Yang Yu, Bohuai Jin, Meina Gao, Ke Zhang, Zhouli Liu and Xiangbo Duan
Plants 2025, 14(12), 1867; https://doi.org/10.3390/plants14121867 - 18 Jun 2025
Viewed by 259
Abstract
Polyamine oxidase (PAO) is an important enzyme that functions in the catabolism of polyamines. While plant PAOs have been studied in several species, there is a lack of research on this gene family in soybean (Glycine max L.), one of the major [...] Read more.
Polyamine oxidase (PAO) is an important enzyme that functions in the catabolism of polyamines. While plant PAOs have been studied in several species, there is a lack of research on this gene family in soybean (Glycine max L.), one of the major food crops worldwide. Here, a genome-wide analysis identified 16 GmPAOs from the soybean genome, which were unevenly distributed in nine soybean chromosomes and were then phylogenetically classified into three groups. Collinearity analysis identified 17 duplicated gene pairs from the GmPAO family, and their Ka/Ks values were all less than one, indicating that the GmPAO family has undergone purifying selection during evolution. Analyses of the conserved motif and gene structure revealed the sequence differences among the GmPAOs of the three groups, suggestive of their functional differentiation. Additionally, the prediction of the secondary and tertiary structure of the GmPAOs provided a further basis for revealing their biological functions. A number of cis-acting elements relevant to development, phytohormone, and stress response were discovered in the promoter regions of the GmPAOs, which might be responsible for their functional diversities. Expression pattern analysis indicated that more than half of the GmPAOs showed preference in flower, two showed specificity in stem and shoot apical meristem, whereas four were barely expressed in all samples. Expression profiling of the GmPAOs also revealed that they were involved in the response to abiotic stresses, including cold, drought, and especially submergence stress. All these results lay an important foundation for further characterizing the functional roles of GmPAOs in soybean development and response to abiotic stresses. Full article
Show Figures

Figure 1

22 pages, 5318 KiB  
Article
Identification of the Glyceraldehyde-3-Phosphate Dehydrogenase (GeGAPDH) Gene Family in Gastrodia elata Revealing Its Response Characteristics to Low-Temperature and Pathogen Stress
by Yaxing Yan, Mei Jiang, Pengjie Han, Xiaohu Lin and Xiao Wang
Plants 2025, 14(12), 1866; https://doi.org/10.3390/plants14121866 - 18 Jun 2025
Viewed by 260
Abstract
The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene plays a pivotal role in the glycolysis/gluconeogenesis process, contributing significantly to glycosyl donor synthesis, plant growth and development, and stress responses. Gastrodia elata Bl., a heterotrophic plant in the Orchidaceae family, has its dried tubers used [...] Read more.
The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene plays a pivotal role in the glycolysis/gluconeogenesis process, contributing significantly to glycosyl donor synthesis, plant growth and development, and stress responses. Gastrodia elata Bl., a heterotrophic plant in the Orchidaceae family, has its dried tubers used as the traditional Chinese medicine. This study identified three GeGAPDH genes in G. elata, all encoding basic, stable, hydrophilic proteins. Phylogenetic analysis and subcellular localization predictions categorized GeGAPDH1 as a plastid subtype, while GeGAPDH2 and GeGAPDH3 were classified as cytoplasmic subtypes. Prokaryotic expression experiments demonstrated successful expression of the GeGAPDH1 protein in Escherichia coli, which exhibited significant GAPDH enzymatic activity. Subcellular localization experiments showed that GeGAPDH1 was localized in the plastid. Expression analysis indicated that the three GeGAPDH genes were predominantly expressed in tubers. Under low-temperature stress, although the total GAPDH enzyme activity in tubers did not change significantly, the expression of GeGAPDH1 was significantly up-regulated, while GeGAPDH2 and GeGAPDH3 were significantly down-regulated. This suggests that different subtypes of GeGAPDH may regulate cold resistance through different pathways. Upon pathogen infection, the GeGAPDH gene family exhibited pathogen-specific regulatory patterns. During infection by Fusarium oxysporum, both the expression levels of all three GeGAPDH genes and the total GAPDH enzyme activity in tubers increased significantly; however, F. solani infection induced a significant increase in total GAPDH enzyme activity without significant changes in gene expression. These results suggest that the GeGAPDH gene family may respond to different pathogen infections through transcriptional or translational regulation mechanisms. This study systematically identified and characterized the GeGAPDH gene family in G. elata, providing a theoretical foundation for understanding the functional differentiation of GAPDH in heterotrophic plants. Full article
(This article belongs to the Special Issue Bioinformatics and Functional Genomics in Modern Plant Science)
Show Figures

