The Effects of the Gravitational Coupling Variation on the Local H0 Estimation
Abstract
1. Introduction
2. Varying Matter-Gravity Coupling
3. Equations of Motion in Jordan and Einstein Frame
4. Jordan Frame Modified Friedman Equation
5. Einstein Frame Modified Friedman Equation and Conservation Laws
6. Model
7. Effect on SNe Calibration
8. Test with SNe Data
9. Compatibility with Other Observations
10. Large Scale Structure Constraints on the Effective Gravitational Coupling
11. Implications for the Apparent Hubble Tension
12. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Einstein Frame Cosmological Constant Model
References
- Riess, A.G.; Yuan, W.; Macri, L.M.; Scolnic, D.; Brout, D.; Casertano, S.; Jones, D.O.; Murakami, Y.; An, G.S.; Breuval, L.; et al. A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s−1 Mpc−1 Uncertainty from the Hubble Space Telescope and the SH0ES Team. Astrophys. J. Lett. 2022, 934, L7. [Google Scholar] [CrossRef]
- Aghanim, N. et al. [Planck Collaboration] Planck 2018 results. Astron. Astrophys. 2020, 641, A6. [Google Scholar] [CrossRef]
- Freedman, W.L.; Madore, B.F.; Hoyt, T.J.; Jang, I.S.; Lee, A.J.; Owens, K.A. Status Report on the Chicago-Carnegie Hubble Program (CCHP): Measurement of the Hubble Constant Using the Hubble and James Webb Space Telescopes. Astrophys. J. 2025, 985, 203. [Google Scholar] [CrossRef]
- Jiang, J.Q.; Liu, W.; Zhan, H.; Hu, B. Explanation of high redshift luminous galaxies from JWST by an early dark energy model. Phys. Rev. D 2025, 111, 023519. [Google Scholar] [CrossRef]
- Liu, W.; Zhan, H.; Gong, Y.; Wang, X. Can early dark energy be probed by the high-redshift galaxy abundance? Mon. Not. Roy. Astron. Soc. 2024, 533, 860–871. [Google Scholar] [CrossRef]
- Romano, A.E. Hubble trouble or Hubble bubble? Int. J. Mod. Phys. D 2018, 27, 1850102. [Google Scholar] [CrossRef]
- Aluri, P.K.; Cea, P.; Chingangbam, P.; Chu, M.C.; Clowes, R.G.; Hutsemékers, D.; Kochappan, J.P.; Lopez, A.M.; Liu, L.; Martens, N.C.; et al. Is the observable Universe consistent with the cosmological principle? Class. Quant. Grav. 2023, 40, 094001. [Google Scholar] [CrossRef]
- Di Valentino, E.; Mena, O.; Pan, S.; Visinelli, L.; Yang, W.; Melchiorri, A.; Mota, D.F.; Riess, A.G.; Silk, J. In the realm of the Hubble tension—A review of solutions. Class. Quant. Grav. 2021, 38, 153001. [Google Scholar] [CrossRef]
- Montani, G.; DeAngelis, M.; Bombacigno, F.; Carlevaro, N. Metric f(R) gravity with dynamical dark energy as a scenario for the Hubble tension. Mon. Not. Roy. Astron. Soc. 2023, 527, L156–L161. [Google Scholar] [CrossRef]
- Gleyzes, J.; Langlois, D.; Piazza, F.; Vernizzi, F. Essential building blocks of dark energy. J. Cosmol. Astropart. Phys. 2013, 8, 25. [Google Scholar] [CrossRef]
- Côté, J.; Faraoni, V.; Giusti, A. Revisiting the conformal invariance of Maxwell’s equations in curved spacetime. Gen. Rel. Grav. 2019, 51, 117. [Google Scholar] [CrossRef]
- D’Inverno, R. Introducing Einstein’s Relativity; Clarendon Press: Oxford, UK, 1992. [Google Scholar]
- Dabrowski, M.P.; Garecki, J.; Blaschke, D.B. Conformal transformations and conformal invariance in gravitation. Annalen Phys. 2009, 18, 13–32. [Google Scholar] [CrossRef]
- Uzan, J.-P.; Pernot-Borràs, M.; Bergé, J. Effects of a scalar fifth force on the dynamics of a charged particle as a new experimental design to test chameleon theories. Phys. Rev. D 2020, 102, 044059. [Google Scholar] [CrossRef]
- Romano, A.E.; Sakellariadou, M. Mirage of Luminal Modified Gravitational-Wave Propagation. Phys. Rev. Lett. 2023, 130, 231401. [Google Scholar] [CrossRef] [PubMed]
- Chiba, T.; Yamaguchi, M. Conformal-frame (in)dependence of cosmological observations in scalar-tensor theory. J. Cosmol. Astropart. Phys. 2013, 10, 40. [Google Scholar] [CrossRef]
- Deruelle, N.; Sasaki, M. Conformal Equivalence in Classical Gravity: The Example of “Veiled” General Relativity. In Cosmology, Quantum Vacuum and Zeta Functions; Springer Proceedings in Physics; Springer: Berlin/Heidelberg, Germany, 2011; Volume 137, pp. 247–260. [Google Scholar] [CrossRef]
- Rondeau, F.; Li, B. Equivalence of cosmological observables in conformally related scalar tensor theories. Phys. Rev. D 2017, 96, 124009. [Google Scholar] [CrossRef]
- Paraskevas, E.A.; Perivolaropoulos, L. Effects of a Late Gravitational Transition on Gravitational Waves and Anticipated Constraints. Universe 2023, 9, 317. [Google Scholar] [CrossRef]
- Marra, V.; Perivolaropoulos, L. Rapid transition of Geff at zt ≃ 0.01 as a possible solution of the Hubble and growth tensions. Phys. Rev. D 2021, 104, L021303. [Google Scholar] [CrossRef]
- Schiavone, T.; Montani, G.; Bombacigno, F. f(R) gravity in the Jordan frame as a paradigm for the Hubble tension. Mon. Not. Roy. Astron. Soc. 2023, 522, L72–L77. [Google Scholar] [CrossRef]
- Mazo, B.Y.D.V.; Romano, A.E.; Quintero, M.A.C. H0 tension or M overestimation? Eur. Phys. J. C 2022, 82, 610. [Google Scholar] [CrossRef]
- Scolnic, D.M.; Jones, D.O.; Rest, A.; Pan, Y.C.; Chornock, R.; Foley, R.J.; Huber, M.E.; Kessler, R.; Narayan, G.; Riess, A.G.; et al. The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample. Astrophys. J. 2018, 859, 101. [Google Scholar] [CrossRef]
- Linder, E.V.; Sengör, G.; Watson, S. Is the Effective Field Theory of Dark Energy Effective? J. Cosmol. Astropart. Phys. 2016, 5, 53. [Google Scholar] [CrossRef]
- Ishak, M.; Pan, J.; Calderon, R.; Lodha, K.; Valogiannis, G.; Aviles, A.; Niz, G.; Yi, L.; Zheng, C.; Garcia-Quintero, C.; et al. Modified Gravity Constraints from the Full Shape Modeling of Clustering Measurements from DESI 2024. arXiv 2024, arXiv:2411.12026. [Google Scholar] [CrossRef]
- Efstathiou, G. To H0 or not to H0? Mon. Not. Roy. Astron. Soc. 2021, 505, 3866–3872. [Google Scholar] [CrossRef]
Dataset | (km s−1 Mpc−1) | M |
---|---|---|
Riess | ||
Planck |
Model | ||||||
---|---|---|---|---|---|---|
CDM | 73.04 | 73.04 | 1073.6 | 0 | 1073.6 | 1.0264 |
CDM | 67.4 | 67.4 | 1073.6 | 29.9 | 1103.5 | 1.055 |
CDM | 67.4 | 72.9 | 1070.8 | 0.02 | 1070.82 | 1.0257 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romano, A.E. The Effects of the Gravitational Coupling Variation on the Local H0 Estimation. Universe 2025, 11, 278. https://doi.org/10.3390/universe11080278
Romano AE. The Effects of the Gravitational Coupling Variation on the Local H0 Estimation. Universe. 2025; 11(8):278. https://doi.org/10.3390/universe11080278
Chicago/Turabian StyleRomano, Antonio Enea. 2025. "The Effects of the Gravitational Coupling Variation on the Local H0 Estimation" Universe 11, no. 8: 278. https://doi.org/10.3390/universe11080278
APA StyleRomano, A. E. (2025). The Effects of the Gravitational Coupling Variation on the Local H0 Estimation. Universe, 11(8), 278. https://doi.org/10.3390/universe11080278