Next Issue
Volume 13, July-1
Previous Issue
Volume 13, June-1
 
 

Plants, Volume 13, Issue 12 (June-2 2024) – 136 articles

Cover Story (view full-size image): Flowers, having evolved from leaf-like ancestors, are composed of specialized organs that are involved in the reproduction process. The evolution of flower symmetry and the morphology of flower parts (sepals, petals, stamens, carpels) have greatly influenced the diversity of reproductive strategies in flowering plants. This diversity aids in attracting pollinators, protecting gametes, facilitating fertilization, and producing seeds. Symmetry, body axes establishment, and fate determination are interconnected. As the complex genetic networks that establish organ, tissue, and cellular identity, along with growth regulators across body axes, are becoming gradually more understood, this review summarizes a variety of extensive research projects which explore how identity determination and axial regulation coordinate with each other to shape symmetrical floral organ systems. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
14 pages, 2198 KiB  
Article
Increasing Hybrid Rice Yield, Water Productivity, and Nitrogen Use Efficiency: Optimization Strategies for Irrigation and Fertilizer Management
by Haijun Zhu, Xiaoe He, Xuehua Wang and Pan Long
Plants 2024, 13(12), 1717; https://doi.org/10.3390/plants13121717 - 20 Jun 2024
Viewed by 741
Abstract
Water and fertilizer are crucial in rice growth, with irrigation and fertilizer management exhibiting synergies. In a two-year field study conducted in Yiyang City, Hunan Province, we examined the impact of three irrigation strategies—wet-shallow irrigation (W1), flooding irrigation (W2), and the “thin, shallow, [...] Read more.
Water and fertilizer are crucial in rice growth, with irrigation and fertilizer management exhibiting synergies. In a two-year field study conducted in Yiyang City, Hunan Province, we examined the impact of three irrigation strategies—wet-shallow irrigation (W1), flooding irrigation (W2), and the “thin, shallow, wet, dry irrigation” method (W3)—in combination with distinct fertilizer treatments (labeled F1, F2, F3, and F4, with nitrogen application rates of 0, 180, 225, and 270 kg ha−1, respectively) on rice yield generation and water–fertilizer utilization patterns. The study employed Hybrid Rice Xin Xiang Liang you 1751 (XXLY1751) and Yue Liang you Mei Xiang Xin Zhan (YLYMXXZ) as representative rice cultivars. Key findings from the research include water, fertilizer, variety, and year treatments, which all significantly influenced the yield components of rice. Compared to W2, W1 in 2022 reduced the amount of irrigation water by 35.2%, resulting in a 42.0~42.8% increase in irrigation water productivity and a 25.7~25.9% increase in total water productivity. In 2023, similar improvements were seen. Specifically, compared with other treatments, the W1F3 treatment increased nitrogen uptake and harvest index by 1.4–7.7% and 5.9–7.7%, respectively. Phosphorus and potassium uptake also improved. The W1 treatment enhanced the uptake, accumulation, and translocation of nitrogen, phosphorus, and potassium nutrients throughout the rice growth cycle, increasing nutrient levels in the grains. When paired with the F3 fertilization approach, W1 treatment boosted yields and improved nutrient use efficiency. Consequently, combining W1 and F3 treatment emerged as this study’s optimal water–fertilizer management approach. By harnessing the combined effects of water and fertilizer management, we can ensure efficient resource utilization and maximize the productive potential of rice. Full article
(This article belongs to the Special Issue Strategies to Improve Water-Use Efficiency in Plant Production)
Show Figures

Figure 1

24 pages, 2499 KiB  
Article
The Co-Inoculation Effect on Triticum aestivum Growth with Synthetic Microbial Communities (SynComs) and Their Potential in Agrobiotechnology
by Raimonda Mažylytė, Jurgita Kailiuvienė, Edita Mažonienė, Liana Orola, Justina Kaziūnienė, Kamilė Mažylytė, Eglė Lastauskienė and Audrius Gegeckas
Plants 2024, 13(12), 1716; https://doi.org/10.3390/plants13121716 - 20 Jun 2024
Viewed by 516
Abstract
The use of rhizospheric SynComs can be a new and sustainable strategy in the agrobiotechnology sector. The objective of this study was to create the most appropriate SynCom composition; examine the ability to dissolve natural rock phosphate (RP) from Morocco in liquid-modified NBRIP [...] Read more.
The use of rhizospheric SynComs can be a new and sustainable strategy in the agrobiotechnology sector. The objective of this study was to create the most appropriate SynCom composition; examine the ability to dissolve natural rock phosphate (RP) from Morocco in liquid-modified NBRIP medium; determine organic acids, and phytohormones; and verify plant growth promoting and nutrition uptake effect in the pot experiments of winter wheat (Triticum aestivum). A total of nine different microorganisms were isolated, which belonged to three different genera: Bacillus, Pseudomonas, and Streptomyces. Out of the 21 treatments tested, four SynComs had the best phosphate-dissolving properties: IJAK-27+44+91 (129.17 mg L−1), IIBEI-32+40 (90.95 µg mL−1), IIIDEG-45+41 (122.78 mg L−1), and IIIDEG-45+41+72 (120.78 mg L−1). We demonstrate that these SynComs are capable of producing lactic, acetic, gluconic, malic, oxalic, citric acids, and phytohormones such as indole-3-acetic acid, zeatin, gibberellic acid, and abscisic acid. In pot experiments with winter wheat, we also demonstrated that the designed SynComs were able to effectively colonize the plant root rhizosphere and contributed to more abundant plant growth characteristics and nutrient uptake as uninoculated treatment or uninoculated treatment with superphosphate (NPK 0-19-0). The obtained results show that the SynCom compositions of IJAK-27+44+91, IIBEI-32+40, IIIDEG-45+41, and IIIDEG-45+41+72 can be considered as promising candidates for developing biofertilizers to facilitate P absorption and increase plant nutrition. Full article
(This article belongs to the Special Issue Soil-Beneficial Microorganisms and Plant Growth)
Show Figures

Figure 1

14 pages, 2524 KiB  
Article
Silicon Dioxide Nanoparticles-Based Amelioration of Cd Toxicity by Regulating Antioxidant Activity and Photosynthetic Parameters in a Line Developed from Wild Rice
by Humera Ashraf, Fozia Ghouri, Jiabin Liang, Weiwei Xia, Zhiming Zheng, Muhammad Qasim Shahid and Xuelin Fu
Plants 2024, 13(12), 1715; https://doi.org/10.3390/plants13121715 - 20 Jun 2024
Viewed by 551
Abstract
An extremely hazardous heavy metal called cadmium (Cd) is frequently released into the soil, causing a considerable reduction in plant productivity and safety. In an effort to reduce the toxicity of Cd, silicon dioxide nanoparticles were chosen because of their capability to react [...] Read more.
An extremely hazardous heavy metal called cadmium (Cd) is frequently released into the soil, causing a considerable reduction in plant productivity and safety. In an effort to reduce the toxicity of Cd, silicon dioxide nanoparticles were chosen because of their capability to react with metallic substances and decrease their adsorption. This study examines the processes that underlie the stress caused by Cd and how SiO2NPs may be able to lessen it through modifying antioxidant defense, oxidative stress, and photosynthesis. A 100 μM concentration of Cd stress was applied to the hydroponically grown wild rice line, and 50 μM of silicon dioxide nanoparticles (SiO2NPs) was given. The study depicted that when 50 μM SiO2NPs was applied, there was a significant decrease in Cd uptake in both roots and shoots by 30.2% and 15.8% under 100 μM Cd stress, respectively. The results illustrated that Cd had a detrimental effect on carotenoid and chlorophyll levels and other growth-related traits. Additionally, it increased the levels of ROS in plants, which reduced the antioxidant capability by 18.8% (SOD), 39.2% (POD), 32.6% (CAT), and 25.01% (GR) in wild rice. Nevertheless, the addition of silicon dioxide nanoparticles reduced oxidative damage and the overall amount of Cd uptake, which lessened the toxicity caused by Cd. Reduced formation of reactive oxygen species (ROS), including MDA and H2O2, and an increased defense system of antioxidants in the plants provided evidence for this. Moreover, SiO2NPs enhanced the Cd resistance, upregulated the genes related to antioxidants and silicon, and reduced metal transporters’ expression levels. Full article
(This article belongs to the Special Issue Abiotic Stresses in Cereals)
Show Figures