Figure 1

14 pages, 812 KiB  
Review
Brassinosteroids: Biosynthesis, Signaling, and Hormonal Crosstalk as Related to Fruit Yield and Quality
by Divya Aryal and Fernando Alferez
Plants 2025, 14(12), 1865; https://doi.org/10.3390/plants14121865 - 18 Jun 2025
Viewed by 287
Abstract
Brassinosteroids (BRs) are plant growth regulators (PGRs) with pleiotropic effects on plant growth and development. They play a role in seed germination, vegetative and reproductive growth, photosynthetic efficiency, vascular differentiation, fruit yield, quality, and resilience to biotic and abiotic stresses. They engage in [...] Read more.
Brassinosteroids (BRs) are plant growth regulators (PGRs) with pleiotropic effects on plant growth and development. They play a role in seed germination, vegetative and reproductive growth, photosynthetic efficiency, vascular differentiation, fruit yield, quality, and resilience to biotic and abiotic stresses. They engage in crosstalk with other hormones like auxin, gibberellins, ethylene and abscisic acid, influencing all plant growth and development aspects. Studies on the effect of BRs on the reproductive growth of fruit crops are accumulating, given the potential of this PGR as a management tool in agriculture. This review explores the multifaceted roles of BRs in fruit crop maturation. From their biosynthesis and signal transduction pathways to their influence on fruit production, development, and maturation, we focus on the effect of this plant hormone on different aspects of fruit yield and quality, including fruit set and firmness, sugar accumulation, and fruit development. We address BRs’ interaction with different hormones at molecular and physiological levels in regulating these processes in climacteric and non-climacteric fruits. We also identify areas where knowledge is still lacking regarding hormonal crosstalk involving BRs in the regulation of developmental processes governing fruit quality and yield so knowledge generated can inform management decisions in fruit crop production. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

17 pages, 222 KiB  
Article
Short-Season Direct-Seeded Cotton Cultivation Under Once-Only Irrigation Throughout the Growing Season: Investigating the Effects of Planting Density and Nitrogen Application
by Zhangshu Xie, Yeling Qin, Xuefang Xie, Xiaoju Tu, Aiyu Liu and Zhonghua Zhou
Plants 2025, 14(12), 1864; https://doi.org/10.3390/plants14121864 - 17 Jun 2025
Viewed by 310
Abstract
To identify optimal strategies for high-yield and high-efficiency cultivation under a “short-season direct-seeded cotton with once-only irrigation” regime, we conducted two-year field experiments (2022 and 2023) using a split-plot factorial design with three planting densities (30,000 (D1), 45,000 (D2), and 60,000 (D3) plants·ha [...] Read more.
To identify optimal strategies for high-yield and high-efficiency cultivation under a “short-season direct-seeded cotton with once-only irrigation” regime, we conducted two-year field experiments (2022 and 2023) using a split-plot factorial design with three planting densities (30,000 (D1), 45,000 (D2), and 60,000 (D3) plants·ha−1) and three nitrogen application rates (150 (N1), 180 (N2), and 210 (N3) kg·ha−1). Our study systematically examined how these treatment combinations influenced canopy architecture, physiological traits, yield components, and fiber quality. The results showed that increased planting density significantly enhanced plant height, the leaf area index (LAI), and the number of fruiting branches, with the highest density (D3) contributing to a more compact and efficient canopy. Moderate nitrogen input (N2) significantly increased peroxidase (POD) activity, reduced malondialdehyde (MDA) accumulation, delayed functional leaf senescence, and prolonged the canopy’s photosynthetic performance. A significant interaction between planting density and nitrogen application was observed. The D3N2 treatment (high density with moderate nitrogen) consistently achieved the highest fruiting branch count, boll number per plant, and yields of both seed cotton and lint in both years, while maintaining stable fiber quality. This indicates its strong capacity to balance high yield with quality and maintain physiological resilience. By contrast, the D1N1 treatment (low density and low nitrogen) exhibited a loose canopy, premature photosynthetic decline, and the lowest yield. The D3N3 treatment (high density and high nitrogen) promoted vigorous early growth but reduced stress tolerance during later growth stages, leading to yield instability. These findings demonstrate that moderately increasing planting density while maintaining appropriate nitrogen levels can effectively optimize canopy structure, improve stress resilience, and enhance yield under short-season direct-seeded cotton systems with once-only irrigation. This provides both theoretical underpinning and practical guidance for achieving stable and efficient cotton production under such systems. Full article
18 pages, 2762 KiB  
Article
Identification of Proteins Associated with Stably Integrated Maize b1 Tandem Repeat Transgene Chromatin
by Jason S. Lynn, Kathryn M. Koirtyohann, Yacob B. Gebreab, Jaliyah Edwards and Karen M. McGinnis
Plants 2025, 14(12), 1863; https://doi.org/10.3390/plants14121863 - 17 Jun 2025
Viewed by 279
Abstract
The control of gene expression by cis-regulatory DNA sequences is a conserved genomic feature. The maize booster1 gene (b1) is a naturally occurring locus that serves as a mechanistic model for the control of gene expression from a distal cis [...] Read more.
The control of gene expression by cis-regulatory DNA sequences is a conserved genomic feature. The maize booster1 gene (b1) is a naturally occurring locus that serves as a mechanistic model for the control of gene expression from a distal cis element and a form of allelic interactions called paramutation. Two epi-alleles of b1 produce distinct pigmentation phenotypes correlated with transcriptional enhancement and the silencing of b1. These transcriptional dynamics depend on a hepta-tandem repeat sequence located 100 kb upstream of the b1 locus. In the heterozygous condition, the B′ epi-allele paramutates B-I, heritably converting the B-I epi-allele to the epigenetic state and expression level of B′, producing lightly pigmented plants. To identify b1TR-associated proteins, we used a targeted chromatin immunoprecipitation approach with a stably integrated transgenic b1TR locus. Applying a conservative filtering strategy, we detected several expected factors, including RNA Polymerase II, as well as the novel putative DNA-binding proteins ZAG4 and DDT4. ZAG4 and DDT4 activated GAL expression using b1TR as bait in yeast one-hybrid, supporting their potential interaction with this sequence. The identification of proteins uniquely associated with the UAS::b1TR chromatin provides insight into potential b1 regulatory factors and offers a foundation for future studies to investigate their roles in gene regulation. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

17 pages, 1438 KiB  
Article
Endangered with High Dispersal Abilities: Conservation Genetics of Himantoglossum metlesicsianum (Teschner) P. Delforge (Orchidaceae) in the Canary Islands
by Rocío González Negrín, Victoria Eugenia Martín Osorio, Pedro A. Sosa and Priscila Rodríguez-Rodríguez
Plants 2025, 14(12), 1862; https://doi.org/10.3390/plants14121862 - 17 Jun 2025
Viewed by 560
Abstract
Himantoglossum metlesicsianum is a threatened orchid with low population numbers and fragmented distribution, present in four of the Canary Islands. This study focused on assessing the genetic variability and population genetic structure of the natural populations known to date, identifying those characteristics of [...] Read more.
Himantoglossum metlesicsianum is a threatened orchid with low population numbers and fragmented distribution, present in four of the Canary Islands. This study focused on assessing the genetic variability and population genetic structure of the natural populations known to date, identifying those characteristics of the species that condition the flow and genetic variation. For that purpose, we collected samples from eight sites in its distribution range and developed 14 polymorphic microsatellite markers. Despite its rarity, this orchid presents high levels of genetic diversity and a homogeneous population structure, characterised by a low degree of genetic differentiation and patterns consistent with high genetic connectivity among populations. Our results suggest that the species might show dichotomy in seed dispersal, combining long- and short-distance events. In addition, it is possible that pollen cross-pollination (pollinia) between adjacent sites may also be involved. In conclusion, these findings reveal unexpectedly high genetic diversity and connectivity among populations, despite the species’ rarity and fragmented distribution, highlighting key biological traits that should be considered in future conservation and recovery plans. Full article
(This article belongs to the Special Issue Genetic Diversity and Population Structure of Plants)
Show Figures

Figure 1

11 pages, 1957 KiB  
Article
Application of the Montgomery Equation in Morphometric Analysis of Tepals: A Case Study of Liriodendron × sinoamericanum
by Zhuyue Shi, Jinfeng Wang, Guohong Sun, Wenjing Yao, Peijian Shi and Honghua Ruan
Plants 2025, 14(12), 1861; https://doi.org/10.3390/plants14121861 - 17 Jun 2025
Viewed by 228
Abstract
Distinctions between plant perianths are often defined by structural variations, which makes it critical to understand species evolution through the lens of morphological differentiation. Additionally, the size of the perianth is often closely related to the successful reproduction of plants, and the perianth [...] Read more.
Distinctions between plant perianths are often defined by structural variations, which makes it critical to understand species evolution through the lens of morphological differentiation. Additionally, the size of the perianth is often closely related to the successful reproduction of plants, and the perianth area is generally considered one of the indicators of perianth size. The Montgomery equation (ME) hypothesizes that the individual leaf area is proportional to the product of leaf length and width, with the proportionality coefficient referred to as the Montgomery parameter (MP). To test the validity of the ME for calculating the tepal area, a total of 541 tepals (including petaloid and sepaloid tepals, which have similar shapes but different colors) from 60 Liriodendron × sinoamericanum P.C. Yieh ex C.B. Shang & Z.R. Wang flowers were used to fit the relationship between the tepal area (A) and the product of the tepal length (L) and width (W). Furthermore, this study compared whether there were significant differences in MPs between the two types of tepals, as well as differences in the fitting performance of the ME for each type. The root-mean-square error (RMSE) and mean absolute percentage error (MAPE) were used to assess the goodness of fit. The results revealed that the ME had low RMSE values (<0.05) and MAPE values (<5%), along with a high correlation coefficient (>0.95), when fitting the relationship between A and LW for either of the two different types of tepals. These findings indicate that the ME is effective in predicting the tepal area. Furthermore, there was a difference between the MPs of the two types of tepals. However, since the ME fitting of the data for each tepal type individually, as well as the combined data, all yielded a good fitting performance, the difference between the two types of tepals can be considered negligible in terms of its impact on the fitting results. Therefore, based on the combined morphology and ME fitting results of the two types of tepals, the tepals in L. × sinoamericanum do not show obvious differentiation. This study provides new insights into the understanding of the differentiation of similar organs during the evolution of angiosperms. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop