Previous Issue
Volume 11, July
 
 

Universe, Volume 11, Issue 8 (August 2025) – 1 article

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
12 pages, 549 KiB  
Article
Disruption of Planetary System Architectures by Stellar Flybys
by Robert Przyłuski, Hans Rickman, Paweł Wajer, Tomasz Wiśniowski, Diego Turrini, Danae Polychroni, Camilla Danielski, J. M. Diederik Kruijssen, Steven Longmore and Mélanie Chevance
Universe 2025, 11(8), 240; https://doi.org/10.3390/universe11080240 (registering DOI) - 22 Jul 2025
Abstract
We investigate the survivability of solar system-like planetary systems during close encounters in stellar associations using a suite of 1980 N-body simulations. Each system is based on one of the possible five-planet resonant configurations proposed to represent the initial solar system architecture and [...] Read more.
We investigate the survivability of solar system-like planetary systems during close encounters in stellar associations using a suite of 1980 N-body simulations. Each system is based on one of the possible five-planet resonant configurations proposed to represent the initial solar system architecture and is systematically scaled in both planetary mass and orbital compactness to explore the parameter space of observed exoplanetary architectures. Simulations explore a range of stellar encounter scenarios drawn from four distinct cluster environments. Our results show that system survival depends critically on the interplay between planetary mass and orbital scale: compact configurations are more resistant to external perturbations, while increased planetary mass improves resilience only up to a threshold, beyond which internal instabilities dominate. No system whose planets are twice as massive as the ones in the solar system survives stellar encounters. Systems that are at least an order of magnitude more compact than the solar system remain stable under typical encounter conditions. These findings place strong constraints on the initial architectures of planetary systems that can endure stellar-dense birth environments. Full article
(This article belongs to the Section Planetary Sciences)
Show Figures

Figure 1

Previous Issue
Back to TopTop