Figure 1

24 pages, 4744 KiB  
Article
Effects of Nitrogen Application at Different Levels by a Sprinkler Fertigation System on Crop Growth and Nitrogen-Use Efficiency of Winter Wheat in the North China Plain
by Keke Wang, Haijun Liu and Zhuangzhuang Gao
Plants 2024, 13(12), 1714; https://doi.org/10.3390/plants13121714 - 20 Jun 2024
Viewed by 528
Abstract
Nitrogen (N) is an essential macronutrient for crop growth; therefore, N deficit can greatly limit crop growth and production. In the North China Plain (NCP), winter wheat (Triticum aestivum L.) is one of the main food crops, and its yield has increased [...] Read more.
Nitrogen (N) is an essential macronutrient for crop growth; therefore, N deficit can greatly limit crop growth and production. In the North China Plain (NCP), winter wheat (Triticum aestivum L.) is one of the main food crops, and its yield has increased from approximately 4000 kg ha−1 to 6000 kg ha−1 in the last two decades. Determining the proper N application rates at different growth stages and in all seasons is very important for the sustainable and high production of wheat in the NCP. A field experiment with five N application rates (250, 200, 150, 100, and 40 kgN·ha−1, designated as N250, N200, N150, N100, and N40, respectively) was conducted during the 2017–2018 and 2018–2019 winter wheat seasons to investigate the effects of the N application rate on water- and fertilizer-utilization efficiency and on the crop growth and yield of winter wheat under sprinkler fertigation conditions. The results showed that in the N application range of 40–200 kg ha−1, crop yield and water- and fertilizer-use efficiencies increased as the N application rate increased; however, further increases in the N application rate (from N200 to N250) did not have additional benefits. The N uptake after regreening of winter wheat linearly increased with crop growth. Considering the wheat yield and N-use efficiency, the recommended optimal N application rate was 200 kg ha−1, and the best topdressing strategy was equal amounts of N applied at the regreening, jointing, and grain-filling stages. The results of this study will be useful for optimizing field N management to achieve high wheat yield production in the NCP and in regions with similar climatic and soil environment conditions. Full article
Show Figures

Graphical abstract

17 pages, 6001 KiB  
Article
Overexpression of Abscisic Acid Biosynthesis Gene OsNCED3 Enhances Survival Rate and Tolerance to Alkaline Stress in Rice Seedlings
by Zhonghui Feng, Yang Xu, Zhiming Xie, Yaqiong Yang, Guanru Lu, Yangyang Jin, Mingming Wang, Miao Liu, Haoyu Yang, Weiqiang Li and Zhengwei Liang
Plants 2024, 13(12), 1713; https://doi.org/10.3390/plants13121713 - 20 Jun 2024
Viewed by 698
Abstract
Alkaline stress with high pH levels could significantly influence plant growth and survival. The enzyme 9-cis-epoxycarotenoid dioxygenase (NCED) serves as a critical bottleneck in the biosynthesis of abscisic acid (ABA), making it essential for regulating stress tolerance. Here, we show that OsNCED3-overexpressing [...] Read more.
Alkaline stress with high pH levels could significantly influence plant growth and survival. The enzyme 9-cis-epoxycarotenoid dioxygenase (NCED) serves as a critical bottleneck in the biosynthesis of abscisic acid (ABA), making it essential for regulating stress tolerance. Here, we show that OsNCED3-overexpressing rice lines have increased ABA content by up to 50.90% and improved transcription levels of numerous genes involved in stress responses that significantly enhance seedling survival rates. Overexpression of OsNCED3 increased the dry weight contents of the total chlorophyll, proline, soluble sugar, starch, and the activities of antioxidant enzymes of rice seedlings, while reducing the contents of O2·, H2O2, and malondialdehyde under hydroponic alkaline stress conditions simulated by 10, 15, and 20 mmol L−1 of Na2CO3. Additionally, the OsNCED3-overexpressing rice lines exhibited a notable increase in the expression of OsNCED3; ABA response-related genes OsSalT and OsWsi18; ion homeostasis-related genes OsAKT1, OsHKT1;5, OsSOS1, and OsNHX5; and ROS scavenging-related genes OsCu/Zn-SOD, OsFe-SOD, OsPOX1, OsCATA, OsCATB, and OsAPX1 in rice seedling leaves. The results of these findings suggest that overexpression of OsNCED3 upregulates endogenous ABA levels and the expression of stress response genes, which represents an innovative molecular approach for enhancing the alkaline tolerance of rice seedlings. Full article
(This article belongs to the Special Issue Responses of Crops to Abiotic Stress)
Show Figures

Figure 1

14 pages, 1798 KiB  
Article
Chemical Composition, Antioxidant, and Cytotoxic Activity of Essential Oils in the Above-Ground Parts of Sonchus oleraceus L.
by Abd El-Nasser G. El Gendy, Nadia A. Mohamed, Tushar C. Sarker, Emad M. Hassan, Ahmed H. Garaa, Abdelsamed I. Elshamy and Ahmed M. Abd-ElGawad
Plants 2024, 13(12), 1712; https://doi.org/10.3390/plants13121712 - 20 Jun 2024
Viewed by 663
Abstract
Sonchus oleraceus L. is a leafy vegetable that is usually consumed in the area of the Mediterranean and is a frequently used traditional herb to treat a variety of ailments. Previous studies deduced the potent antioxidant and cytotoxic functions of the different extracts [...] Read more.
Sonchus oleraceus L. is a leafy vegetable that is usually consumed in the area of the Mediterranean and is a frequently used traditional herb to treat a variety of ailments. Previous studies deduced the potent antioxidant and cytotoxic functions of the different extracts and isolated compounds from S. oleraceus. The current study represents the first instance of chemical profiling and bioactivities of the extracted essential oil (EO) of S. oleraceus. The present investigation set out to identify the chemical components of this EO by means of Gas Chromatography with Flame Ionization Detector (GC-FID) and Gas Chromatography-Mass Spectrometry (G004-MS) techniques; assess the oil’s antioxidant potencies through 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonate (ABTS) assays; and evaluate the oil’s cytotoxic impact against HepG2 cancer cell lines. The GC-MS chemical profiling revealed the identification of 23 components representing 97.43% of the total oil mass within abundant cyclic ketones (20.15%), nonterpenoidial hydrocarbons (28.77%), and sesquiterpenes (42.19%). The main components were n-nonadecane (28.77%), trans-caryophyllene (23.73%), trans-methyl dihydrojasmonate (19.55%), and cis-cadina-1,4-diene (9.44%). In a dose-dependent manner, this EO demonstrated antioxidant capacities on DPPH and ABTS, with IC50 values of 609.35 and 804.16 µg/mL, respectively, compared to ascorbic acid. Using doxorubicin as a reference therapy, the MTT assay findings revealed that this oil had remarkable inhibitory effects on the proliferation of HepG2 cancer cell lines, with an IC50 of 136.02 µg/mL. More studies were recommended for further investigation of new biological roles for this oil and its main components, along with the construction of action mechanisms based on chemical components. Full article
Show Figures

Figure 1

27 pages, 12535 KiB  
Review
Modern Breeding Strategies and Tools for Durable Late Blight Resistance in Potato
by Ioana Virginia Berindean, Abdelmoumen Taoutaou, Soumeya Rida, Andreea Daniela Ona, Maria Floriana Stefan, Alexandru Costin, Ionut Racz and Leon Muntean
Plants 2024, 13(12), 1711; https://doi.org/10.3390/plants13121711 - 20 Jun 2024
Viewed by 889
Abstract
Cultivated potato (Solanum tuberosum) is a major crop worldwide. It occupies the second place after cereals (corn, rice, and wheat). This important crop is threatened by the Oomycete Phytophthora infestans, the agent of late blight disease. This pathogen was first [...] Read more.
Cultivated potato (Solanum tuberosum) is a major crop worldwide. It occupies the second place after cereals (corn, rice, and wheat). This important crop is threatened by the Oomycete Phytophthora infestans, the agent of late blight disease. This pathogen was first encountered during the Irish famine during the 1840s and is a reemerging threat to potatoes. It is mainly controlled chemically by using fungicides, but due to health and environmental concerns, the best alternative is resistance. When there is no disease, no treatment is required. In this study, we present a summary of the ongoing efforts concerning resistance breeding of potato against this devastating pathogen, P. infestans. This work begins with the search for and selection of resistance genes, whether they are from within or from outside the species. The genetic methods developed to date for gene mining, such as effectoromics and GWAS, provide researchers with the ability to identify genes of interest more efficiently. Once identified, these genes are cloned using molecular markers (MAS or QRL) and can then be introduced into different cultivars using somatic hybridization or recombinant DNA technology. More innovative technologies have been developed lately, such as gene editing using the CRISPR system or gene silencing, by exploiting iRNA strategies that have emerged as promising tools for managing Phytophthora infestans, which can be employed. Also, gene pyramiding or gene stacking, which involves the accumulation of two or more R genes on the same individual plant, is an innovative method that has yielded many promising results. All these advances related to the development of molecular techniques for obtaining new potato cultivars resistant to P. infestans can contribute not only to reducing losses in agriculture but especially to ensuring food security and safety. Full article
(This article belongs to the Special Issue Molecular Breeding for Plant Disease Resistance)
Show Figures

Figure 1

16 pages, 7194 KiB  
Article
Structure-Based Design, Virtual Screening, and Discovery of Novel Patulin Derivatives as Biogenic Photosystem II Inhibiting Herbicides
by He Wang, Jing Zhang, Yu Ji, Yanjing Guo, Qing Liu, Yuan Chang, Sheng Qiang and Shiguo Chen
Plants 2024, 13(12), 1710; https://doi.org/10.3390/plants13121710 - 20 Jun 2024
Viewed by 526
Abstract
Computer-aided design usually gives inspirations and has become a vital strategy to develop novel pesticides through reconstructing natural lead compounds. Patulin, an unsaturated heterocyclic lactone mycotoxin, is a new natural PSII inhibitor and shows significant herbicidal activity to various weeds. However, some evidence, [...] Read more.
Computer-aided design usually gives inspirations and has become a vital strategy to develop novel pesticides through reconstructing natural lead compounds. Patulin, an unsaturated heterocyclic lactone mycotoxin, is a new natural PSII inhibitor and shows significant herbicidal activity to various weeds. However, some evidence, especially the health concern, prevents it from developing as a bioherbicide. In this work, molecular docking and toxicity risk prediction are combined to construct interaction models between the ligand and acceptor, and design and screen novel derivatives. Based on the analysis of a constructed patulin–Arabidopsis D1 protein docking model, in total, 81 derivatives are designed and ranked according to quantitative estimates of drug-likeness (QED) values and free energies. Among the newly designed derivatives, forty-five derivatives with better affinities than patulin are screened to further evaluate their toxicology. Finally, it is indicated that four patulin derivatives, D3, D6, D34, and D67, with higher binding affinity but lower toxicity than patulin have a great potential to develop as new herbicides with improved potency. Full article
(This article belongs to the Special Issue Bioherbicide Development for Weed Control II)
Show Figures

Figure 1

17 pages, 8222 KiB  
Article
Genome-Wide Identification and Evolutionary and Expression Analyses of the Cyclin B Gene Family in Brassica napus
by Mingyue Li, Minghao Zhang, Boyu Meng, Likai Miao and Yonghai Fan
Plants 2024, 13(12), 1709; https://doi.org/10.3390/plants13121709 - 20 Jun 2024
Viewed by 558
Abstract
Cyclin B (CYCB) is a regulatory subunit of cyclin-dependent kinase (CDK), the concentration of which fluctuates to regulate cell cycle progression. Extensive studies have been performed on cyclins in numerous species, yet the evolutionary relationships and biological functions of the CYCB family genes [...] Read more.
Cyclin B (CYCB) is a regulatory subunit of cyclin-dependent kinase (CDK), the concentration of which fluctuates to regulate cell cycle progression. Extensive studies have been performed on cyclins in numerous species, yet the evolutionary relationships and biological functions of the CYCB family genes in Brassica napus remain unclear. In this study, we identified 299 CYCB genes in 11 B. napus accessions. Phylogenetic analysis suggests that CYCB genes could be divided into three subfamilies in angiosperms and that the CYCB3 subfamily members may be a newer group that evolved in eudicots. The expansion of BnaCYCB genes underwent segmental duplication and purifying selection in genomes, and a number of drought-responsive and light-responsive cis-elements were found in their promoter regions. Additionally, expression analysis revealed that BnaCYCBs were strongly expressed in the developing seed and silique pericarp, as confirmed by the obviously reduced seed size of the mutant cycb3;1 in Arabidopsis thaliana compared with Col-0. This study provides a comprehensive evolutionary analysis of CYCB genes as well as insight into the biological function of CYCB genes in B. napus. Full article
(This article belongs to the Special Issue Bioinformatics and Functional Genomics in Modern Plant Science)
Show Figures

Figure 1

7 pages, 1665 KiB  
Brief Report
Identification of the New GmJAG1 Transcription Factor Binding Motifs Using DAP-Seq
by Jinxing Wang, Zigang Pu, Weiyao Zhang, Mengnan Qu, Lusi Gao, Wenjing Pan, Yanan Sun, Chunxu Fu, Ling Zhang, Mingkun Huang and Yufang Hu
Plants 2024, 13(12), 1708; https://doi.org/10.3390/plants13121708 - 20 Jun 2024
Viewed by 524
Abstract
Interaction between transcription factors (TFs) and motifs is essential for gene regulation and the subsequent phenotype formation. Soybean (Glycine max) JAGGEED 1 (GmJAG1) is a key TF that controls leaf shape, seed number and flower size. To understand the GmJAG1 binding [...] Read more.
Interaction between transcription factors (TFs) and motifs is essential for gene regulation and the subsequent phenotype formation. Soybean (Glycine max) JAGGEED 1 (GmJAG1) is a key TF that controls leaf shape, seed number and flower size. To understand the GmJAG1 binding motifs, in this study, we performed the GmJAG1 DNA affinity purification sequencing (DAP-seq) experiment, which is a powerful tool for the de novo motif prediction method. Two new significant GmJAG1 binding motifs were predicted and the EMSA experiments further verified the ability of GmJAG1 bound to these motifs. The potential binding sites in the downstream gene promoter were identified through motif scanning and a potential regulatory network mediated by GmJAG1 was constructed. These results served as important genomic resources for further understanding the regulatory mechanism of GmJAG1. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

34 pages, 7449 KiB  
Article
Discovering New QTNs and Candidate Genes Associated with Rice-Grain-Related Traits within a Collection of Northeast Core Set and Rice Landraces
by Debjani Roy Choudhury, Avantika Maurya, Nagendra Kumar Singh, Gyanendra Prata Singh and Rakesh Singh
Plants 2024, 13(12), 1707; https://doi.org/10.3390/plants13121707 - 19 Jun 2024
Viewed by 493
Abstract
Grain-related traits are pivotal in rice cultivation, influencing yield and consumer preference. The complex inheritance of these traits, involving multiple alleles contributing to their expression, poses challenges in breeding. To address these challenges, a multi-locus genome-wide association study (ML-GWAS) utilizing 35,286 high-quality single-nucleotide [...] Read more.
Grain-related traits are pivotal in rice cultivation, influencing yield and consumer preference. The complex inheritance of these traits, involving multiple alleles contributing to their expression, poses challenges in breeding. To address these challenges, a multi-locus genome-wide association study (ML-GWAS) utilizing 35,286 high-quality single-nucleotide polymorphisms (SNPs) was conducted. Our study utilized an association panel comprising 483 rice genotypes sourced from a northeast core set and a landraces set collected from various regions in India. Forty quantitative trait nucleotides (QTNs) were identified, associated with four grain-related traits: grain length (GL), grain width (GW), grain aroma (Aro), and length–width ratio (LWR). Notably, 16 QTNs were simultaneously identified using two ML-GWAS methods, distributed across multiple chromosomes. Nearly 258 genes were found near the 16 significant QTNs. Gene annotation study revealed that sixty of these genes exhibited elevated expression levels in specific tissues and were implicated in pathways influencing grain quality. Gene ontology (GO), trait ontology (TO), and enrichment analysis pinpointed 60 candidate genes (CGs) enriched in relevant GO terms. Among them, LOC_Os05g06470, LOC_Os06g06080, LOC_Os08g43470, and LOC_Os03g53110 were confirmed as key contributors to GL, GW, Aro, and LWR. Insights from QTNs and CGs illuminate rice trait regulation and genetic connections, offering potential targets for future studies. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

27 pages, 2309 KiB  
Review
Application of Zinc Oxide Nanoparticles to Mitigate Cadmium Toxicity: Mechanisms and Future Prospects
by Muhammad Umair Hassan, Guoqin Huang, Fasih Ullah Haider, Tahir Abbas Khan, Mehmood Ali Noor, Fang Luo, Quan Zhou, Binjuan Yang, Muhammad Inzamam Ul Haq and Muhammad Mahmood Iqbal
Plants 2024, 13(12), 1706; https://doi.org/10.3390/plants13121706 - 19 Jun 2024
Viewed by 609
Abstract
Cadmium (Cd), as the most prevalent heavy metal contaminant poses serious risks to plants, humans, and the environment. The ubiquity of this toxic metal is continuously increasing due to the rapid discharge of industrial and mining effluents and the excessive use of chemical [...] Read more.
Cadmium (Cd), as the most prevalent heavy metal contaminant poses serious risks to plants, humans, and the environment. The ubiquity of this toxic metal is continuously increasing due to the rapid discharge of industrial and mining effluents and the excessive use of chemical fertilizers. Nanoparticles (NPs) have emerged as a novel strategy to alleviate Cd toxicity. Zinc oxide nanoparticles (ZnO-NPs) have become the most important NPs used to mitigate the toxicity of abiotic stresses and improve crop productivity. The plants quickly absorb Cd, which subsequently disrupts plant physiological and biochemical processes and increases the production of reactive oxygen species (ROS), which causes the oxidation of cellular structures and significant growth losses. Besides this, Cd toxicity also disrupts leaf osmotic pressure, nutrient uptake, membrane stability, chlorophyll synthesis, and enzyme activities, leading to a serious reduction in growth and biomass productivity. Though plants possess an excellent defense mechanism to counteract Cd toxicity, this is not enough to counter higher concentrations of Cd toxicity. Applying Zn-NPs has proven to have significant potential in mitigating the toxic effects of Cd. ZnO-NPs improve chlorophyll synthesis, photosynthetic efficiency, membrane stability, nutrient uptake, and gene expression, which can help to counter toxic effects of Cd stress. Additionally, ZnO-NPs also help to reduce Cd absorption and accumulation in plants, and the complex relationship between ZnO-NPs, osmolytes, hormones, and secondary metabolites plays an important role in Cd tolerance. Thus, this review concentrates on exploring the diverse mechanisms by which ZnO nanoparticles can alleviate Cd toxicity in plants. In the end, this review has identified various research gaps that need addressing to ensure the promising future of ZnO-NPs in mitigating Cd toxicity. The findings of this review contribute to gaining a deeper understanding of the role of ZnO-NPs in combating Cd toxicity to promote safer and sustainable crop production by remediating Cd-polluted soils. This also allows for the development of eco-friendly approaches to remediate Cd-polluted soils to improve soil fertility and environmental quality. Full article
Show Figures

Figure 1

18 pages, 6999 KiB  
Article
Integrated Transcriptome and Metabolome Analysis Reveals Molecular Mechanisms Underlying Resistance to Phytophthora Root Rot
by Ruidong Sun, Anan Han, Haitang Wang, Congcong Wang, Yang Lu, Danqing Ni, Na Guo, Han Xing and Jinming Zhao
Plants 2024, 13(12), 1705; https://doi.org/10.3390/plants13121705 - 19 Jun 2024
Viewed by 565
Abstract
Soybean production is significantly impacted by Phytophthora root rot (PRR), which is caused by Phytophthora sojae. The nucleotide-binding leucine-rich repeat (NLR) gene family plays a crucial role in plant disease resistance. However, current understanding of the function of soybean NLR genes in [...] Read more.
Soybean production is significantly impacted by Phytophthora root rot (PRR), which is caused by Phytophthora sojae. The nucleotide-binding leucine-rich repeat (NLR) gene family plays a crucial role in plant disease resistance. However, current understanding of the function of soybean NLR genes in resistance to PRR is limited. To address this knowledge gap, transgenic soybean plants overexpressing the NLR gene (Glyma.18g283200) were generated to elucidate the molecular mechanism of resistance. Here, transcript changes and metabolic differences were investigated at three time points (12, 24, and 36 h) after P. sojae infection in hypocotyls of two soybean lines, Dongnong 50 (susceptible line, WT) and Glyma.18g283200 overexpression line (resistant line, OE). Based on the changes in differentially expressed genes (DEGs) in response to P. sojae infection in different lines and at different time points, it was speculated that HOPZ-ACTIVATED RESISTANCE 1 (ZAR1), valine, leucine, and isoleucine degradation, and phytohormone signaling may be involved in the defense response of soybean to P. sojae at the transcriptome level by GO term and KEGG pathway enrichment analysis. Differentially accumulated metabolites (DAMs) analysis revealed that a total of 223 and 210 differential metabolites were identified in the positive ion (POS) and negative ion (NEG) modes, respectively. An integrated pathway-level analysis of transcriptomics (obtained by RNA-seq) and metabolomics data revealed that isoflavone biosynthesis was associated with disease resistance. This work provides valuable insights that can be used in breeding programs aiming to enhance soybean resistance against PRR. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

13 pages, 3256 KiB  
Article
Cheungsam Seed Husk Extract Reduces Skin Inflammation through Regulation of Inflammatory Mediator in TNF-α/IFN-γ-Induced HaCaT Cells
by Ji-Ye Han, Yun Jung Lee, Do-Won Lim, Hyun-Ju Jung, EunJeong Kwon, Jongki Hong and Young-Mi Lee
Plants 2024, 13(12), 1704; https://doi.org/10.3390/plants13121704 - 19 Jun 2024
Viewed by 566
Abstract
Cannabis contains numerous natural components and has several effects such as anticancer, anti-inflammatory and antioxidant. Cheungsam is a variety of non-drug-type hemp, developed in Korea and is used for fiber (stem) and oil (seed). The efficacy of Cheungsam on skin is not yet [...] Read more.
Cannabis contains numerous natural components and has several effects such as anticancer, anti-inflammatory and antioxidant. Cheungsam is a variety of non-drug-type hemp, developed in Korea and is used for fiber (stem) and oil (seed). The efficacy of Cheungsam on skin is not yet known, and although there are previous studies on Cheungsam seed oil, there are no studies on Cheungsam seed husk. In this study, we investigated the potential of Cheungsam seed husk ethanol extract (CSSH) to alleviate skin inflammation through evaluating the gene and protein expression levels of inflammatory mediators. The results showed that CSSH reduced pro-inflammatory cytokines (IL-1β, IL-6, IL-8, MCP-1 and CXCL10) and atopic dermatitis-related cytokines (IL-4, CCL17, MDC and RANTES) in TNF-α/IFN-γ-induced HaCaT cells. Furthermore, ERK, JNK and p38 phosphorylation were decreased and p-p65, p-IκBα, NLRP3, caspase-1, p-JAK1 and p-STAT6 were suppressed after CSSH treatment. CSSH significantly increased the level of the skin barrier factors filaggrin and involucrin. These results suggest that Cheungsam seed husk ethanol extract regulates the mechanism of skin inflammation and can be used as a new treatment for skin inflammatory diseases. Full article
Show Figures

Figure 1

16 pages, 4386 KiB  
Article
Cytological and Molecular Characterization of a New Ogura Cytoplasmic Male Sterility Restorer of Brassica napus L.
by Lan Huang, Yun Ren, Baogang Lin, Pengfei Hao, Kaige Yi, Xi Li and Shuijin Hua
Plants 2024, 13(12), 1703; https://doi.org/10.3390/plants13121703 - 19 Jun 2024
Viewed by 518
Abstract
Ogura cytoplasmic male sterility (CMS) is considered the rapeseed (Brassica napus L.) with the most potential to be utilized as a heterosis system worldwide, but it lacks sufficient restorers. In this study, root tip cell (RTC) mitotic and pollen mother cell (PMC) [...] Read more.
Ogura cytoplasmic male sterility (CMS) is considered the rapeseed (Brassica napus L.) with the most potential to be utilized as a heterosis system worldwide, but it lacks sufficient restorers. In this study, root tip cell (RTC) mitotic and pollen mother cell (PMC) meiosis observations were compared to ensure the number of chromosomes and the formation of a chromosomal bridge using restorer lines R2000, CLR650, and Zhehuhong (a new restorer) as the experimental material. Further, molecular markers of exogenous chromosomal fragments were detected and the sequence and expression differences of restorer genes in the three lines were determined to identify the distinctive characteristics of Zhehuhong. The results showed that the number of chromosomes in Zhehuhong was stable (2n = 38), indicating that the exogenous radish chromosome segment had been integrated into the chromosome of Zhehuhong. Molecular marker detection revealed that Zhehuhong was detected at most loci, with only the RMA05 locus being missed. The exogenous radish chromosome segment of Zhehuhong differed from R2000 and CLR650. The pollen mother cells of Zhehuhong showed chromosome lagging in the meiotic metaphase I, meiotic anaphase I, and meiotic anaphase II, which was consistent with R2000 and CLR650. The restorer gene PPRB in Zhehuhong had 85 SNPs compared with R2000 and 119 SNPs compared with CLR650, indicating the distinctive characteristic of PPRB in Zhehuhong. In terms of the spatial expression of PPRB, the highest level was detected in the anthers in the three restorer lines. In addition, in terms of temporal expression, the PPRB gene expression of Zhehuhong was highest at a bud length of 4 mm. Our results clearly indicated that Zhehuhong is a new restorer line for the Ogura CMS system, which can be used further in rapeseed heterosis utilization. Full article
Show Figures

Figure 1

27 pages, 12643 KiB  
Article
Influence of Time-Lag Effects between Winter-Wheat Canopy Temperature and Atmospheric Temperature on the Accuracy of CWSI Inversion of Photosynthetic Parameters
by Yujin Wang, Yule Lu, Ning Yang, Jiankun Wang, Zugui Huang, Junying Chen and Zhitao Zhang
Plants 2024, 13(12), 1702; https://doi.org/10.3390/plants13121702 - 19 Jun 2024
Viewed by 392
Abstract
When calculating the CWSI, previous researchers usually used canopy temperature and atmospheric temperature at the same time. However, it takes some time for the canopy temperature (Tc) to respond to atmospheric temperature (Ta), suggesting the time-lag effects between Ta and Tc. In order [...] Read more.
When calculating the CWSI, previous researchers usually used canopy temperature and atmospheric temperature at the same time. However, it takes some time for the canopy temperature (Tc) to respond to atmospheric temperature (Ta), suggesting the time-lag effects between Ta and Tc. In order to investigate time-lag effects between Ta and Tc on the accuracy of the CWSI inversion of photosynthetic parameters in winter wheat, we conducted an experiment. In this study, four moisture treatments were set up: T1 (95% of field water holding capacity), T2 (80% of field water holding capacity), T3 (65% of field water holding capacity), and T4 (50% of field water holding capacity). We quantified the time-lag parameter in winter wheat using time-lag peak-seeking, time-lag cross-correlation, time-lag mutual information, and gray time-lag correlation analysis. Based on the time-lag parameter, we modified the CWSI theoretical and empirical models and assessed the impact of time-lag effects on the accuracy of the CWSI inversion of photosynthesis parameters. Finally, we applied several machine learning algorithms to predict the daily variation in the CWSI after time-lag correction. The results show that: (1) The time-lag parameter calculated using time-lag peak-seeking, time-lag cross-correlation, time-lag mutual information, and gray time-lag correlation analysis are 44–70, 32–44, 42–58, and 76–97 min, respectively. (2) The CWSI empirical model corrected by the time-lag mutual information method has the highest correlation with photosynthetic parameters. (3) GA-SVM has the highest prediction accuracy for the CWSI empirical model corrected by the time-lag mutual information method. Considering time lag effects between Ta and Tc effectively enhanced the correlation between CWSI and photosynthetic parameters, which can provide theoretical support for thermal infrared remote sensing to diagnose crop water stress conditions. Full article
(This article belongs to the Special Issue The Application of Spectral Techniques in Agriculture and Forestry)
Show Figures

Figure 1

20 pages, 6454 KiB  
Article
Genome-Wide Identification of the Cation/Proton Antiporter (CPA) Gene Family and Functional Analysis of AtrNHX8 under Salt Stress
by Shengcai Liu, Zixian An, Yixuan Li, Rongzhi Yang and Zhongxiong Lai
Plants 2024, 13(12), 1701; https://doi.org/10.3390/plants13121701 - 19 Jun 2024
Viewed by 563
Abstract
Amaranthus tricolor is an important vegetable, and its quality is affected by salt stress. Cation/proton antiporters (CPA) contribute to plant development and tolerance to salt stress. In this study, 35 CPA genes were identified from a genome database for A. tricolor [...] Read more.
Amaranthus tricolor is an important vegetable, and its quality is affected by salt stress. Cation/proton antiporters (CPA) contribute to plant development and tolerance to salt stress. In this study, 35 CPA genes were identified from a genome database for A. tricolor, including 9 NHX, 5 KEA, and 21 CPA2 genes. Furthermore, in A. tricolor, the expression levels of most AtrNHX genes were higher at a low salinity level (50 or 100 mM NaCl) than in the control or 200 mM NaCl treatment. Levels of most AtrNHX genes were elevated in the stem. Moreover, AtrNHX8 was homologous to AtNHX4, which is involved in the regulation of sodium homeostasis and salt stress response. After AtrNHX8 overexpression in Arabidopsis thaliana, seed germination was better, and the flowering time was earlier than that of wild-type plants. Additionally, the overexpression of AtrNHX8 in A. thaliana improved salt tolerance. These results reveal the roles of AtrNHX genes under salt stress and provide valuable information on this gene family in amaranth. Full article
(This article belongs to the Special Issue The Growth and Development of Vegetable Crops)
Show Figures

Figure 1

12 pages, 7750 KiB  
Article
Effects of Substrate Composition on the Growth Traits of Grafted Seedling in Macadamia (Macadamia integrifolia) Nuts
by Qiujin Tan, Chunheng Zhou, Peng Xu, Xiyun Huang, Zhenzhen Pan, Yuanrong Wei, Wenlin Wang and Lifeng Wang
Plants 2024, 13(12), 1700; https://doi.org/10.3390/plants13121700 - 19 Jun 2024
Viewed by 465
Abstract
Macadamia nut plantings in China are expanding year by year. In order to breed and promote superior varieties, this study analyzed the effects of different rootstocks and scions on the survival rate of grafted seedlings, and then selected the best substrate composition for [...] Read more.
Macadamia nut plantings in China are expanding year by year. In order to breed and promote superior varieties, this study analyzed the effects of different rootstocks and scions on the survival rate of grafted seedlings, and then selected the best substrate composition for plant growth. The results showed that the survival rate of the HAES788 variety as rootstock and Guire No. 1 as scion was the highest, reaching 96%. The optimal grafting time in December was better than that in March. Furthermore, among 16 substrate formulations, T12, T13, T15, and T16 had advantages of agglomerated soil and more well-developed root systems compared to the CK made of loess. The plant height, stem diameter, leaf length, leaf width, and dry weight of the aboveground and underground parts of the grafted seedlings planted in these substrate formulations were significantly higher than those plants planted in the CK. In addition, the substrate formulations T12, T13, T15, and T16 significantly improved the organic matter, total nitrogen, and total potassium content of the substrate soils, but little improvement was observed for total phosphorus content after 13 months. Overall, macadamia grafting times are best in December, with HAES788 and Guire No. 1 being the best rootstock and scion. The optimal substrate formulations are T12, T13, T15, and T16. This study provides a solid foundation for the production of high-quality macadamia plants. Full article
(This article belongs to the Special Issue Horticultural Plant Cultivation and Fruit Quality Enhancement)
Show Figures

Figure 1

17 pages, 3891 KiB  
Article
Xylooligosaccharides Enhance Lettuce Root Morphogenesis and Growth Dynamics
by Meng Kong, Jiuxing He, Juan Wang, Min Gong, Qiuyan Huo, Wenbo Bai, Jiqing Song, Jianbin Song, Wei Han and Guohua Lv
Plants 2024, 13(12), 1699; https://doi.org/10.3390/plants13121699 - 19 Jun 2024
Viewed by 427
Abstract
Enhancing root development is pivotal for boosting crop yield and augmenting stress resilience. In this study, we explored the regulatory effects of xylooligosaccharides (XOSs) on lettuce root growth, comparing their impact with that of indole-3-butyric acid potassium salt (IBAP). Treatment with XOS led [...] Read more.
Enhancing root development is pivotal for boosting crop yield and augmenting stress resilience. In this study, we explored the regulatory effects of xylooligosaccharides (XOSs) on lettuce root growth, comparing their impact with that of indole-3-butyric acid potassium salt (IBAP). Treatment with XOS led to a substantial increase in root dry weight (30.77%), total root length (29.40%), volume (21.58%), and surface area (25.44%) compared to the water-treated control. These enhancements were on par with those induced by IBAP. Comprehensive phytohormone profiling disclosed marked increases in indole-3-acetic acid (IAA), zeatin riboside (ZR), methyl jasmonate (JA-ME), and brassinosteroids (BRs) following XOS application. Through RNA sequencing, we identified 3807 differentially expressed genes (DEGs) in the roots of XOS-treated plants, which were significantly enriched in pathways associated with manganese ion homeostasis, microtubule motor activity, and carbohydrate metabolism. Intriguingly, approximately 62.7% of the DEGs responsive to XOS also responded to IBAP, underscoring common regulatory mechanisms. However, XOS uniquely influenced genes related to cutin, suberine, and wax biosynthesis, as well as plant hormone signal transduction, hinting at novel mechanisms of stress tolerance. Prominent up-regulation of genes encoding beta-glucosidase and beta-fructofuranosidase highlights enhanced carbohydrate metabolism as a key driver of XOS-induced root enhancement. Collectively, these results position XOS as a promising, sustainable option for agricultural biostimulation. Full article
(This article belongs to the Special Issue Root Development and Adaptations)
Show Figures

Figure 1

14 pages, 7008 KiB  
Article
A Physiological and Molecular Docking Insight on Quercetin Mediated Salinity Stress Tolerance in Chinese Flowering Cabbage and Increase in Glucosinolate Contents
by Waheed Akram, Imran Khan, Areeba Rehman, Bareera Munir, Juxian Guo and Guihua Li
Plants 2024, 13(12), 1698; https://doi.org/10.3390/plants13121698 - 19 Jun 2024
Viewed by 417
Abstract
The present study was performed to investigate the negative impact of salinity on the growth of Chinese flowering cabbage (Brassica rapa ssp. chinensis var. parachinensis) and the ameliorative effects of quercetin dihydrate on the plant along with the elucidation of underlying [...] Read more.
The present study was performed to investigate the negative impact of salinity on the growth of Chinese flowering cabbage (Brassica rapa ssp. chinensis var. parachinensis) and the ameliorative effects of quercetin dihydrate on the plant along with the elucidation of underlying mechanisms. The tolerable NaCl stress level was initially screened for the Chinese flowering cabbage plants during a preliminary pot trial by exposing the plants to salinity levels (0, 50, 100, 150, 200, 250, 300, 350, and 400 mM) and 250 mM was adopted for further experimentation based on the findings. The greenhouse experiment was performed by adopting a completely randomized design using three different doses of quercetin dihydrate (50, 100, 150 µM) applied as a foliar treatment. The findings showed that the exposure salinity significantly reduced shoot length (46.5%), root length (21.2%), and dry biomass (32.1%) of Chinese flowering cabbage plants. Whereas, quercetin dihydrate applied at concentrations of 100, and 150 µM significantly diminished the effect of salinity stress by increasing shoot length (36.8- and 71.3%), root length (36.57- and 56.19%), dry biomass production (51.4- and 78.6%), Chl a (69.8- and 95.7%), Chl b (35.2- and 87.2%), and carotenoid contents (21.4- and 40.3%), respectively, compared to the plants cultivated in salinized conditions. The data of physiological parameters showed a significant effect of quercetin dihydrate on the activities of peroxidase, superoxide dismutase, and catalase enzymes. Interestingly, quercetin dihydrate increased the production of medicinally important glucosinolate compounds in Chinese flowering cabbage plants. Molecular docking analysis showed a strong affinity of quercetin dihydrate with three different stress-related proteins of B. rapa plants. Based on the findings, it could be concluded that quercetin dihydrate can increase the growth of Chinese flowering cabbage under both salinity and normal conditions, along with an increase in the medicinal quality of the plants. Further investigations are recommended as future perspectives using other abiotic stresses to declare quercetin dihydrate as an effective remedy to rescue plant growth under prevailing stress conditions. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Plant Salinity Stress and Tolerance)
Show Figures

Figure 1

15 pages, 2581 KiB  
Article
Chlorella vulgaris and Tetradesmus obliquus Protect Spinach (Spinacia oleracea L.) against Fusarium oxysporum
by Catarina Viana, Méanne Genevace, Florinda Gama, Luísa Coelho, Hugo Pereira, João Varela and Mário Reis
Plants 2024, 13(12), 1697; https://doi.org/10.3390/plants13121697 - 19 Jun 2024
Viewed by 731
Abstract
Chlorella vulgaris and Tetradesmus obliquus were tested as biocontrol agents against the phytopathogenic fungus Fusarium oxysporum. This evaluation was conducted through in vitro and in vivo trials with spinach (Spinacia oleracea L.). The in vitro trials showed that C. vulgaris and [...] Read more.
Chlorella vulgaris and Tetradesmus obliquus were tested as biocontrol agents against the phytopathogenic fungus Fusarium oxysporum. This evaluation was conducted through in vitro and in vivo trials with spinach (Spinacia oleracea L.). The in vitro trials showed that C. vulgaris and T. obliquus were able to inhibit the phytopathogen, showing a similar inhibitory effect to that of the positive controls (Rovral, BASF® and Biocontrol T34, Biocontrol Technologies® S.L.). C. vulgaris aqueous suspensions at 3.0 g L−1 led to a hyphal growth of 0.55 cm, each corresponding to a reduction of 63% of fungal growth. With T. obliquus, the hyphal growth was 0.53 cm when applied at a concentration of 0.75 g L−1, having an inhibition of fungus growth of 64%. Thereafter, these results were validated in an in vivo trial on spinach using the same controls. The results revealed a lower severity and disease incidence and a reduction in the disease’s AUDPC (area under the disease progress curve) when spinach was treated with the microalgae suspensions. Overall, these findings highlight the potential of C. vulgaris and T. obliquus suspensions as promising biocontrol agents against F. oxysporum in spinach when applied through irrigation. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

7 pages, 1391 KiB  
Communication
Analysis of 26S Proteasome Activity across Arabidopsis Tissues
by Jagadeesan Ganapathy, Katherine A. Hand and Nitzan Shabek
Plants 2024, 13(12), 1696; https://doi.org/10.3390/plants13121696 - 19 Jun 2024
Viewed by 410
Abstract
Plants utilize the ubiquitin proteasome system (UPS) to orchestrate numerous essential cellular processes, including the rapid responses required to cope with abiotic and biotic stresses. The 26S proteasome serves as the central catalytic component of the UPS that allows for the proteolytic degradation [...] Read more.
Plants utilize the ubiquitin proteasome system (UPS) to orchestrate numerous essential cellular processes, including the rapid responses required to cope with abiotic and biotic stresses. The 26S proteasome serves as the central catalytic component of the UPS that allows for the proteolytic degradation of ubiquitin-conjugated proteins in a highly specific manner. Despite the increasing number of studies employing cell-free degradation assays to dissect the pathways and target substrates of the UPS, the precise extraction methods of highly potent tissues remain unexplored. Here, we utilize a fluorogenic reporting assay using two extraction methods to survey proteasomal activity in different Arabidopsis thaliana tissues. This study provides new insights into the enrichment of activity and varied presence of proteasomes in specific plant tissues. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

12 pages, 1118 KiB  
Article
Bifenthrin Residues in Table Grapevine: Method Optimization, Dissipation and Removal of Residues in Grapes and Grape Leaves
by Saleh S. Alhewairini, Rania M. Abd El-Hamid, Nevein S. Ahmed, Sherif B. Abdel Ghani and Osama I. Abdallah
Plants 2024, 13(12), 1695; https://doi.org/10.3390/plants13121695 - 19 Jun 2024
Viewed by 458
Abstract
The QuEChERS method was adjusted to determine bifenthrin residues in grapes and grape leaves. Extraction and cleanup procedures were optimized to decrease co-extracted materials and enhance the detection of bifenthrin. The method was validated per the European Union (EU) Guidelines criteria. Accuracy ranged [...] Read more.
The QuEChERS method was adjusted to determine bifenthrin residues in grapes and grape leaves. Extraction and cleanup procedures were optimized to decrease co-extracted materials and enhance the detection of bifenthrin. The method was validated per the European Union (EU) Guidelines criteria. Accuracy ranged from 98.8% to 93.5% for grapes and grape leaves, respectively. Precision values were 5.5 and 6.4 (RSDr) and 7.4 and 6.7 (RSDR) for grapes and grape leaves, respectively. LOQs (the lowest spiking level) were 2 and 20 µg/kg for grapes and grape leaves, respectively. Linearity as determination coefficient (R2) values were 0.9997 and 0.9964 for grapes and grape leaves, respectively, in a matrix over 1–100 µg/L range of analyte concentration. This was very close to the value in the pure solvent (0.9999), showing the efficiency of the cleanup in removing the co-extracted and co-injected materials; the matrix effect was close to zero in both sample matrices. Dissipation of bifenthrin was studied in a supervised trial conducted in a grapevine field during the summer of 2023 at the recommended dose and double the dose. Dissipation factor k values were 0.1549 and 0.1672 (recommended dose) and 0.235 and 0.208 (double dose) for grapes and grape leaves, respectively. Pre-harvest interval (PHI) was calculated for the Maximum Residue Limit (MRL) values of the EU database. Residues of bifenthrin were removed effectively from grapes using simple washing with tap water in a laboratory study. Residues reached the MRL level of 0.3 mg/kg in both washing treatments, running or soaking in tap water treatments for 5 min. Removal from leaves did not decrease residue levels to the MRL in grape leaves. Full article
(This article belongs to the Special Issue Pesticide Residues in Plants)
Show Figures

Figure 1

16 pages, 2938 KiB  
Article
Studies on the Phosphorus-Solubilizing Ability of Isaria cateinannulata and Its Influence on the Growth of Fagopyrum tataricum Plants
by Guimin Yang, Can Liu, Lingdi Gu, Qingfu Chen and Xiaona Zhang
Plants 2024, 13(12), 1694; https://doi.org/10.3390/plants13121694 - 19 Jun 2024
Viewed by 632
Abstract
I. cateinannulata has been shown to promote the growth of F. tataricum. However, whether its growth-promoting capacity is related to its ability to solubilize phosphorus has not been reported. Therefore, in this study, we sought to assess the phosphorus-solubilizing ability of 18 [...] Read more.
I. cateinannulata has been shown to promote the growth of F. tataricum. However, whether its growth-promoting capacity is related to its ability to solubilize phosphorus has not been reported. Therefore, in this study, we sought to assess the phosphorus-solubilizing ability of 18 strains of I. cateinannulata by analyzing their growth in an inorganic phosphorus culture medium. The effects of F. tataricum on growth and effective phosphorus content were analyzed through field experiments. The results showed that all 18 strains of I. cateinannulata had a phosphorus release capacity, with phosphorus solubilization ranging from 5.14 ± 0.37 mg/L to 6.21 ± 0.01 mg/L, and strain 9 exhibited the best phosphorus solubilization effect. Additionally, the field results demonstrated that I. cateinannulata positively influenced the growth, root length, and yield of F. tataricum by increasing the chlorophyll and soluble phosphorus content. This study will provide a material basis and theoretical support for investigating the interaction mechanism between I. cateinannulata and F. tataricum. Full article
Show Figures

Figure 1

20 pages, 6639 KiB  
Article
Identification of Drought-Resistant Response in Proso Millet (Panicum miliaceum L.) Root through Physiological and Transcriptomic Analysis
by Panpan Zhang, Binglei Wang, Yaning Guo, Tao Wang, Qian Wei, Yan Luo, Hao Li, Huiping Wu, Xiaolin Wang and Xiong Zhang
Plants 2024, 13(12), 1693; https://doi.org/10.3390/plants13121693 - 19 Jun 2024
Viewed by 500
Abstract
Proso millet (Panicum miliaceum L.) is resilient to abiotic stress, especially to drought. However, the mechanisms by which its roots adapt and tolerate salt stress are obscure. In this study, to clarify the molecular mechanism of proso millet in response to drought [...] Read more.
Proso millet (Panicum miliaceum L.) is resilient to abiotic stress, especially to drought. However, the mechanisms by which its roots adapt and tolerate salt stress are obscure. In this study, to clarify the molecular mechanism of proso millet in response to drought stress, the physiological indexes and transcriptome in the root of seedlings of the proso millet cultivar ‘Yumi 2’ were analyzed at 0, 0.5, 1.0, 1.5, and 3.0 h of stimulated drought stress by using 20% PEG-6000 and after 24 h of rehydration. The results showed that the SOD activity, POD activity, soluble protein content, MDA, and O2· content of ‘Yumi 2’ increased with the time of drought stress, but rapidly decreased after rehydration. Here, 130.46 Gb of clean data from 18 samples were obtained, and the Q30 value of each sample exceeded 92%. Compared with 0 h, the number of differentially expressed genes (DEGs) reached the maximum of 16,105 after 3 h of drought, including 9153 upregulated DEGs and 6952 downregulated DEGs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that upregulated DEGs were mainly involved in ATP binding, nucleus, protein serine/threonine phosphatase activity, MAPK signaling pathway–plant, plant–pathogen interactions, and plant hormone signal transduction under drought stress, while downregulated DEGs were mainly involved in metal ion binding, transmembrane transporter activity, and phenylpropanoid biosynthesis. Additionally, 1441 TFs screened from DEGs were clustered into 64 TF families, such as AP2/ERF-ERF, bHLH, WRKY, NAC, MYB, and bZIP TF families. Genes related to physiological traits were closely related to starch and sucrose metabolism, phenylpropanoid biosynthesis, glutathione metabolism, and plant hormone signal transduction. In conclusion, the active oxygen metabolism system and the soluble protein of proso millet root could be regulated by the activity of protein serine/threonine phosphatase. AP2/ERF-ERF, bHLH, WRKY, NAC, MYB, and bZIP TF families were found to be closely associated with drought tolerance in proso millet root. This study will provide data to support a subsequent study on the function of the drought tolerance gene in proso millet. Full article
(This article belongs to the Special Issue Mechanism of Drought and Salinity Tolerance in Crops)
Show Figures

Figure 1

14 pages, 5116 KiB  
Article
Phenanthrene-Induced Cytochrome P450 Genes and Phenanthrene Tolerance Associated with Arabidopsis thaliana CYP75B1 Gene
by Francisco Cabello-Hurtado and Abdelhak El Amrani
Plants 2024, 13(12), 1692; https://doi.org/10.3390/plants13121692 - 19 Jun 2024
Viewed by 501
Abstract
Polycyclic aromatic hydrocarbons (PAHs) form an important group of organic pollutants due to their distribution in the environment and their carcinogenic and/or mutagenic effects. In order to identify at the molecular level some of the players in the biodegradation and tolerance response to [...] Read more.
Polycyclic aromatic hydrocarbons (PAHs) form an important group of organic pollutants due to their distribution in the environment and their carcinogenic and/or mutagenic effects. In order to identify at the molecular level some of the players in the biodegradation and tolerance response to PAHs in plants, we have phenotyped 32 Arabidopsis thaliana T-DNA mutant lines corresponding to 16 cytochrome P450 (CYP) genes that showed to be differentially expressed under contrasted stress conditions induced by phenanthrene, a 3-ring PAH. This screening has allowed us to identify CYP75B1 (At5g07990) T-DNA mutants as the only ones being sensitive to phenanthrene-induced stress, supporting that CYP75B1 protein is necessary for PAH tolerance. CYP75B1 codes for a 3′flavonol hydroxylase. CYP75B1 gene was heterologously expressed on yeast in order to investigate whether it affects the A. thaliana response to phenanthrene by participating in its metabolization. Heterologously-produced CYP75B1 enzyme shows to be catalytically efficient against its physiological substrates (e.g., naringenin) but unable to metabolize phenanthrene or 9-phenanthrenol. In contrast, CYP75B1 seems rather involved in phenanthrene tolerance as a crucial element by regulating concentration of antioxidants through the production of 3′-hydroxylated flavonoids such as quercetin and cyanidin. In particular, we report a highly increased generation of reactive oxygen species (H2O2 and singlet oxygen) in cyp75b1 mutants compared to control plants in response to phenanthrene treatment. Overall, CYP75B1 shows to play an important role in the response to the deleterious effects of phenanthrene exposure and this is related to oxidative stress sensitivity rather than metabolization. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

10 pages, 1459 KiB  
Article
Can Photoselective Nets’ Influence Pollen Traits? A Case Study in ‘Matua’ and ‘Tomuri’ Kiwifruit Cultivars
by Helena Ribeiro, Nuno Mariz-Ponte, Sónia Pereira, Alexandra Guedes, Ilda Abreu, Luísa Moura and Conceição Santos
Plants 2024, 13(12), 1691; https://doi.org/10.3390/plants13121691 - 19 Jun 2024
Viewed by 444
Abstract
The increasing use of photoselective nets (PNs) raises the question of their influence on pollen traits. We aimed to evaluate the effect of PNs (yellow, pearl, and grey) on the pollen of ‘Matua’ and ‘Tomuri’ Actinidia deliciosa cultivars. The pollen size and the [...] Read more.
The increasing use of photoselective nets (PNs) raises the question of their influence on pollen traits. We aimed to evaluate the effect of PNs (yellow, pearl, and grey) on the pollen of ‘Matua’ and ‘Tomuri’ Actinidia deliciosa cultivars. The pollen size and the exine were studied with a light microscopy and a scanning electron microscopy, and the fertility was analysed by a viability assay and in vitro germination. The total soluble proteins (TSPs) and sugars (TSSs) were quantified by colorimetric assays. The molecular structure of the pollen grain’s wall was analysed by a Raman spectroscopy. The pollen from the plants under the PNs had a larger width and area and a lower germination rate. No significant changes were observed in the exine’s microperforations. The TSP and TSS contents were influenced by the cultivar and PNs (particularly the pearl PN). The Raman spectra of the pollen from the plants grown under the nets presented some bands that significantly shifted from their original position, indicating differences in the vibration modes of the molecules, but no overall changes at their structural or organisation level were found. Our study showed that the PNs could influence several pollen traits, with the pearl PN inducing greater modifications. Our results also support the idea that cultivars affect the outcome of some characteristics. Full article
(This article belongs to the Special Issue Growth, Development, and Stress Response of Horticulture Plants)
Show Figures

Figure 1

18 pages, 1669 KiB  
Article
Amazon Rainforest Hidden Volatiles—Part I: Unveiling New Compounds from Acmella oleracea (L.) R.K. Jansen Essential Oil
by Niko S. Radulović, Marko Z. Mladenović, Clarissa Silva Lima, Elza Caroline Alves Müller, Elizabeth Vianna Moraes da Costa, Rozilene Valadares Martins and Fabio Boylan
Plants 2024, 13(12), 1690; https://doi.org/10.3390/plants13121690 - 19 Jun 2024
Viewed by 482
Abstract
Motivated by the culinary and ethnopharmacological use of Acmella oleracea (L.) R.K. Jansen, this study aimed to unveil new chemical compounds from its essential oil (EO). Acmella oleracea, known for its anesthetic and spicy properties, has been used in traditional medicine and [...] Read more.
Motivated by the culinary and ethnopharmacological use of Acmella oleracea (L.) R.K. Jansen, this study aimed to unveil new chemical compounds from its essential oil (EO). Acmella oleracea, known for its anesthetic and spicy properties, has been used in traditional medicine and cuisine, particularly in Northern Brazil. Through a detailed GC-MS analysis, 180 constituents were identified, including 12 tentatively identified long-chain α-keto esters of various acids. Additionally, 18 new esters were synthesized for structural verification. This research expands the known chemical diversity of A. oleracea EO, providing a basis for potential pharmacological applications. The identification of new natural products, including homologs and analogs of acmellonate, underscores the EO’s rich chemical profile and its potential for novel bioproduct development. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

12 pages, 1724 KiB  
Article
Tissue-Specific Tolerance to High-Temperature and Nutrient-Poor Conditions in a Canopy-Forming Macroalga, Surviving at an Ocean Warming Hotspot
by Hikaru Endo, Masafumi Kodama, Ryoya Kawashima, Momochika Kumagai, Midori Matsuoka, Keigo Ebata and Suguru Okunishi
Plants 2024, 13(12), 1689; https://doi.org/10.3390/plants13121689 - 18 Jun 2024
Viewed by 508
Abstract
Most canopy-forming macroalgae have disappeared from temperate reefs in southern Japan, one of the ocean warming hotspots, but Sargassum nipponicum is surviving in this region. As this species’ annual shoots emerge from holdfasts during summer, both plant components may be highly tolerant to warm [...] Read more.
Most canopy-forming macroalgae have disappeared from temperate reefs in southern Japan, one of the ocean warming hotspots, but Sargassum nipponicum is surviving in this region. As this species’ annual shoots emerge from holdfasts during summer, both plant components may be highly tolerant to warm and nutrient-poor conditions in this season. The present study examined the effects of temperature and nutrient conditions on holdfast growth, shoot emergence from holdfasts, and shoot growth in S. nipponicum samples collected in Tanegashima Island, southern Japan. The summer temperature in this region (30 °C) allowed holdfast growth and shoot emergence but inhibited shoot growth. Nutrient-poor conditions had limited effects on the first two parameters but suppressed shoot growth. These results suggested that during warm summers and under nutrient-poor conditions in southern Japan, shoots can emerge from S. nipponicum holdfasts but cannot further grow. Additionally, nutrient loading from a nearby river was higher at the only site dominated by S. nipponicum, than at the other sites where this species was absent on Tanegashima Island. This was observed especially between autumn and winter, implying that such a nutrient-rich environment may contribute to shoot growth in S. nipponicum and to the persistence of its population in the area. Full article
(This article belongs to the Special Issue Current Topics in Macroalgal Research)
Show Figures

Figure 1

18 pages, 2900 KiB  
Article
Regulatory Mechanism of Proanthocyanidins in Grape Peels Using vvi-miR828a and Its Target Gene VvMYBPA1
by Lingqi Yue, Jingjing He, Tian Gan, Songtao Jiu, Muhammad Khalil-Ur-Rehman, Kunyu Liu, Miao Bai, Guoshun Yang and Yanshuai Xu
Plants 2024, 13(12), 1688; https://doi.org/10.3390/plants13121688 - 18 Jun 2024
Viewed by 443
Abstract
Anthocyanins and proanthocyanidins are considered to be essential secondary metabolites in grapes and are used to regulate metabolic processes, while miRNAs are involved in their synthesis of anthocyanins and proanthocyanidins to regulate metabolic processes. The present research work was carried out to investigate [...] Read more.
Anthocyanins and proanthocyanidins are considered to be essential secondary metabolites in grapes and are used to regulate metabolic processes, while miRNAs are involved in their synthesis of anthocyanins and proanthocyanidins to regulate metabolic processes. The present research work was carried out to investigate the underlying regulatory mechanism of target genes in the grape cultivars ‘Italia’ and ‘Benitaka’. miRNA and transnscriptomic sequencing technology were employed to characterize both the profiles of miRNAs and the transcripts of grape peels at 10 and 11 weeks post flowering (10 wpf and 11 wpf). The results revealed that the expression level of vvi-miR828a in ‘Italia’ at 10 and 11 wpf was significantly higher than that in ‘Benitaka’. miRNA-seq analysis predicted MYBPA1 to be the target gene of vvi-miR828a. In transcriptome analysis, the expression level of the VvMYBPA1 gene in ‘Benitaka’ was significantly higher than that in ‘Italia’; in addition, the TPM values (expression levels) of VvMYBPA1 and miR828a also showed an evident negative correlation. The determination of the proanthocyanidin (PA) content in ‘Italia’ and ‘Benitaka’ peels at 11 wpf demonstrated that the PA content of ‘Benitaka’ was significantly higher than that of ‘Italia’. The outcomes of RT-qRCR analysis exhibited that the expression levels of the VdPAL, VdCHS, VdCHI, VdDFR, VdMYB5b, VdANR, and VdMYBPA1 genes related anthocyanin and proanthocyanidin pathways were reduced, while the expression levels of all of the above genes were increased after the transient expression of the VvMYBPA1 vector into grape leaves. The results of the transient overexpression experiment of vvi-miR828a before the veraison period of strawberry fruits showed that vvi-miR828a can significantly slow down the coloration of strawberries. The vvi-miR828a negatively regulates the accumulation of proanthocyanidins in grape fruits by inhibiting the expression of VvMYBPA1. Full article
(This article belongs to the Special Issue Recent Advances in Horticultural Plant Genomics)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop