Chlorella vulgaris and Tetradesmus obliquus Protect Spinach (Spinacia oleracea L.) against Fusarium oxysporum
Abstract
:1. Introduction
2. Results and Discussion
2.1. In Vitro Trials
2.2. In Vivo Trials
2.2.1. Effect of C. vulgaris Suspensions on F. oxysporum f. sp. spinaciae
2.2.2. Effect of T. obliquus Suspensions on F. oxysporum
3. Material and Methods
3.1. Phytopathogenic Isolates
3.2. Microalgal Biomass Cultivation
3.3. In Vitro Trial to Determine Inhibition Percentage of Microalgae against F. oxysporum
3.4. In Vivo Evaluation of the Biocontrol Potential of Microalgae
3.5. Suppressive Evaluation Assessments
- yi = Severity of the disease (when the first symptom is observed);
- yi+1 = Severity of the disease (at the end of the trial);
- ti = Time (the beginning of the trial in days);
- ti+1 = Time (the end of the trial in days).
3.6. Chemical Characterization of Microalgae
Total Polyphenol Content
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Popp, J.; Pető, K.; Nagy, J. Pesticide Productivity and Food Security. A Review. Agron. Sustain. Dev. 2013, 33, 243–255. [Google Scholar] [CrossRef]
- Oerke, E.C. Crop Losses to Pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Lucas, J.A.; Hawkins, N.J.; Fraaije, B.A. The Evolution of Fungicide Resistance. Adv. Appl. Microbiol. 2015, 90, 29–92. [Google Scholar] [CrossRef]
- Yin, Y.; Miao, J.; Shao, W.; Liu, X.; Zhao, Y.; Ma, Z. Fungicide Resistance: Progress in Understanding Mechanism, Monitoring, and Management. Phytopathology 2023, 113, 707–718. [Google Scholar] [CrossRef]
- Nadeu, E. Sustainable Crop Protection Background Material for the ESAD Platform. 2020. Available online: https://ieep.eu/wp-content/uploads/2023/03/ESAD_RISE_-Sustainable-crop-protection.pdf (accessed on 25 November 2023).
- European Commission. Farm to Fork Strategy—European Commission. Available online: https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en (accessed on 27 February 2022).
- Schefer, G. What Role for R&I in Reducing the Dependency on Pesticides and Fertilising Products in the EU Agriculture? Institute for European Environmental Policy: London, UK, 2020. [Google Scholar]
- Jokel, M.; Salazar, J.; Chovancek, E.; Sirin, S.; Allahverdiyeva, Y. Screening of Several Microalgae Revealed Biopesticide Properties of Chlorella Sorokiniana against the Strawberry Pathogen Phytophthora cactorum. J. Appl. Phycol. 2023, 35, 2675–2687. [Google Scholar] [CrossRef]
- Oguh, C.E.; Okpaka, C.O.; Ubani, C.S.; Joseph, P.S.; Amadi, E.U. Natural Pesticides (Biopesticides) and Uses in Pest Management- A Critical Review. Asian J. Biochem. Genet. Eng. 2019, 2, 126–143. Available online: https://journalajbge.com/index.php/AJBGE/article/view/37 (accessed on 5 March 2022).
- Coelho, L.; Reis, M.; Guerrero, C.; Dionísio, L. Use of Organic Composts to Suppress Bentgrass Diseases in Agrostis stolonifera. Biol. Control 2020, 141, 104154. [Google Scholar] [CrossRef]
- Coelho, L.; Reis, M.; Guerrero, C.; Dionísio, L. Biological Control of Turfgrass Diseases with Organic Composts Enriched with Trichoderma Atroviride. Biol. Control 2021, 159, 104620. [Google Scholar] [CrossRef]
- Cotxarrera, L.; Trillas-Gay, M.I.; Steinberg, C.; Alabouvette, C. Use of Sewage Sludge Compost and Trichoderma asperellum Isolates to Suppress Fusarium Wilt of Tomato. Soil Biol. Biochem. 2002, 34, 467–476. [Google Scholar] [CrossRef]
- Sharon, E.; Chet, I.; Spiegel, Y. Trichoderma as a Biological Control Agent. In Biological Control of Plant-Parasitic Nematodes: Progress in Biological Control; Davies, K., Spiegel, Y., Eds.; Springer: Dordrecht, The Netherlands, 2011; Volume 11. [Google Scholar] [CrossRef]
- Schmid, B.; Coelho, L.; Schulze, P.S.C.; Pereira, H.; Santos, T.; Maia, I.B.; Reis, M.; Varela, J. Antifungal Properties of Aqueous Microalgal Extracts. Bioresour. Technol. Rep. 2022, 18, 101096. [Google Scholar] [CrossRef]
- Costa, J.A.V.; Freitas, B.C.B.; Cruz, C.G.; Silveira, J.; Morais, M.G. Potential of Microalgae as Biopesticides to Contribute to Sustainable Agriculture and Environmental Development. J. Environ. Sci. Health B 2019, 54, 366–375. [Google Scholar] [CrossRef]
- Shishido, T.; Humisto, A.; Jokela, J.; Liu, L.; Wahlsten, M.; Tamrakar, A.; Fewer, D.; Permi, P.; Andreote, A.; Fiore, M.; et al. Antifungal Compounds from Cyanobacteria. Mar. Drugs 2015, 13, 2124–2140. [Google Scholar] [CrossRef]
- Falaise, C.; François, C.; Travers, M.A.; Morga, B.; Haure, J.; Tremblay, R.; Turcotte, F.; Pasetto, P.; Gastineau, R.; Hardivillier, Y.; et al. Antimicrobial Compounds from Eukaryotic Microalgae against Human Pathogens and Diseases in Aquaculture. Mar. Drugs 2016, 14, 159. [Google Scholar] [CrossRef]
- Swain, S.S.; Paidesetty, S.K.; Padhy, R.N. Antibacterial, Antifungal and Antimycobacterial Compounds from Cyanobacteria. Biomed. Pharmacother. 2017, 90, 760–776. [Google Scholar] [CrossRef]
- Ördög, V.; Stirk, W.A.; Lenobel, R.; Bancířová, M.; Strnad, M.; Van Staden, J.; Szigeti, J.; Németh, L. Screening Microalgae for Some Potentially Useful Agricultural and Pharmaceutical Secondary Metabolites. J. Appl. Phycol. 2004, 16, 309–314. [Google Scholar] [CrossRef]
- Leflaive, J.; Ten-Hage, L. Algal and Cyanobacterial Secondary Metabolites in Freshwaters: A Comparison of Allelopathic Compounds and Toxins. Freshw. Biol. 2007, 52, 199–214. [Google Scholar] [CrossRef]
- Lee, S.-M.; Ryu, C.-M. Algae as New Kids in the Beneficial Plant Microbiome. Front. Plant Sci. 2021, 12, 91. [Google Scholar] [CrossRef]
- Perveen, K.; Bukhari, N.A.; Al Masoudi, L.M.; Alqahtani, A.N.; Alruways, M.W.; Alkhattaf, F.S. Antifungal Potential, Chemical Composition of Chlorella vulgaris and SEM Analysis of Morphological Changes in Fusarium oxysporum. Saudi J. Biol. Sci. 2022, 29, 2501–2505. [Google Scholar] [CrossRef]
- Ferreira, A.; Melkonyan, L.; Carapinha, S.; Ribeiro, B.; Figueiredo, D.; Avetisova, G.; Gouveia, L. Biostimulant and Biopesticide Potential of Microalgae Growing in Piggery Wastewater. Environ. Adv. 2021, 4, 100062. [Google Scholar] [CrossRef]
- Ranglová, K.; Lakatos, G.E.; Câmara Manoel, J.A.; Grivalský, T.; Suárez Estrella, F.; Acién Fernández, F.G.; Molnár, Z.; Ördög, V.; Masojídek, J. Growth, Biostimulant and Biopesticide Activity of the MACC-1 Chlorella Strain Cultivated Outdoors in Inorganic Medium and Wastewater. Algal Res. 2021, 53, 102136. [Google Scholar] [CrossRef]
- Scaglioni, P.T.; Pagnussatt, F.A.; Lemos, A.C.; Nicolli, C.P.; Del Ponte, E.M.; Badiale-Furlong, E. Nannochloropsis sp. and Spirulina sp. as a Source of Antifungal Compounds to Mitigate Contamination by Fusarium Graminearum Species Complex. Curr. Microbiol. 2019, 76, 930–938. [Google Scholar] [CrossRef]
- Edel-Hermann, V.; Lecomte, C. Current Status of Fusarium oxysporum Formae Speciales and Races. Phytopathology 2019, 109, 512–530. [Google Scholar] [CrossRef]
- Joshi, R. A Review of Fusarium oxysporum on Its Plant Interaction and Industrial Use. J. Med. Plants Stud. 2018, 6, 112–115. [Google Scholar] [CrossRef]
- Zhao, P.; Quan, C.; Wang, Y.; Wang, J.; Fan, S. Bacillus amyloliquefaciens Q-426 as a Potential Biocontrol Agent against Fusarium oxysporum f. sp. Spinaciae. J. Basic Microbiol. 2014, 54, 448–456. [Google Scholar] [CrossRef]
- Dean, R.; Van Kan, J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 Fungal Pathogens in Molecular Plant Pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef]
- Michielse, C.B.; Rep, M. Pathogen Profile Update: Fusarium oxysporum. Mol. Plant Pathol. 2009, 10, 311–324. [Google Scholar] [CrossRef]
- Katan, T. Current Status of Vegetative Compatibility Groups in Fusarium oxysporum. Phytoparasitica 1999, 27, 51–64. [Google Scholar] [CrossRef]
- Katan, T.; Di Primo, P. Current Status of Vegetative Compatibility Groups in Fusarium oxysporum: Supplement (1999). Phytoparasitica 1999, 27, 273–277. [Google Scholar] [CrossRef]
- Fiely, M.B.; Correll, J.C.; Morelock, T.E. Vegetative Compatibility, Pathogenicity, and Virulence Diversity of Fusarium oxysporum Recovered from Spinach. Plant Dis. 1995, 79, 990–993. [Google Scholar] [CrossRef]
- Xu, C.; Jiao, C.; Sun, H.; Cai, X.; Wang, X.; Ge, C.; Zheng, Y.; Liu, W.; Sun, X.; Xu, Y.; et al. Draft Genome of Spinach and Transcriptome Diversity of 120 Spinacia Accessions. Nat. Commun. 2017, 8, 15275. [Google Scholar] [CrossRef]
- Butu, M.; Rodino, S. Fruit and Vegetable-Based Beverages—Nutritional Properties and Health Benefits. In Natural Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 303–338. [Google Scholar] [CrossRef]
- Gorelick, J.; Iraqi, R.H.; Bernstein, N. Ecdysteroid Content and Therapeutic Activity in Elicited Spinach Accessions. Plants 2020, 9, 727. [Google Scholar] [CrossRef]
- Collins, B.D. Management of Fusarium Wilt in Bunching Spinach Production in Ontario, Canada. Master’s Thesis, University of Guelph, Guelph, ON, Canada, 2016. Available online: https://atrium.lib.uoguelph.ca/server/api/core/bitstreams/6b8e644e-cddf-4eba-99e3-a05458077566/content (accessed on 25 November 2023).
- Batson, A.M.; Gyawali, S.; du Toit, L.J. Shedding Light on Races of the Spinach Fusarium Wilt Pathogen, Fusarium oxysporum f. sp. Spinaciae. Phytopathology 2022, 112, 2138–2150. [Google Scholar] [CrossRef]
- Vehapi, M.; Yilmaz, A.; Özçimen, D. Antifungal Activities of Chlorella vulgaris and Chlorella minutissima Microalgae Cultivated in Bold Basal Medium, Wastewater and Tree Extract Water against Aspergillus niger and Fusarium oxysporum. Rom. Biotechnol. Lett. 2018. [Google Scholar] [CrossRef]
- Millao, S.; Uquiche, E. Antioxidant Activity of Supercritical Extracts from Nannochloropsis Gaditana: Correlation with Its Content of Carotenoids and Tocopherols. J. Supercrit. Fluids 2016, 111, 143–150. [Google Scholar] [CrossRef]
- Goiris, K.; Muylaert, K.; Fraeye, I.; Foubert, I.; De Brabanter, J.; De Cooman, L. Antioxidant Potential of Microalgae in Relation to Their Phenolic and Carotenoid Content. J. Appl. Phycol. 2012, 24, 1477–1486. [Google Scholar] [CrossRef]
- Yin, L.; Han, H.; Zheng, X.; Wang, G.; Li, Y.; Wang, W. Flavonoids Analysis and Antioxidant, Antimicrobial, and Anti-Inflammatory Activities of Crude and Purified Extracts from Veronicastrum Latifolium. Ind. Crops Prod. 2019, 137, 652–661. [Google Scholar] [CrossRef]
- Hamed, S.M.; Abd El-Rhman, A.A.; Abdel-Raouf, N.; Ibraheem, I.B.M. Role of Marine Macroalgae in Plant Protection & Improvement for Sustainable Agriculture Technology. Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 104–110. [Google Scholar] [CrossRef]
- Vehapi, M.; Koçer, A.T.; Yılmaz, A.; Özçimen, D. Investigation of the Antifungal Effects of Algal Extracts on Apple-Infecting Fungi. Arch. Microbiol. 2020, 202, 455–471. [Google Scholar] [CrossRef]
- Hao, J.; Ashley, K. Irreplaceable Role of Amendment-Based Strategies to Enhance Soil Health and Disease Suppression in Potato Production. Microorganisms 2021, 9, 1660. [Google Scholar] [CrossRef]
- Larkin, R.P. Characterization of Soil Microbial Communities under Different Potato Cropping Systems by Microbial Population Dynamics, Substrate Utilization, and Fatty Acid Profiles. Soil Biol. Biochem. 2003, 35, 1451–1466. [Google Scholar] [CrossRef]
- Renuka, N.; Guldhe, A.; Prasanna, R.; Singh, P.; Bux, F. Microalgae as Multi-Functional Options in Modern Agriculture: Current Trends, Prospects and Challenges. Biotechnol. Adv. 2018, 36, 1255–1273. [Google Scholar] [CrossRef]
- Baker, K.; Cook, R.J. Biological Control of Plant Pathogens; WH Freeman and Company: San Francisco, CA, USA, 1974; ISBN 978-0-7167-0589-5. [Google Scholar]
- Bonilla, N.; Gutiérrez-Barranquero, J.; Vicente, A.; Cazorla, F. Enhancing Soil Quality and Plant Health Through Suppressive Organic Amendments. Diversity 2012, 4, 475–491. [Google Scholar] [CrossRef]
- Joaquín-Ramos, A.D.J.; López-Palestina, C.U.; Pinedo-Espinoza, J.M.; Altamirano-Romo, S.E.; Santiago-Saenz, Y.O.; Aguirre-Mancilla, C.L.; Gutiérrez-Tlahque, J. Phenolic Compounds, Antioxidant properties and Antifungal Activity of Jarilla (Barkleyanthus [Kunth] H. Rob & Brettell). Chil. J. Agric. Res. 2020, 80, 352–360. [Google Scholar] [CrossRef]
- Farid, R.; Mutale-joan, C.; Redouane, B.; Mernissi Najib, E.; Abderahime, A.; Laila, S.; Arroussi Hicham, E. Effect of Microalgae Polysaccharides on Biochemical and Metabolomics Pathways Related to Plant Defense in Solanum Lycopersicum. Appl. Biochem. Biotechnol. 2019, 188, 225–240. [Google Scholar] [CrossRef]
- Lorito, M. Purification, Characterization, and Synergistic Activity of a Glucan 1,3-Beta-Glucosidase and an N-Acetyl-Beta-Glucosaminidase from Trichoderma harzianum. Phytopathology 1994, 84, 398. [Google Scholar] [CrossRef]
- Pane, C.; Zaccardelli, M. Principles of Compost-based Plant Diseases Control and Innovative New Developments. In Composting for Sustainable Agriculture. Sustainable Development and Biodiversity; Maheshwari, D., Ed.; Springer: Cham, Switzerland, 2014; Volume 3, pp. 151–171. [Google Scholar] [CrossRef]
- Ait-Lahsen, H.; Soler, A.; Rey, M.; de la Cruz, J.; Monte, E.; Llobell, A. An Antifungal Exo-α-1,3-Glucanase (AGN13.1) from the Biocontrol Fungus Trichoderma harzianum. Appl. Environ. Microbiol. 2001, 67, 5833–5839. [Google Scholar] [CrossRef]
- Gonçalves, A.L. The Use of Microalgae and Cyanobacteria in the Improvement of Agricultural Practices: A Review on Their Biofertilising, Biostimulating and Biopesticide Roles. Appl. Sci. 2021, 11, 871. [Google Scholar] [CrossRef]
- La Bella, E.; Baglieri, A.; Rovetto, E.I.; Stevanato, P.; Puglisi, I. Foliar Spray Application of Chlorella Vulgaris Extract: Effect on the Growth of Lettuce Seedlings. Agronomy 2021, 11, 308. [Google Scholar] [CrossRef]
- Coelho, L.; Reis, M.; Dionísio, L. Culture Media Performance on the Detection of Actinomycetes from Composts. Acta Hortic. 2013, 1013, 473–478. [Google Scholar] [CrossRef]
- Ambika, S.; Sujatha, K. Comparative Studies on Brown, Red and Green Alga Seaweed Extracts for Their Antifungal Activity against Fusarium oxysporum f.Sp. Udum in Pigeon pea Var. CO (Rg)7 (Cajanus cajan (L.) Mills.). J. Biopestic. 2014, 7, 167. [Google Scholar]
- Machado, L.P.; de Godoy Gasparoto, M.C.; Santos Filho, N.A.; Pavarini, R. Seaweeds in the Control of Plant Diseases and Insects. In Seaweeds as Plant Fertilizer, Agricultural Biostimulants and Animal Fodder; CRC Press: Boca Raton, FL, USA, 2019; pp. 100–127. [Google Scholar] [CrossRef]
- Biondi, N.; Piccardi, R.; Margheri, M.C.; Rodolfi, L.; Smith, G.D.; Tredici, M.R. Evaluation of Nostoc Strain ATCC 53789 as a Potential Source of Natural Pesticides. Appl. Environ. Microbiol. 2004, 70, 3313–3320. [Google Scholar] [CrossRef]
- Alfano, G.; Lustrato, G.; Lima, G.; Vitullo, D.; Ranalli, G. Characterization of Composted Olive Mill Wastes to Predict Potential Plant Disease Suppressiveness. Biol. Control 2011, 58, 199–207. [Google Scholar] [CrossRef]
- Baayen, R.P.; van der Plas, C.H. Localization Ability, Latent Period and Wilting Rate in Eleven Carnation Cultivars with Partial Resistance to Fusarium Wilt. Euphytica 1992, 59, 165–174. [Google Scholar] [CrossRef]
- Campbell, C.L.; Madden, L.V. Introduction to Plant Disease Epidemiology; Wiley Interscience: New York, NY, USA, 1990. [Google Scholar]
- Velioglu, Y.S.; Mazza, G.; Gao, L.; Oomah, B.D. Antioxidant Activity and Total Phenolics in Selected Fruits, Vegetables, and Grain Products. J. Agric. Food Chem. 1998, 46, 4113–4117. [Google Scholar] [CrossRef]
CFU g−1 Substrate | ||||||
---|---|---|---|---|---|---|
Thermally Treated Peat | Non-Treated Peat | |||||
Fungi | Actinomycetes | Bacteria | Fungi | Actinomycetes | Bacteria | |
Peat | 0 | 0 | 0 | 2.81 × 107 | 2.60 × 107 | 5.92 × 107 |
Treatments | Concentrations (g L−1) | Non-Treated Peat | Thermally Treated Peat | |
---|---|---|---|---|
Disease Incidence (%) | C. vulgaris | 2.0 | 88 a | 88 a |
2.5 | 100 a | 88 a | ||
3.0 | 100 a | 100 a | ||
Rovral | 100 a | 100 a | ||
T34 | 100 a | 100 a | ||
Water | 100 a | 100 a |
Treatments | Concentrations (g L−1) | Non-Treated Peat | Thermally Treated Peat | |
---|---|---|---|---|
Disease Incidence (%) | T. obliquus | 0.5 | 42 c | 67 a |
0.75 | 50 ab | 50 a | ||
1.0 | 50 ab | 0 a | ||
Rovral | 94 ab | 50 a | ||
T34 | 60 ab | 67 a | ||
Water | 100 a | 100 a |
Treatments (g L−1) | ||||||
---|---|---|---|---|---|---|
Microalgae | Non-Treated Peat | Thermally Treated Peat | ||||
C. vulgaris | 2.0 | 2.5 | 3.0 | 2.0 | 2.5 | 3.0 |
T. obliquus | 0.5 | 0.75 | 1.0 | 0.5 | 0.75 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viana, C.; Genevace, M.; Gama, F.; Coelho, L.; Pereira, H.; Varela, J.; Reis, M. Chlorella vulgaris and Tetradesmus obliquus Protect Spinach (Spinacia oleracea L.) against Fusarium oxysporum. Plants 2024, 13, 1697. https://doi.org/10.3390/plants13121697
Viana C, Genevace M, Gama F, Coelho L, Pereira H, Varela J, Reis M. Chlorella vulgaris and Tetradesmus obliquus Protect Spinach (Spinacia oleracea L.) against Fusarium oxysporum. Plants. 2024; 13(12):1697. https://doi.org/10.3390/plants13121697
Chicago/Turabian StyleViana, Catarina, Méanne Genevace, Florinda Gama, Luísa Coelho, Hugo Pereira, João Varela, and Mário Reis. 2024. "Chlorella vulgaris and Tetradesmus obliquus Protect Spinach (Spinacia oleracea L.) against Fusarium oxysporum" Plants 13, no. 12: 1697. https://doi.org/10.3390/plants13121697