Cyprus St. John’s Wort, Hypericum repens L.: Major Constituents, Antioxidant, Antimicrobial, and Anticholinesterase Activities
Abstract
:1. Introduction
2. Results
2.1. Extraction Yield and Chemical Analysis of Hydroethanolic Extract of H. repens
2.2. Total Phenolic and Total Flavonoid Content
2.3. Antioxidant Activity
2.4. Antimicrobial Activity of Extracts
2.5. Anticholinesterase Assay
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Preparation of Extracts
4.3. Chemical Analysis of the Hydroethanolic Extract
4.4. Total Phenolic and Total Flavonoid Content Method
4.5. Cell Culture
4.6. Cell Viability Assay
4.7. Antioxidant Activity of Hydroethanolic Extracts
4.7.1. DPPH Method
4.7.2. ABTS Method
4.7.3. Assessment of Intracellular Oxidative Stress Inhibition (DCFDA Assay)
4.8. Antibacterial Activity Method
4.9. Acetylcholinesterase (AChE) and Butyrylcholinesterase (BChE) Activity Inhibition Assay
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stevens, P.F. Hypericaceae. In The Families and Genera of Vascular Plants; Kubitzki, K., Ed.; Springer: Berlin, Germany, 2007; pp. 194–201. [Google Scholar]
- Caldeira, G.I.; Gouveia, L.P.; Serrano, R.; Silva, O.D. Hypericum Genus as a Natural Source for Biologically Active Compounds. Plants 2022, 11, 2509. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Ji, Y.; Zhang, X.; Kennelly, E.J.; Long, C. Ethnopharmacology of Hypericum species in China: A comprehensive review on ethnobotany, phytochemistry and pharmacology. J. Ethnopharmacol. 2020, 254, 112686. [Google Scholar] [CrossRef] [PubMed]
- Marrelli, M.; Statti, G.; Conforti, F. Hypericum spp.: An Update on the Biological Activities and Metabolic Profiles. Mini-Rev. Med. Chem. 2020, 20, 66–87. [Google Scholar] [CrossRef]
- Kladar, N.; Božin, B.; Bijelić, K.; Bogavac, M.; Karaman, M.; Srđenović Čonić, B. Biological Activity of Genus Hypericum Sect. Hypericum Species—H. tetrapterum, H. maculatum subsp. immaculatum, H. triquetrifolium. Molecules 2023, 28, 6218. [Google Scholar] [CrossRef]
- Vincent, O.M.; Nguta, J.M.; Mitema, E.S.; Musila, F.M.; Nyak, D.M.; Mohammed, A.H.; Gervason, M.A. Ethnopharmacology, pharmacological activities, and chemistry of the Hypericum genus. J. Phytopharmacol. 2021, 10, 105–113. [Google Scholar] [CrossRef]
- Tocci, N.; Perenzoni, D.; Iamonic, D.; Fava, F.; Weil, T.; Mattivi, F. Extracts From Hypericum hircinum subsp. majus Exert Antifungal Activity Against a Panel of Sensitive and Drug-Resistant Clinical Strains. Front. Pharmacol. 2018, 9, 382. [Google Scholar]
- Altun, M.L.; Yilmaz, B.S.; Orhan, I.E.; Citoglu, G.S. Assessment of cholinesterase and tyrosinase inhibitory and antioxidant effects of Hypericum perforatum L. (St. John’s wort). Ind. Crops Prod. 2013, 43, 87–92. [Google Scholar] [CrossRef]
- Napoli, E.; Siracusa, L.; Ruberto, G.; Carrubba, A.; Lazzara, S.; Speciale, A.; Cimino, F.; Saija, A.; Cristani, M. Phytochemical profiles, phototoxic and antioxidant properties of eleven Hypericum species—A comparative study. Phytochemistry 2018, 152, 162–173. [Google Scholar] [CrossRef]
- Kakouri, E.; Trigas, P.; Daferera, D.; Skotti, E.; Tarantilis, P.A.; Kanakis, C. Chemical Characterization and Antioxidant Activity of Nine Hypericum Species from Greece. Antioxidants 2023, 12, 899. [Google Scholar] [CrossRef]
- Brankiewicz, A.; Trzos, S.; Mrożek, M.; Opydo, M.; Szostak, E.; Dziurka, M.; Tuleja, M.; Łoboda, A.; Pocheć, E. Cytotoxic and Antioxidant Activity of Hypericum perforatum L. Extracts against Human Melanoma Cells from Different Stages of Cancer Progression, Cultured under Normoxia and Hypoxia. Molecules 2023, 28, 1509. [Google Scholar] [CrossRef]
- Bajrai, L.H.; El-Kafrawy, S.A.; Hassan, A.M.; Tolah, A.M.; Alnahas, R.S.; Sohrab, S.S.; Rehan, M.; Azhar, E.I. In vitro screening of anti-viral and virucidal effects against SARS-CoV-2 by Hypericum perforatum and Echinacea. Sci. Rep. 2022, 12, 21723. [Google Scholar] [CrossRef] [PubMed]
- Tocci, N.; Simonetti, G.; D’Auria, F.D.; Panella, S.; Palamara, A.T.; Ferrari, F.; Pasqua, G. Chemical composition and antifungal activity of Hypericum perforatum subsp. angustifolium roots from wild plants and plants grown under controlled conditions. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2013, 3, 557–562. [Google Scholar] [CrossRef]
- Grafakou, M.-E.; Barda, C.; Karikas, G.A.; Skaltsa, H. Hypericum Essential Oils—Composition and Bioactivities: An Update (2012–2022). Molecules 2022, 27, 5246. [Google Scholar] [CrossRef] [PubMed]
- Meikle, R.D. Flora of Cyprus; Bentham-Moxon Trust: Kew Gardens, UK, 1977; Volume 1. [Google Scholar]
- Tsintides, T. The Endemic Plants of Cyprus; Bank of Cyprus Group and Cyprus Association of Professional Foresters: Nicosia, Cyprus, 1995. [Google Scholar]
- Crockett, S.L.; Schaneberg, B.; Khan, I.A. Phytochemical profiling of New and Old World Hypericum (St. John’s Wort) species. Phytochem. Anal. 2005, 6, 479–485. [Google Scholar] [CrossRef]
- Crockett, S.L.; Robson, N.K. Taxonomy and chemotaxonomy of the genus Hypericum. Med. Aromat. Plant Sci. Biotechnol. 2011, 5, 1–13. [Google Scholar]
- Mathioudaki, A.; Berzesta, A.; Kypriotakis, Z.; Skaltsa, H.; Heilmann, J. Phenolic metabolites from Hypericum kelleri Bald., an endemic species of Crete (Greece). Phytochemistry 2018, 146, 1–7. [Google Scholar] [CrossRef]
- Kitanov, G.M.; Nedialkov, P.T. Mangiferin and isomangiferin in some Hypericum species. Biochem. Syst. Ecol. 1998, 26, 647–653. [Google Scholar] [CrossRef]
- Kucharíková, A.; Kusari, S.; Sezgin, S.; Spiteller, M.; Čellárová, E. Occurrence and Distribution of Phytochemicals in the Leaves of 17 In vitro Cultured Hypericum spp. Adapted to Outdoor Conditions. Front. Plant Sci. 2016, 7, 1616. [Google Scholar] [CrossRef] [PubMed]
- Seabra, R.M.; Alves, A.C. Mangiferin and chlorogenic Acid from hypericum species. Planta Med. 1989, 55, 404. [Google Scholar] [CrossRef]
- Muscolo, A.; Mariateresa, O.; Giulio, T.; Mariateresa, R. Oxidative Stress: The Role of Antioxidant Phytochemicals in the Prevention and Treatment of Diseases. Int. J. Mol. Sci. 2024, 25, 3264. [Google Scholar] [CrossRef]
- Silva, B.A.; Ferreres, F.; Malva, J.O.; Dias, A.C. Phytochemical and antioxidant characterization of Hypericum perforatum alcoholic extracts. Food Chem. 2005, 90, 157–167. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef]
