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Abstract

The influence of zero-point fluctuations on photon propagation in a vacuum is investigated
without using normal ordering and renormalization procedures, but in a frame of the
conformally unimodular metric for a description of the fluctuating gravitational field. The
complete formula for decoherence time is presented.
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1. Introduction
Current investigations of photon propagation in a vacuum probe fundamental physics

at the intersection of quantum field theory, cosmology, and space-time symmetry tests [1].
Two phenomena remain pivotal: (i) energy-dependent velocity dispersion [2,3], potentially
detectable as time delay for photons of the different energies from distant astrophysical
sources, and (ii) intrinsic decoherence mechanisms linked to quantum space-time fluc-
tuations [4–6], which may depolarize radiation over cosmological scales [7,8]. While
velocity dispersion tests Lorentz invariance [1,9], decoherence bridges quantum gravity
phenomenology and observational astrophysics [5,10,11].

Here, we develop a framework to quantify these effects via photon dynamics in
fluctuating space-time. Formulating an optical Dirac equation for photons in curved
geometry allows us to use the density matrix formalism in the first-order differential
equation. The next step is to derive an equation for the photon density matrix in a random
space-time, which is assumed to be Minkowski on average. In this way, one needs to
calculate the correlators of a metric arising due to zero-point fluctuations of the quantum
fields. Then, we introduce some quantity to describe an electromagnetic field’s degree of
coherence (i.e., purity of a system). Finally, an explicit formula for the decoherence time of
a photon wave packet is deduced.

2. Optical Dirac Equation for the Photon Under Gravitational Background
The wave equation inherently involves a second-order time derivative, distinguishing

it from the Schrödinger equation, which governs the dynamics of massive particles and is
first-order in time. Decoherence effects for such particles have been analyzed within the
Schrödinger framework [4]. Extending this approach to electromagnetic fields requires
redefining Maxwell’s equations in a matrix form. This reformulation allows for construct-
ing an optical analogue of the Dirac equation, as discussed in [12], providing a suitable
foundation for investigating decoherence in the photon sector.
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Because it is not possible to define a vacuum state which is invariant relative to general
coordinate transformations, it is reasonable to define a unique class of metrics to describe
the gravitational field arising due to zero-point fluctuations [4,13–15]:

ds2 ≡ gµνdxµdxν = a2(1 − ∂mPm)2dη2 − γij(dxi + Nidη)(dxj + N jdη), (1)

where xµ = {η, x}, η is a conformal time, γij is a spatial metric, a = γ1/6 is a locally
defined scale factor, and γ = det γij. This metric reflects the concept [13] that diffemorfism
symmetry of general relativity has to be violated with respect to a particular class of metrics
(see also [16] in this relation) to avoid the cosmological zero point energy problem. The
spatial part of the interval (1) reads as

dl2 ≡ γijdxidxj = a2(η, x)γ̃ijdxidxj, (2)

where γ̃ij = γij/a2 is a matrix with the unit determinant. According to ref. [13], 3-vector P
and N and are not arbitrary, but obey the constaints ∇(∇ · N) = 0, ∇(∇ · P) = 0, where
the ordinary, non-covariant operator ∇ is implied. Let us set N = 0 and P and write
Maxwell equations in this metric. The forms of electrodynamic in the curved space-time
are discussed up to the present time [17,18], but here we use the Maxwell equations in the
three-dimensional form suggested in [19]:

1√
γ

∂

∂xi

(√
γDi

)
= 0, (3)

1
2
√

γ
eijk
(

∂Hk

∂xj −
∂Hj

∂xk

)
=

1√
γ

∂

∂η
(
√

γDi), (4)

1√
γ

∂

∂xi

(√
γBi
)
= 0, (5)

1
2
√

γ
eijk
(

∂Ek

∂xj −
∂Ej

∂xk

)
= − 1√

γ

∂

∂η
(
√

γBi), (6)

where Bi = γijHj/
√

g00, Di = γijEj/
√

g00. In the conformally unimodular metric (1)
√

g00 = a,
√

γ = a3, γij = a−2γ̃ij. By introducing new quantities D = a3D, and B = a3B,
the system of Equations (3)–(6) acquires the form:

divD = 0, (7)

rot(γ̃B) =
∂

∂η
D, (8)

divB = 0, (9)

rot(γ̃D) = − ∂

∂η
B, (10)

where a matrix γ̃ denotes the matrix γ̃ij. These equations could be written as an optical
Dirac equation [12]

∂

∂η

(
D
iB

)
=

(
0 Sp̂

Sp̂ 0

)(
γ̃D
iγ̃B

)
, (11)

where the rotor is expressed through the matrix of spin 1

Sx =

 0 0 0
0 0 −i
0 i 0

, Sy =

 0 0 i
0 0 0
−i 0 0

, Sz =

 0 −i 0
i 0 0
0 0 0

 (12)
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by the relation (Sp̂)F = i p̂ × F [12] valid for the operator p̂ = −i∇ and an arbitrary
3-vector F. Denoting

α =

(
0 S
S 0

)
, G =

(
γ̃ 0
0 γ̃

)
(13)

allows us to write the optical Dirac equation for a six-component wave function
Ψ ≡ {D, iB}

i
∂Ψ
∂η

= αp̂ GΨ. (14)

Additionally, the conditions (7) and (9) on the upper and lower components of the
photon wave function have to be satisfied. In a presence of a static gravitational field, the
scalar product

< Ψ1|Ψ2 >=
∫

Ψ+
1 GΨ2d3r (15)

is conserved during evolution, but for the nonstationary case, it is not. We are not interested
in the photon creation by the nonstationary gravitational field, so let us ad hoc modify
Equation (14) to avoid the photon creation

i
∂Ψ
∂η

= αp̂ GΨ − i
G−1

2
∂G
∂η

Ψ. (16)

For Equation (16) the scalar product (15) is conserved even for a time-dependent
gravitational field. Let us do a non-unitary transformation (see [20] in this relation)

ψ(r, η) = G1/2(r, η)Ψ(r, η), (17)

which leads to the photon quantum mechanics with the “flat” scalar product < ψ1|ψ2 >=∫
ψ+

1 ψ2d3r. As a result, the optical Dirac Equation (16) acquires the form

i
∂ψ

∂η
= G1/2αp̂ G1/2ψ, (18)

for an arbitrary time-dependent gravitational field G. Considering the gravitational field as
a perturbation reduces (18) to the approximate equation

i
∂ψ

∂η
= αp̂ ψ +

1
2
((G − I)αp̂ + αp̂(G − I))ψ, (19)

where the first term on the right-hand side of (19) contains the Hamiltonian H0 ≡ αp̂ and
the remaining terms represent the interaction

V =
1
2
((G − I)αp̂ + αp̂(G − I)). (20)

Further, we will consider a fluctuating gravitational field originating due to the zero-
point fluctuation of quantum fields.

3. Correlators of the Fluctuating Gravitational Field
Let us imagine empty space-time filled only by a vacuum, and take into account

its quantum properties, i.e., the gravitational field created by zero-point fluctuations of
quantum fields. For simplicity, only the scalar field will be considered. We assume that
fluctuations of the gravitational field in a class of conformally unimodular metrics (1) are
relatively small, allowing us to consider them as perturbations. Scalar perturbations of the
conformally unimodular metric [21] are written as



Universe 2025, 11, 277 4 of 16

ds2 = a(η, x)2

(
dη2 −

((
1 +

1
3

3

∑
m=1

∂2
mF(η, x)

)
δij − ∂i∂jF(η, x)

)
dxidxj

)
, (21)

where the perturbations of the locally defined scale factor are defined by

a(η, x) = eα(η)(1 + Φ(η, x)), (22)

where Φ could be referred to as a gravitational potential. The stress–energy tensor in the
hydrodynamic approximation [22]

Tµν = (p + ρ)uµuν − p gµν (23)

includes the perturbations of the energy density ρ(η, x) = ρv + δρ(η, x) and pressure
p(η, x) = pv + δp(η, x) around the vacuum mean values, where the index v will denote a
uniform component of the vacuum energy density and pressure.

The zero-order equations for a flat universe take the form [23]

M−2
p e4αρv −

1
2

e2αα′2 = const, (24)

α′′ + α′2 = M−2
p e2α(ρv − 3pv), (25)

where α(η) = log a(η) and Mp denotes the reduced Planck mass Mp =
√

3
4πG . According

to the five-vector theory of gravity [13], the first Friedmann Equation (24) is satisfied up to
some constant, and the main parts of the vacuum energy density and pressure

ρv ≈ Nall
k4

max
16π2a4 , (26)

pv =
1
3

ρv (27)

do not contribute to the universe expansion. In the Formula (26), the number Nall of
all degrees of freedom of the quantum fields in nature appears because the zero-point
stress–energy tensor is an additive quantity [24]. The momentum ultraviolet cut-off [14]

kmax ≈
12Mp√
2 + Nsc

(28)

is proportional to the Planck mass and includes the number of minimally coupled scalar
fields Nsc plus two, because the gravitational waves possess two additional degrees of
freedom [25]. Without a real matter, and if the constant in Equation (24) compensates
a vacuum energy (26) exactly, the static Minkowski space-time arises. To consider the
perturbations under this background, we set α(η) = 0 in (22).

Generally, a vacuum resembles some fluid, i.e., “ether” [23,26], but with some stochas-
tic properties among the elastic ones. Let us return to the stress–energy tensor (23) and
introduce other variables

℘(η, x) = a4(η, x)ρ(η, x), (29)

Π(η, x) = a4(η, x)p(η, x) (30)
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for the reasons which will be explained below. The perturbations around the uniform values
can be written now as ℘(η, x) = ρv + δ℘(η, x), Π(η, x) = pv + δΠ(η, x). The vacuum-ether
4-velocity u is represented in the form of

uµ = {(1 − Φ(η, x)),∇ v(η, x)
℘(η, x) + Π(η, x)

} ≈ {(1 − Φ(η, x)),∇ v(η, x)
ρv + pv

}, (31)

where v(η, x) is a scalar function. Expanding all perturbations into the Fourier series δ℘(η, x) =
∑k δ℘k(η)eikx, Φ(η, x) = ∑k Φk(η)eikx . . . etc., results in the equations for the perturbations:

−6Φ̂′
k + k2 F̂′

k +
18
M2

p
v̂k = 0, (32)

−6k2Φ̂k + k4 F̂k +
18
M2

p
δ℘̂k = 0, (33)

−12Φ̂k − 3F̂′′
k + k2 F̂k = 0, (34)

−9Φ̂′′
k − 9k2Φ̂k + k4 F̂k −

9
M2

p

(
3δΠ̂k − δ℘̂k

)
= 0, (35)

−δ℘̂′
k + k2v̂k = 0, (36)

δΠ̂k + v̂′k = 0. (37)

It is remarkable that the choice of the variables (29)–(31) means that the values ρv

and pv do not appear in the system (32)–(37). The second point is that the continuity and
Newton’s second law Equations (36) and (37) do not contain metric perturbation.

From now on, we will begin to consider the perturbation in Equations (32)–(37) as
operators by writing a “hat” under every quantity. Here, we do not suppose the strong
nonlinearity [27] and assume a smallness of the quantum fluctuations of space-time in
this particular conformally unimodular metric. The system (32)–(37) for a perturbation
evolution is exact in the first order on perturbations, but it is not closed. To obtain a
closed system, one needs, for instance, to specify the equation of state for a perturbation
of pressure. Still, as an approximation, we could calculate pressure and energy density
strictly by using the quantum field theory under the unperturbed Minkowski space-time.
Expressing Fk from Equation (33) and substituting it into Equation (35) leads to

Φ̂′′
k +

1
3

k2Φ̂k +
1

M2
p

(
3δΠ̂k + δ℘̂k

)
= 0. (38)

Below, we will approximately consider an operator 3δΠ̂k + δ℘̂k by using the cre-
ation and annihilation operators under the Minkowski space-time background. Such an
approximation allows closing the system (32)–(37).

Quantum Fields as a Source for Energy Density and Pressure Perturbation

A massless scalar field is the simplest example of quantum fields. The energy den-
sity and pressure of the scalar field in the pure Minkowski space-time (without metric
perturbation) has the form [24,28]

p̂(η, x) =
φ̂′2

2
− (∇φ̂)2

6
, (39)

ρ̂(η, x) =
φ̂′2

2
+

(∇φ̂)2

2
(40)
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All the quantities may be expanded into the Fourier series φ̂(η, x) = ∑k ϕ̂k(η)eikx,
p̂(η, x) = ∑k p̂k(η)eikx etc. For k ̸= 0, the approximate identifying δΠ̂k = p̂k and δ℘̂k = ρ̂k

results in

δΠ̂k = ∑
q

1
2

ϕ̂+′
q ϕ̂′

q+k −
1
6
(q + k)q ϕ̂+

q ϕ̂q+k, (41)

δ℘̂k = ∑
q

1
2

ϕ̂+′
q ϕ̂′

q+k +
1
2
(q + k)q ϕ̂+

q ϕ̂q+k, (42)

so that the quantity 3δΠ̂k + δ℘̂k from Equation (38) is reduced to

3δΠ̂k + δ℘̂k = 2 ∑
q

ϕ̂+′
q ϕ̂′

q+k. (43)

Writing the quantized field explicitly with creation and annihilation operators [29]

ϕ̂k(η) =
1√
2ωk

(
â+−keiωkη + âke−iωkη

)
, (44)

allows obtaining from Equations (43) and (44)

3 δΠ̂k + δ℘̂k = ∑
q

√
ωqω|q+k|

(
â−qâ+−q−kei(ω|q+k|−ωq)η + â+q âq+kei(ωq−ω|q+k|)η

− â−qâq+ke−i(ω|q+k|+ωq)η − â+q â+−q−kei(ω|q+k|+ωq)η
)

, (45)

where ωk = |k| for a massless scalar field. As is seen from Equation (45), the perturbations
have the general form:

3 δΠ̂k + δ℘̂k = ∑
m
P̂mkeiΩmkη , (46)

where the frequencies Ωmk take the values of ωq − ω|q+k|, −ωq + ω|q+k|, ωq + ω|q+k| and
−ωq − ω|q+k| for m = 1 to 4. That allows finding the solution of Equation (38) as

Φ̂k(η) = − 1
M2

p
∑
m

P̂mkeiΩmkη

Ω2
mk − k2/3

. (47)

Using Equations (34) and (47), one comes to

F̂k(η) = − 4
M2

p
∑
m

P̂mkeiΩmkη

Ω4
mk − k4/9

. (48)

Under Equations (45) and (47), the final expression for the metric perturbation Φ̂k(η)

acquires the form

Φ̂k(η) =
1

M2
p

∑
q

√
ωqω|q+k|

(
1

(ω|q+k| + ωq)2 − k2/3

(
â−qâq+ke−i(ω|q+k|+ωq)η +

â+q â+−q−kei(ω|q+k|+ωq)η
)
− 1

(ω|q+k| − ωq)2 − k2/3

(
â−qâ+−q−kei(ω|q+k|−ωq)η +

â+q âq+kei(ωq−ω|q+k|)η
))

, (49)
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F̂k(η) =
4

M2
p

∑
q

√
ωqω|q+k|

(
1

(ω|q+k| + ωq)4 − k4/9

(
â−qâq+ke−i(ω|q+k|+ωq)η +

â+q â+−q−kei(ω|q+k|+ωq)η
)
− 1

(ω|q+k| − ωq)4 − k4/9

(
â−qâ+−q−kei(ω|q+k|−ωq)η +

â+q âq+kei(ωq−ω|q+k|)η
))

, (50)

Expressions (49) and (50) allow calculating the correlators

SΦ(τ − η, k) =< 0|Φ̂+
k (η)Φ̂k(τ)|0 >=

18
M4

p
∑
q

ei(τ−η)(ωq+ωq+k)ωqωk+q(
k2 − 3(ωq + ωk+q)2

)2 =
18

(2π)3M4
p

∫ ei(τ−η)(ωq+ωq+k)ωqωk+qd3q(
k2 − 3(ωq + ωk+q)2

)2 , (51)

SF(τ − η, k) =< 0|F̂+
k (η)F̂k(τ)|0 >=

32 ∗ 81
M4

p
∑
q

ei(τ−η)(ωq+ωq+k)ωqωk+q(
k4 − 9(ωq + ωk+q)4

)2 =
32 ∗ 81

(2π)3M4
p

∫ ei(τ−η)(ωq+ωq+k)ωqωk+qd3q(
k4 − 9(ωq + ωk+q)4

)2 , (52)

which are related to the space-time correlators

< 0|F̂(η, x)F̂(τ, x′)|0 >= ∑
k

SF(τ − η, k)eik(x−x′) =
1

(2π)3

∫
SF(τ − η, k)eik(x−x′)d3k,

< 0|Φ̂(η, x)Φ̂(τ, x′)|0 >= ∑
k

SΦ(τ − η, k)eik(x−x′) =
1

(2π)3

∫
SΦ(τ − η, k)eik(x−x′)d3k.

We will also need the correlators at different continuous values of k, k′:

< 0|F̂k(η)F̂k′(τ)|0 >=
∫

< 0|F̂(η, x)F̂(τ, x′)|0 > e−ikx−ik′x′d3xd3x′ =

(2π)3SF(τ − η, k)δ(k + k′). (53)

Explicit calculation gives

S̃Φ(ω, k) =
1

2π

∫
SΦ(η, k)e−iωηdη =

18
(2π)3M4

p

∫ δ(ωq + ωq+k − ω)ωqωk+qd3q(
k2 − 3(ωq + ωk+q)2

)2 =

 1
160π2 Mp

4

(
5 + 4k4

(k2−3ω2)
2

)
, k < ω

0, otherwise
, (54)

S̃F(ω, k) =
32 ∗ 81

(2π)3M4
p

∫ δ(ωq + ωq+k − ω)ωqωk+qd3q(
k4 − 9(ωq + ωk+q)4

)2 =


27(15ω4−10k2ω2+3k4)

10π2 M4
p(k4−9ω4)

2 , k < ω

0, otherwise
. (55)

A formula similar to (55) could be obtained for a fermion field, as shown in Appendix A.

4. Migdal Equation for Photon Density Matrix Evolution
The kernel of a photon density matrix is defined by ρ(r, r′, η) = ψ(r, η)ψ+(r′, η), but

we begin with consideration of a density matrix as an operator, and write the equation for
its evolution in the standard form [30] using the Hamiltonian H0 and interaction (20):

i∂η ρ̂ = [Ĥ0 + V̂, ρ̂]. (56)
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A formal solution of Equation (56) could be written as

ρ̂(η) = −i
∫ η

−∞
eiĤ0(τ−η)[V̂(τ), ρ(τ)]e−iĤ0(τ−η)dτ. (57)

This expression can be substituted back into Equation (56), and one comes to

i∂η ρ̂ = [Ĥ0, ρ̂]− i
∫ η

−∞
[V̂(η), eiĤ0(τ−η)[V̂(τ), ρ̂(τ)]e−iĤ0(τ−η)]dτ. (58)

Change of the time variable τ → τ + η in the integral leads to

i∂η ρ̂ = [Ĥ0, ρ̂]− i
∫ 0

−∞
[V̂(η), eiĤ0τ [V̂(η + τ), ρ̂(η + τ)]e−iĤ0τ ]dτ. (59)

Further approximation is to write ρ̂(τ + η) ≈ e−iĤ0τ ρ̂(η)eiĤ0τ on the right-hand side
of (59), and obtain in the second order on the interaction [31–33]:

i∂η ρ̂ = [Ĥ0, ρ̂]− i
∫ 0

−∞
[V̂(η), eiĤ0τ [V̂(τ + η), e−iĤ0τ ρ̂(η)eiĤ0τ ]e−iĤ0τ ]dτ = [Ĥ0, ρ̂]−

i
∫ 0

−∞

(
V̂(η)eiĤ0τV̂(η + τ)e−iĤ0τ ρ̂(η)− V̂(η)ρ̂(η)eiĤ0τV̂(η + τ)e−iĤ0τ −

eiĤ0τV̂(τ + η)e−iĤ0τ ρ̂(η)V̂(η) + ρ̂(η)eiĤ0τV̂(τ + η)e−iĤ0τV̂(η)

)
dτ. (60)

As a result, the equation for ρpp′ =
∫

e−ipr ρ̂ eip′rd3r/(2π)3 acquires the form

i∂ηρpp′ = αp ρpp′ − ρpp′αp′ − i
(2π)6

∫ ∫ 0

−∞

(
Vpq(η)eiαqτVqq′(η + τ)e−iαq′τρq′p′(η)−

Vpq(η)ρqq′(η)e
iαq′τVq′p′(η + τ)e−iαp′τ − eiαpτVpq(η + τ)e−iαq τρqq′(η)Vq′p′(η) +

ρpq(η)eiαq τVqq′(η + τ)e−iαq′ τVq′p′(η)

)
dτd3qd3q′. (61)

Let us remember that Vqq′ =
∫

e−iqxV̂eiq′xdx is a function of q, q′ and simultaneously
a 6 × 6 matrix. According to (13), (20), (21)

Vqq′(τ) =
1
2

(
Dq−q′αq′ + αqDq−q′

)
Fq−q′(τ) ≡ Vqq′ Fq−q′(τ), (62)

where Vqq′ denotes the matrix part of the interaction and the scalar function Fq(τ) =∫
F(x, τ)e−iqxd3x corresponds to F(x, τ) = ∑k Fk(τ)eikx = 1

(2π)3

∫
Fk(τ)eikxd3k. Under

Equation (21), the six-dimensional matrix Dq is represented in the form of four three-
dimensional blocks

Dq =

(
q ⊗ q − q2

3 I 0

0 q ⊗ q − q2

3 I

)
. (63)

The gravitational field is considered a random field, originating from the zero-point
fluctuations. That means that Fq−q′ is a random quantity as well as the density matrix.
After averaging, one comes to the approximate equation for a mean value of the density
matrix < ρpp′ >, but to avoid introducing a new designation, we will denote the averaged
density matrix by the same symbol and write:
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i∂ηρpp′ = αp ρpp′ − ρpp′αp′ −
i

(2π)6

∫ ∫ 0

−∞

(
VpqeiαqτVqq′ e

−iαq′τρq′p′(η) < Fp−q(η)Fq−q′(η + τ) > −

Vpqρqq′ e
iαq′τVq′p′ e−iαp′τ < Fp−q(η)Fq′−p′(η + τ) > −

eiαpτVpqe−iαq τρqq′(η)Vq′p′ < Fp−q(η + τ)Fq′−p′(η) > +

ρpq(η)eiαq τVqq′ e
−iαq′ τVq′p′ < Fq−q′(η + τ)Fq′−p′(η) >

)
dτd3qd3q′. (64)

Correlators in Equation (64) are taken from (53) and contain delta functions. That
allows us to perform one integration and reduce Equation (64) to

i∂ηρpp′ = αp ρpp′ − ρpp′αp′ − i
(2π)3

∫ ∫ 0

−∞

(
Vpq eiαqτVqp e−iαpτρpp′(η)SF(τ, q − p)−

Vpqρq,q−p+p′(η)eiα(q−p+p′)τVq−p+p′ ,p′ e−iαp′τSF(τ, q − p)−
eiαpτVpqe−iαq τρq,q−p+p′(η)Vq−p+p′ ,p′SF(−τ, q − p) +

ρpp′(η)eiαp′ τVp′qe−iαq τVqp′SF(−τ, q − p′)

)
dτd3q. (65)

As a measure of the purity of a state, a quantity

C =
∫

Trρpp′ρp′pd3 p′d3 p =
∫

Trρppd3 p = 1 (66)

could be introduced, which equals unity for a completely pure state. The quantity C
measures decoherence, and the symbol Tr denotes a track of a 6 × 6 matrix. A time
evolution of C is given by

∂C
∂η

=
∫

Tr
(

∂ρpp′

∂η
ρp′p + ρpp′

∂ρp′p

∂η

)
d3 p′d3 p =

− 2
(2π)3

∫ ∫ 0

−∞
Tr
((

VpqeiαqτVqpe−iαpτρpp′(η)ρp′p(η) −

Vpqρq,q−p+p′(η)eiα(q−p+p′)τVq−p+p′ ,p′ e−iαp′τρp′p(η)
)
S(τ, q − p)−(

eiαpτVpqe−iαq τρq,q−p+p′(η)Vq−p+p′ ,p′ρp′p(η)−

ρpp′(η)ρp′p(η)e
iαp τVpqe−iαq τVqp

)
S(τ, q − p)

)
dτd3 p′d3 pd3q. (67)

One could be usable to expand the matrix αp over eagenmodes

αp|m, p >= εm(p)|m, p > . (68)

There are two longitudinal modes with zero energy, two modes with positive energy,
and two modes with negative energy, as shown in Appendix B. Expansion over modes
reduces Equation (69) to
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∂C
∂η

= − 2
(2π)3

∫ 6

∑
m,n=1

(
< n, p|ρpp′(η)ρp′p(η)Vp,p+q|m, p + q >< m, p + q|Vq+p,p|n, p >

∆(εm(p + q)− εn(p) + ω)−
< n, p|ρpp′(η)Vp′ ,q+p′ρq+p′ ,q+p(η)|m, p + q >< m, p + q|Vq+p,p|n, p >

∆(εm(p + q)− εn(p) + ω)−
< n, p|Vp,q+p|m, p + q >< m, p + q|ρq+p,q+p′(η)Vq+p′ ,p′ρp′p(η)|n, p >

∆(−εm(p + q) + εn(p)− ω) +

< m, p + q|Vq+p,pρpp′(η)ρp′p(η)|n, p >< n, p|Vp,q+p|m, p + q >

∆(−εm(p + q) + εn(p)− ω)

)
S̃F(ω, q)dωd3 p′d3 pd3q, (69)

where S̃(ω, k) = 1
2π

∫
S(η, k)e−iωηdη and

∆(ω) =
∫ 0

−∞
eiωτdτ = πδ(ω)− iP 1

ω
. (70)

We could suggest the following program of calculations: one substitutes the density
matrix of a wave packet of free electromagnetic waves into the right-hand side of (69) and
obtains an estimate for ∂C

∂η , which allows extracting the typical decoherence time. Further
calculations are performed for the Gaussian wave packet

Dp(η) =
2(∆p)9/2

π3/2
e × p
|e × p| e

−iεpη−(p−p0)
2/(∆p)2

,

Bp(η) =
1
εp

D(p, η), (71)

where εp = |p| = p, ∆p is the width of the packet in momentum space, e is some vector
characterizing the wave polarization. The 6 × 6 density matrix of the free electromag-
netic field

ρpp′(η) = ψp(η)ψ
+
p′(η) =

(
Dp

iBp

)(
D∗

p′ −iB∗
p′

)
(72)

can be constructed.
The first and last terms in the brackets on the right-hand side of Equation (69) do not

contribute to the quantity ∂C
∂η . Second and third terms contain ρq+p,q+p′ , ρp,p′ , which makes

the integral over d3 pd3 p′d3q convergent due to the finiteness of a momentum wave packet.
The integral over ω is also convergent, because S̃F(q, ω) ∼ 1/ω4 according to (55). It turns
out that the terms with the Dirac delta function in (70) do not contribute to ∂C

∂η due to energy
conservation, because εp+q + q − εp > 0. Thus, the decoherence effect is a purely off-shell
effect, which is not related to the real on-shell scattering. After the calculation of tracks, the
integral (69) takes the form

∂C
∂η

=
∫

ω>q
g(p, p′, q, η) exp

(
− (p − p0)

2 + (p′ − p0)
2 + (p′ + q − p0)

2 + (p + q − p0)
2

∆p2

)
S̃F(q, ω)

εp+q + ω − εp
d3 p d3 p′d3q dω, (73)
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where p0 = {0, 0, p0}, and g(p, p′, q, η) is a some function originating from the calculation
of traces. Integral (73) is complicated. Simplification consists in an expansion of the function
g(p, p′, q, η) into the Taylor series in the vicinity p = p0, p′ = p0 and leads to the estimate

g(p, p′, q, η) ≈ −
(p⊥ − p′

⊥)q⊥q2
z(q2 − 3q2

z)
2

9π3 p0(∆p)6 η, (74)

where p⊥ ≡ {px, py}, p′
⊥ ≡ {p′x, p′y} and q⊥ ≡ {qx, qy}. Equation (74) gives the first

non-zero term in the expansion. In addition, we need the integral

∫ ∞

−∞

S̃F(q, ω)

εp − εp+q − ω
dω ≈ 27 × 15

810 π2M4
p

∫ ∞

q

1
p − |p + q| − ω

dω

ω4 =

1
12π2M4

p(p − |p + q|4)

(
6
(

p − |p + q|
q

)
+ 3
(

p − |p + q|
q

)2

+ 2
(

p − |p + q|
q

)3

+

6 ln
(
|p + q|+ q − p

q

))
. (75)

After some steps of the simplification, we come to the final estimate

∂C
∂η

≈ −2.5 × 10−6(∆p)8

p2
0M4

p
η, (76)

and integration over time η leads to

C ≈ 1 − 1.25 × 10−6(∆p)8

p2
0M4

p
(η − ηi)

2, (77)

where ηi is the initial conformal time at which a pure wave packet was emitted. For an ex-
panding universe, the conformal time is related to the redshift z = 1/a− 1 as dz = − 1

a2
da
dη dη,

which gives η(z) = ηi −
∫ z

zi
dz

H(z) ≈ ηi +
zi−z
H0

, where H0 is the Hubble constant. In terms of
the redshift, expression (77) is rewritten as

C ≈ 1 − 1.25 × 10−6(∆p)8

p2
0M4

p H2
0

(zi − z)2, (78)

A condition is that C turns to zero at present time η0, when z = 0 gives an estimation
of zi:

zi ∼ 900
H0 p0M2

p

(∆p)4 . (79)

For instance, at p0 ∼ 30 GeV and ∆p/p0 ∼ 0.05 we have zi ∼ 0.25. That means that
radiation emitted at this zi must be fully decoherent today. Thus, the effect seems rather
observable, although the decoherence depends strongly on ∆p/p0.

It seems also interesting to understand the influence of the fluctuating gravitational
field on the spatial localization of the photon. This question needs calculation of a center
of wave packet motion, namely, mean value of the operator r̂ = i ∂

∂p with the help of basic
Equation (65). The range of the spatial localization of the photon could be estimated by
calculation of the mean value r̂2− < r >2. Due to the ambiguity of the photon posi-
tion operator [34,35] it is preferable to rewrite Equation (65) in the Foldy–Wouthuysen
representation (see, e.g., [36] and references therein) for this aim.



Universe 2025, 11, 277 12 of 16

5. Decoherence and Depolarization
A decrease in C suggests that spatial and polarization coherence is lost. Let us say

spatial coherence is already lost, and only polarization decoherence remains. How is the po-
larization decoherence related to the polarization of radiation? The simplest way to clarify
this is to consider the usual two-dimensional photon-polarization matrix, corresponding to
two possible photon polarizations. Let us say this density matrix has the form

ρ =

(
α β

β∗ 1 − α

)
. (80)

Tr(ρ2)− 1 = 2
(

α2 − α + |β|2
)

(81)

The minimum of this quantity, corresponding to maximal decoherence, is reached
at α = 1/2 and β = 0 if α and β are considered independent variables. In this case,
radiation will be unpolarized. It seems that decoherence also destroys the polarization of
radiation. Indeed, this question needs more careful investigation because it is related to the
conservation of orbital and total angular momenta [12].

6. Conclusions and Discussion
We have culculated the decoherence of a Gaussian wave packet in a vacuum. The

attractive feature of the resulting formula is that it does not depend on the ultraviolet
cut-off because the corresponding correlator SF(q, ω) of the metric fluctuations decreases
in a sufficient degree with a frequency increase. The Migdal equation for the density matrix
evolution was applied, but it seems that these results could be reproduced in a frame of
more conventional formalism with the Green functions applied for modeling decoherence
in a turbulent atmosphere [37–41]. Unfortunately, a formalism will be more complicated
because a fluctuating gravitational field generates both effective dielectric permittivity and
magnetic permeability; hence, a necessity of a matrix 6 × 6 Greene function arises.

The next stage should be a discussion of the possible experiments on observing the
incoherent radiation from distant astrophysical sources. One of the directions could be
investigation of polarization of high energy of gamma quants [42–45] at high redshift.

A second direction could be clarifying the influence of the coherence of the photon
wave packet on the development of a particle shower in a detector.
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Appendix A. Correlators of Fermion Field
In this appendix, the notation ψ is used for fermion field, and α, β are 4× 4 matrices [46]

of the usual Dirac equation. The Lagrangian of the fermion field in the expanding uniform
flat universe [47,48] with the metric ds2 = N(η)2a(η)2dη2 − a(η)2dx2 has the form

L f erm = −
M2

pa′2

2N
+ ∑

k

i a3

2
ψ+

k ∂ηψk −
i a3

2
∂ηψ+

k ψk − Na3ψ+
k (αk)ψk − Na4 mψ+

k βψk. (A1)
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The fist term in Equation (A1) is introduced to derive fermion energy density in a
simple way, because we know that in the Friedmann Equation (24) a′2 is proportional to ρ.
Varying Lagrangian over the lapse function N and then setting it to unity gives

1
2

M2
p a′2 ≡ ρa4 = ∑

k
a3ψ+

k (αk)ψk + a4 mψ+
k βψk. (A2)

On the other hand, we could obtain the expression for the quantity ρ − 3p (25) by
varying action with the Lagrangian (A1) over a:

M2
p a′′ = a3(ρ − 3p) = ∑

k

3
2

a2(−iψ+
k ψ′

k + iψ′+
k ψk + 2ψ+

k (αk)ψk
)
+ 4a3m(ψ+

k βψk) =

a3m ∑
k

ψ+
k βψk, (A3)

where the last equality in (A3) is obtained using the equation of motion

iψ′
k − (αk)ψk + i

3a′

2a
ψk − m aβψk = 0 (A4)

of the fermion field. As in the case of the scalar field, after identifying δΠ̂k = p̂k and
δ℘̂k = ρ̂k we come to

δ̂℘k + 3δΠ̂k = ψ̂+
k (2αk + βm)ψ̂+

k (A5)

for Minkowski space-time. Certainly, another way to obtain the expression (A5) is to use
the stress–energy tensor of the fermion field. The fermion field is quantized as

ψ̂k = b̂+−k,sv−k,seiωkη + âk,suk,se−iωkη , (A6)

where ωk =
√

k2 + m2 and the basic bispinors are:

uk,s(η) =

√
ωk + m

2ωk

(
φs

σk
ωk+m φs

)
,

φ+ =

(
1
0

)
and φ− =

(
0
1

)
. The bispinor vk,s is expressed as v−k,−s = iγ0γ2(ūk,s)

T ,

where the symbol T denotes the transpose vector and ū = u+γ0. Calculations similar to
those for the scalar field give the following correlator:

SF(τ − η, k) =< 0|F̂+
k (η)F̂k(τ)|0 >=

16 ∗ 81
M4

p
∑

q,s,σ

ei(τ−η)(ωq+ωq+k)(u+
q,s(2α + βm)v−k−q,σ)(v+−k−q,σ(2α + βm)uq,s)(

k4 − 9(ωq + ωk+q)4
)2 , (A7)

which is reduced to

S̃F(ω, k) =
16 ∗ 81

(2π)3M4
p

∫ 4ω2
k+q((k + q)q + ωqωk+q)− m2((k + q)q + 3ωq+kωq))− m4

ωq

δ(ωq + ωq+k − ω)d3q(
k4 − 9(ωq + ωk+q)4

)2 . (A8)

The integral (A8) becomes more complicated by fermion mass compared to (55), so
we set m = 0, which is valid if the gamma quant energy is much larger than the fermion
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mass, and is reasonable, for example, for electrons, but not for t-quarks. Calculations at
m = 0 give

S̃F(ω, k) =


2∗81(ω4+ω2k2)

π2(k4−9ω4)
2 , k < ω

0, otherwise
, (A9)

which is similar to (55).

Appendix B. Solution of the Free Optical Dirac Equation
For a free photon on the Minkowski space-time background, the solution of

Equation (19) without interaction is written as ψ(η) = e−iεnη(p)ψn(p), where ψn has to
satisfy the eigenvalue Equation (68). The eigenfunctions of operator αp are

ψ1(p) =
1√

1 +
p2

x+p2
y

p2
z



0
0
0

px/pz

py/pz

1


, ψ2(p) =

1√
1 +

p2
x+p2

y

p2
z



px/pz

py/pz

1
0
0
0


,

ψ3(p) =
1√

2
(

1 + p2
z

p2
x

)



ipy/p
p2

x+p2
z

ipx p
ipy pz
px p

−pz/px

0
1


, ψ4(p) =

1√
2
√

p2
x + p2

z



−ipz

0
ipx

−px py/p
p2

x+p2
z

p

−py pz/p


, (A10)

ψ5(p) =
1√

2
(

1 + p2
z

p2
x

)



−ipy/p
i(p2

x+p2
z)

px p
py pz
ipx p

−pz/px

0
1


, ψ6(p) =

1
√

2
√

p2
x + p2

y



ipz

0
−ipx

−px py/p

− p2
x+p2

z
p

−py pz/p


.

The corresponding eigenvalues εn(p) are {0, 0, p, p,−p,−p}.
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