- Ricardo-da-Silva, J.M.; Cheynier, V.; Souquet, J.M.; Moutounet, M.; Cabanis, J.C.; Bourzeix, M. Interaction of grape seed procyanidins with various proteins in relation to wine fining. J. Sci. Food Agric. 1991, 57, 111–125. [Google Scholar] [CrossRef]
- Li, Y.L.; Chen, X.; Niu, S.Q.; Zhou, H.Y.; Li, Q.S. Protective Antioxidant Effects of Amentoflavone and Total Flavonoids from Hedyotis diffusa on H2O2-Induced HL-O2 Cells through ASK1/p38 MAPK Pathway. Chem. Biodivers. 2020, 17, e2000251. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Pan, X.; Jiang, L.; Chu, Y.; Gao, S.; Jiang, X.; Zhang, Y.; Chen, Y.; Luo, S.; Peng, C. The Biological Activity Mechanism of Chlorogenic Acid and Its Applications in Food Industry: A Review. Front. Nutr. 2022, 9, 943911. [Google Scholar] [CrossRef] [PubMed]
- Mandrone, M.; Lorenzi, B.; Venditti, A.; Guarcini, L.; Bianco, A.; Sanna, C.; Ballero, M.; Poli, F.; Antognoni, F. Antioxidant and anti-collagenase activity of Hypericum hircinum L. Ind. Crops Prod. 2015, 76, 402–408. [Google Scholar] [CrossRef]
- Eissa, K.I.; Kamel, M.M.; Mohamed, L.W.; Kassab, A.E. Development of new Alzheimer’s disease drug candidates using donepezil as a key model. Arch. Pharm. 2023, 356, 2200398. [Google Scholar] [CrossRef]
- Stanciu, G.D.; Luca, A.; Rusu, R.N.; Bild, V.; Chiriac, S.I.B.; Solcan, C.; Bild, W.; Ababei, D.C. Alzheimer’s Disease Pharmacotherapy in Relation to Cholinergic System Involvement. Biomolecules 2020, 10, 40. [Google Scholar] [CrossRef]
- Calva, J.; Ludeña, C.; Bec, N.; Larroque, C.; Salinas, M.; Vidari, G.; Armijos, C. Constituents and Selective BuChE Inhibitory Activity of the Essential Oil from Hypericum aciculare Kunth. Plants 2023, 12, 2621. [Google Scholar] [CrossRef]
- Baljak, J.; Bogavac, M.; Karaman, M.; Srđenović Čonić, B.; Vučković, B.; Anačkov, G.; Kladar, N. Chemical Composition and Biological Activity of Hypericum Species—H. Hirsutum H. Barb. H. rochelii. Plants 2024, 13, 2905. [Google Scholar]
- Hernandez, M.F.; Falé, P.L.V.; Araújo, M.E.M.; Serralheiro, M.L.M. Acetylcholinesterase inhibition and antioxidant activity of the water extracts of several Hypericum species. Food Chem. 2010, 120, 1076–1082. [Google Scholar] [CrossRef]
- Buzzini, P.; Turchetti, B.; Ieri, F.; Goretti, M.; Branda, E.; Mulinacci, N.; Romani, A. Catechins and Proanthocyanidins: Naturally Occurring O-Heterocycles with Antimicrobial Activity. In Bioactive Heterocycles IV. Topics in Heterocyclic Chemistry, 1st ed.; Khan, M.T.H., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 10, pp. 239–263. [Google Scholar] [CrossRef]
- Amarowicz, R.; Pegg, R.B.; Bautista, D.A. Antibacterial activity of green tea polyphenols against Escherichia coli K 12. Die Nahr. 2000, 44, 60–62. [Google Scholar] [CrossRef]
- Mayer, R.; Stecher, G.; Wuerzner, R.; Silva, R.C.; Sultana, T.; Trojer, L.; Feuerstein, I.; Krieg, C.; Abe, G.; Popp, M.; et al. Proanthocyanidins: Target compounds as antibacterial agents. J. Agric. Food Chem. 2008, 56, 6959–6966. [Google Scholar] [CrossRef]
- Tang, C.; Xie, B.; Sun, Z. Antibacterial activity and mechanism of B-type oligomeric procyanidins from lotus seedpod on enterotoxigenic Escherichia coli. J. Funct. Foods 2017, 38, 454–463. [Google Scholar] [CrossRef]
- Dall’Agnol, R.; Ferraz, A.; Bernardi, A.P.; Albring, D.; Nör, C.; Sarmento, L.; Lamb, L.; Mass, M.; von Poser, G.; Schapoval, E.E.S. Antimicrobial activity of some Hypericum species. Phytomedicine 2003, 10, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Cushnie, T.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, H.; Zhu, S.; Ma, C.; Wang, Z. Antibacterial activity and mechanism of action of chlorogenic acid. J. Food Sci. 2011, 76, M398–M403. [Google Scholar] [CrossRef]
- Adamczak, A.; Ożarowski, M.; Karpiński, T.M. Antibacterial activity of some flavonoids and organic acids widely distributed in plants. J. Clin. Med. 2019, 9, 109. [Google Scholar] [CrossRef]
- Cushnie, T.T.; Lamb, A.J. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents 2011, 38, 99–107. [Google Scholar] [CrossRef]
- Bouarab-Chibane, L.; Forquet, V.; Lantéri, P.; Clément, Y.; Léonard-Akkari, L.; Oulahal, N.; Degraeve, P.; Bordes, C. Antibacterial properties of polyphenols: Characterization and QSAR (Quantitative Structure–Activity Relationship) models. Front. Microbiol. 2019, 10, 829. [Google Scholar] [CrossRef] [PubMed]
- Smejkal, K.; Chudik, S.; Kloucek, P.; Marek, R.; Cvacka, J.; Urbanova, M.; Julínek, O.; Kokoska, L.; Slapetová, T.; Holubová, P.; et al. Antibacterial C-geranylflavonoids from Paulownia tomentosa fruits. J. Nat. Prod. 2008, 71, 706–709. [Google Scholar] [CrossRef] [PubMed]
- Farhadi, F.; Khameneh, B.; Iranshahi, M.; Iranshahy, M. Antibacterial activity of flavonoids and their structure-activity relationship: An update review. Phytother. Res. 2019, 33, 13–40. [Google Scholar] [CrossRef]
- Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L. Antibacterial activities of flavonoids: Structure-activity relationship and mechanism. Curr. Med. Chem. 2015, 22, 132–149. [Google Scholar] [CrossRef]
- Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev. 2019, 18, 241–272. [Google Scholar] [CrossRef]
- Charalambous, D.; Eliades, N.-G.H.; Christoforou, M.; Kakouri, E.; Kanakis, C.; Tarantilis, P.A.; Pantelidou, M. Chemical Characterization, Antioxidant and Antimicrobial Properties of Different Types of Tissue of Cedrus brevifolia Henry Extracts. Molecules 2022, 27, 2717. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of Cell Viability by the MTT Assay. Cold Spring Harb. Protoc. 2018, 2018, pdb.prot095505. [Google Scholar] [CrossRef]
- Phuyal, N.; Jha, P.K.; Raturi, P.P.; Sangeeta, R. Total Phenolic, Flavonoid Contents, and Antioxidant Activities of Fruit, Seed, and Bark Extracts of Zanthoxylum armatum DC. Sci. World J. 2020, 16, 8780704. [Google Scholar] [CrossRef]
- Hussen, E.M.; Endalew, S.A. In vitro antioxidant and free-radical scavenging activities of polar leaf extracts of Vernonia amygdalina. BMC Complement. Med. Ther. 2023, 23, 146. [Google Scholar] [CrossRef]
- Wang, H.; Joseph, J.A. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 1999, 27, 612–616. [Google Scholar] [CrossRef]
- Charalambous, D.; Christoforou, M.; Kitiri, E.N.; Andreou, M.; Partassides, D.; Papachrysostomou, C.; Frantzi, M.; Karikas, G.A.; Pantelidou, M. Antimicrobial Activities of Saponaria cypria Boiss. Root Extracts, and the Identification of Nine Saponins and Six Phenolic Compounds. Molecules 2022, 27, 5812. [Google Scholar] [CrossRef] [PubMed]
ESI (+) | ESI (−) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Tentatively identified compounds tR (min) | Molecular formula | m/z experimental | m/z theoretical | MS/MS product ions [M+H]+(relative abundance %) | Mass error Δm (ppm) | m/z experimental | m/z theoretical | MS/MS product ions [M−H]−(relative abundance %) | Mass error Δm (ppm) |
Shikimic acid 1.42 | C7H10O5 | n.d. 1 | 173.0448 | 173.0455 | 111.0406 (1) 93.0372 (90) 87.009 (100) 44.9980 (6) | −4.04 | |||
Procyanidin C1 1.44 | C45H38O18 | 867.2131 | 867.2131 | 715.1643 (10) 2 577.1295 (23) 289.0676 (100) 127.0373 (52) 123.0478 (25) | 0.00 | n.d.1 | |||
Cyanidin hexoside 1.45 | C21H20O11 | 449.1076 | 449.1078 | 287.0543 (100) | −0.44 | n.d. | |||
Procyanidin B1 2.12 | C30H26O12 | 579.1442 | 579.1497 | Standard solution 3 | −0.34 | n.d. | |||
Neo-chlorogenic acid 2.37 | C16H18O9 | n.d. | 353.0873 | 353.0878 | 191.0555 (100) 179.0342 (1) 135.0447 (3) | −1.42 | |||
Procyanidin B2 3.23 | C30H26O12 | 579.1497 | 579.1497 | Standard solution | 0.00 | 577.1347 | 577.1351 | Standard solution | −0.69 |
Chlorogenic acid 3.89 | C16H18O9 | 355.1019 | 355.1024 | Standard solution | −1.41 | 353.0871 | 353.0878 | Standard solution | −1.98 |
Epicatechin 4.18 | C15H14O5 | n.d. | 289.0714 | 289.0717 | Standard solution | −1.04 | |||
Phlorizin 4.2 | C21H24O10 | n.d. | 435.1288 | 435.1296 | 271.0603 (100) 245.0823 (4) 167.0336 (2) 151.0393 (32) 125.0241 (47) | −1.84 | |||
Kaempferol dicoumaroyl hexoside 4.62 | C39H32O15 | 741.1814 | 741.1814 | 323.0549 (4) 287.0524 (100) 163.0369 (21) 153.0161 (2) 123.0446 (7) | 0.00 | n.d. | |||
p-Coumaroylquinic acid 5.29 | C16H18O8 | n.d. | 337.0917 | 337.093 | 191.0554 (100) 173.0464 (4) 163.0387 (2) 111.0458 (8) | −3.86 | |||
Mangiferin 5.27 | C19H18O11 | 423.0937 | 423.0922 | Standard solution | 421.0764 | 421.0776 | Standard solution | −2.85 | |
Procyanidin B type (dimer isomer) 5.45 | C30H26O12 | 579.1505 | 579.1497 | 425.0779 (4) 291.0911 (78) 287.0551 (100) | 1.38 | 577.1338 | 577.1351 | 407.0769 (53) 289.0694 (100) 245.0794 (25) 205.0491 (10) | −2.25 |
Feruloylquinic acid 5.47 | C17H20O9 | n.d. | 367.1019 | 367.1034 | 191.0552 (100) 173.0446 (6) 127.0380 (2) 93.0351 (41) | −4.09 | |||
Procyanidin B type (dimer isomer) 5.65 | C30H26O12 | 579.1500 | 579.1497 | 578.33 (100) 291.0819 (11) 287.0551 (96) | 0.5 | n.d. | |||
Naringenin hexoside 5.58 | C21H22O10 | n.d. | 433.114 | 433.114 | 313.0711 (100) 285.0604 (4) 271.0628 (15) 119.0487 (7) 93.0315 (4) | 0.00 | |||
Procyanidin B type (dimer isomer) 5.88 | C30H26O12 | 579.1500 | 579.1497 | 291.0817 (10) 287.0537 (100) | 0.05 | 577.1336 | 577.1351 | 407.0761 (57) 289.0709 (100) 245.0807 (22) 205.0510 (7) | −2.6 |
Procyanidin B type (dimer isomer) 5.99 | C30H26O12 | n.d. | 577.1340 | 577.1351 | 407.0757 (56) 289.0714 (100) 245.0806 (24) 205.0489 (6) | −1.9 | |||
Galangin hexoside 6.31 | C21H20O10 | n.d. | 431.0974 | 431.0984 | 311.0552 (100) 269.0429 (3) 117.0337 (3) 105.0330 (1) | −2.32 | |||
Myricetin hexoside 6.50 | C21H20O13 | n.d. | 479.0819 | 479.0831 | 316.0214 (100) 271.0229 (10) 151.0027 (2) | −2.5 | |||
Apigenin hexoside 6.55 | C21H20O10 | n.d. | 431.0970 | 431.0984 | 311.0548 (100) 269.0445 (3) 161.0258 (1) 121.0287 (1) 117.0337 (4) | −3.25 | |||
Kaempferol rhamnoside 6.71 | C21H20O10 | 433.1145 | 433.1129 | 287.0548 (100) 259.0554 (4) 153.0164 (4) 123.0446 (16) | 1.38 | n.d. | |||
Myricetin hexoside (isomer) 6.71 | C21H20O13 | n.d. | 479.0816 | 479.0831 | 316.0213 (100) 271.0224 (10) 151.0016 (2) | −3.13 | |||
Astilbin 7.01 | C21H22O11 | n.d. | 449.1079 | 449.1089 | 303.0502 (3) 151.0034 (100) 107.0232 (14) | −2.23 | |||
Taxifolin 7.16 | C15H12O7 | 305.0652 | 305.056 | 287.0524 (2) 259.0578 (3) 195.0279 (4) 153.0171 (98) 149.0222 (100) | −1.31 | n.d. | |||
Myricitrin 7.45 | C21H20O12 | 465.1027 | 465.1027 | Standard solution | 0.00 | 463.0876 | 463.0882 | Standard solution | −1.29 |
Epigallocatechin coumarate 7.47 | C24H20O9 | 453.1190 | 453.1182 | 191.0330 (100) 165.0505 (10) 163.0376 (19) 137.0213 (37) | 1.76 | n.d. | |||
Kaempferol pentoside 7.53 | C20H18O10 | n.d. | 417.0818 | 417.0827 | 327.0496 (100) 285.0387 (10) 241.0491 (1) 213.0543 (1) 199.0382 (1) 163.0027 (1) | −1.92 | |||
Hyperoside 7.72 | C21H20O12 | 465.1022 | 465.1027 | Standard solution | −1.07 | 463.0882 | 463.0876 | standard solution | −1.29 |
Quercetin pentoside 7.87 | C20H18O11 | 435.0925 | 435.0923 | 303.0493 (100) 165.0163 (1) | 0.46 | n.d. | |||
Isoquercitrin 7.94 | C21H20O12 | n.d. | 463.0875 | 463.0882 | 300.0263 (100) 271.0251 (15) | −1.51 | |||
Quercetin pentoside (isomer) 7.95 | C20H18O11 | n.d. | 433.0771 | 433.0776 | 301.0330 (63) 300.0265 (100) 283.0240 (2) 259.0605 (1) 152.0097 (2) 151.0029 (9) | 1.15 | |||
Quercetin pentoside (isomer) 8.17 | C20H18O11 | n.d. | 433.0782 | 433.0776 | 301.0336 (70) 300.0265 (100) 283.0243 (2) 259.0621 (1) 152.0106 (4) 151.0035 (11) 108.0214 (1) | 1.38 | |||
Quercitrin 8.30 | C21H20O11 | 449.1076 | 449.1078 | Standard solution | −0.44 | 447.0925 | 447.0933 | Standard solution | −1.79 |
Kaempferol glucoside 8.56 | C21H20O11 | n.d. | 447.0923 | 447.0933 | Standard solution | −2.24 | |||
Luteolin pentoside 9.24 | C20H18O10 | n.d. | 417.0816 | 417.0827 | 327.05 (100) 285.0395 (20) 269.0420 (2) 241.0460 (2) 177.0151 (1) 133.0284 (7) | −2.64 | |||
Methylmyricetin 9.54 | C16H12O8 | n.d. | 331.0451 | 331.0459 | 299.0196 (8) 271.0241 (100) 167.0313 (5) 151.0019 (68) 136.0151 (8) | −2.42 | |||
Quercetin 9.55 | C15H10O7 | n.d. | 301.0350 | 301.0354 | Standard solution | −1.33 | |||
Kaempferol 10.03 | C15H10O6 | n.d. | 285.0401 | 285.0405 | Standard solution | −1.4 | |||
I3-II8 biapigenin 10.92 | C30H18O10 | n.d. | 537.0816 | 537.0827 | 267.0268 (1) 151.0035 (100) 117.0334 (1) 107.0137 (11) | −2.05 | |||
Amentoflavone 11.57 | C30H18O10 | 539.0986 | 539.097 | Standard solution | 2.41 | n.d. |
TPC | TFC | ||
---|---|---|---|
mg GAE 1/g Crude Extract ± SD | mg RUE 2/g Crude Extract ± SD | mg QUE 3/g Crude Extract ± SD | mg CAE 4/g Crude Extract ± SD |
24.920 a ± 0.023 | 12.872 b ± 4.33 | 4.844 c ± 0.475 | 12.289 b ± 1.045 |
Concentration (μg/mL) | DPPH Activity % Inhibition ± SD | Concentration (μg/mL) | ABTS Activity % Inhibition ± SD | ||
---|---|---|---|---|---|
Hydroethanolic | Trolox | Hydroethanolic | Trolox | ||
15.63 | 77.69 ± 1.23 | 88.95 ± 3.45 | 12.5 | 84.86 ± 3.46 | - |
11.72 | 63.33 ± 0.98 | 85.33 ± 1.45 | 9.38 | 66.65 ± 1.37 | 90.43 ± 1.67 |
7.81 | 42.22 ± 0.78 | 81.88 ± 2.21 | 6.25 | 44.43 ± 1.23 | 86.98 ± 1.80 |
5.86 | 38.93 ± 0.34 | 69.90 ± 1.23 | 4.69 | 39.11 ± 0.96 | 69.65 ± 1.38 |
3.91 | 25.95 ± 2.34 | 46.60 ± 1.45 | 3.13 | 31.46 ± 1.64 | 46.43 ± 1.26 |
1.95 | 6.77 ± 0.67 | 23.65 ± 0.89 | 1.56 | 16.49 ± 0.52 | 22.65 ± 1.74 |
0.98 | 4.47 ± 0.43 | 14.72 ± 1.97 | 0.78 | 12.30 ± 1.73 | 13.77 ± 1.04 |
0.49 | 1.92 ± 0.31 | 15.89 ± 0.98 | 0.39 | 7.34 ± 0.62 | 7.09 ± 0.62 |
0.24 | 1.09 ± 0.21 | 11.87 ± 1.32 | - | - | - |
0.12 | - | 9.21 ± 0.34 | - | - | - |
Assay | IC50 Concentration (μg/mL) ± SD | |
---|---|---|
Hydroethanolic | Trolox | |
DPPH | 9.42 ± 0.56 | 4.44 ± 0.67 |
ABTS | 6.78 ± 1.34 | 3.68 ± 0.73 |
DCFDA | 4.68 ± 1.87 | 0.78 ± 0.14 |
MIC 2 (μg/mL) | E. coli | S. aureus | E. faecalis | S. enteritidis |
---|---|---|---|---|
H. repens L | 312.5 ± 0.04 | 125 ± 0.07 | 312.5 ± 0.04 | 312.5 ± 0.09 |
Amp 1 | 16 ± 0.10 | 4 ± 0.15 | 8 ± 0.20 | 16 ± 0.12 |
Gen 1 | 2 ± 0.17 | 1 ± 0.23 | 16 ± 0.14 | 2 ± 0.25 |
Assay | IC50 Concentration (μg/mL) ± SD | |
---|---|---|
Hydroethanolic | Donepezil | |
AChE | 1317.69 a ± 40.69 | 0.04 b ± 0.01 |
BuChE | 534.46 A ± 27.12 | 0.99 B ± 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charalambous, D.; Kakouri, E.; Ververis, A.; Zorba, I.; Chatzidakis, D.; Andreou, M.; Christodoulou, K.; Karikas, G.A.; Tarantilis, P.A. Cyprus St. John’s Wort, Hypericum repens L.: Major Constituents, Antioxidant, Antimicrobial, and Anticholinesterase Activities. Plants 2025, 14, 1881. https://doi.org/10.3390/plants14121881
Charalambous D, Kakouri E, Ververis A, Zorba I, Chatzidakis D, Andreou M, Christodoulou K, Karikas GA, Tarantilis PA. Cyprus St. John’s Wort, Hypericum repens L.: Major Constituents, Antioxidant, Antimicrobial, and Anticholinesterase Activities. Plants. 2025; 14(12):1881. https://doi.org/10.3390/plants14121881
Chicago/Turabian StyleCharalambous, Despina, Eleni Kakouri, Antonis Ververis, Irene Zorba, Dionisis Chatzidakis, Marios Andreou, Kyproula Christodoulou, George A. Karikas, and Petros A. Tarantilis. 2025. "Cyprus St. John’s Wort, Hypericum repens L.: Major Constituents, Antioxidant, Antimicrobial, and Anticholinesterase Activities" Plants 14, no. 12: 1881. https://doi.org/10.3390/plants14121881
APA StyleCharalambous, D., Kakouri, E., Ververis, A., Zorba, I., Chatzidakis, D., Andreou, M., Christodoulou, K., Karikas, G. A., & Tarantilis, P. A. (2025). Cyprus St. John’s Wort, Hypericum repens L.: Major Constituents, Antioxidant, Antimicrobial, and Anticholinesterase Activities. Plants, 14(12), 1881. https://doi.org/10.3390/plants14121881