Editor's Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to authors, or important in this field. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

Article
On the Significance of Interferometric Revivals for the Fundamental Description of Gravity
Universe 2022, 8(2), 58; https://doi.org/10.3390/universe8020058 - 18 Jan 2022
Cited by 9 | Viewed by 895
Abstract
We show that an interaction between a harmonic oscillator and a two-level test mass (TLTM) mediated by a local operations and classical communication (LOCC) channel produces a signature that in (D. Carney et al., PRX Quantum 2, 030330 (2021)) is claimed to be [...] Read more.
We show that an interaction between a harmonic oscillator and a two-level test mass (TLTM) mediated by a local operations and classical communication (LOCC) channel produces a signature that in (D. Carney et al., PRX Quantum 2, 030330 (2021)) is claimed to be exclusively reserved for channels that can transmit quantum information. We provide an explicit example based on a measurement-and-feedback channel, explain where the proof of Carney et al. fails, discuss to what degree setups of this type can test the nature of the gravitational interaction and remark on some fundamental implications that an LOCC model of gravity may have in black hole physics. Full article
(This article belongs to the Special Issue The Quantum & The Gravity)
Show Figures

Figure 1

Article
Underground Measurements of Nuclear Reaction Cross-Sections Relevant to AGB Stars
Universe 2022, 8(1), 4; https://doi.org/10.3390/universe8010004 - 23 Dec 2021
Cited by 1 | Viewed by 867
Abstract
Nuclear reaction cross sections are essential ingredients to predict the evolution of AGB stars and understand their impact on the chemical evolution of our Galaxy. Unfortunately, the cross sections of the reactions involved are often very small and challenging to measure in laboratories [...] Read more.
Nuclear reaction cross sections are essential ingredients to predict the evolution of AGB stars and understand their impact on the chemical evolution of our Galaxy. Unfortunately, the cross sections of the reactions involved are often very small and challenging to measure in laboratories on Earth. In this context, major steps forward were made with the advent of underground nuclear astrophysics, pioneered by the Laboratory for Underground Nuclear Astrophysics (LUNA). The present paper reviews the contribution of LUNA to our understanding of the evolution of AGB stars and related nucleosynthesis. Full article
Show Figures

Figure 1

Article
Effect of the Cubic Torus Topology on Cosmological Perturbations
Universe 2021, 7(12), 469; https://doi.org/10.3390/universe7120469 - 30 Nov 2021
Cited by 1 | Viewed by 755
Abstract
We study the effect of the cubic torus topology of the Universe on scalar cosmological perturbations which define the gravitational potential. We obtain three alternative forms of the solution for both the gravitational potential produced by point-like masses, and the corresponding force. The [...] Read more.
We study the effect of the cubic torus topology of the Universe on scalar cosmological perturbations which define the gravitational potential. We obtain three alternative forms of the solution for both the gravitational potential produced by point-like masses, and the corresponding force. The first solution includes the expansion of delta-functions into Fourier series, exploiting periodic boundary conditions. The second one is composed of summed solutions of the Helmholtz equation for the original mass and its images. Each of these summed solutions is the Yukawa potential. In the third formula, we express the Yukawa potentials via Ewald sums. We show that for the present Universe, both the bare summation of Yukawa potentials and the Yukawa-Ewald sums require smaller numbers of terms to yield the numerical values of the potential and the force up to desired accuracy. Nevertheless, the Yukawa formula is yet preferable owing to its much simpler structure. Full article
(This article belongs to the Special Issue Cosmological Models, Quantum Theories and Astrophysical Observations)
Show Figures

Figure 1

Article
35 Years of Ground-Based Gamma-ray Astronomy
Universe 2021, 7(11), 432; https://doi.org/10.3390/universe7110432 - 12 Nov 2021
Cited by 2 | Viewed by 485
Abstract
This paper provides a brief, personal account of the development of ground-based gamma-ray astronomy, primarily over the last 35 years, with some digressions into the earlier history of the field. Ideas related to the imaging of Cherenkov events and the potential for the [...] Read more.
This paper provides a brief, personal account of the development of ground-based gamma-ray astronomy, primarily over the last 35 years, with some digressions into the earlier history of the field. Ideas related to the imaging of Cherenkov events and the potential for the use of arrays were in existence for some time before the technical expertise required for their exploitation emerged. There has been occasional controversy, great creativity and some heroic determination—all of it part of establishing a new window into the universe. Full article
Show Figures

Figure 1

Article
Multimodal Analysis of Gravitational Wave Signals and Gamma-Ray Bursts from Binary Neutron Star Mergers
Universe 2021, 7(11), 394; https://doi.org/10.3390/universe7110394 - 21 Oct 2021
Cited by 1 | Viewed by 622
Abstract
A major boost in the understanding of the universe was given by the revelation of the first coalescence event of two neutron stars (GW170817) and the observation of the same event across the entire electromagnetic spectrum. With third-generation gravitational wave detectors and the [...] Read more.
A major boost in the understanding of the universe was given by the revelation of the first coalescence event of two neutron stars (GW170817) and the observation of the same event across the entire electromagnetic spectrum. With third-generation gravitational wave detectors and the new astronomical facilities, we expect many multi-messenger events of the same type. We anticipate the need to analyse the data provided to us by such events not only to fulfil the requirements of real-time analysis, but also in order to decipher the event in its entirety through the information emitted in the different messengers using machine learning. We propose a change in the paradigm in the way we do multi-messenger astronomy, simultaneously using the complete information generated by violent phenomena in the Universe. What we propose is the application of a multimodal machine learning approach to characterize these events. Full article
(This article belongs to the Special Issue Waiting for GODOT—Present and Future of Multi-Messenger Astronomy)
Show Figures

Figure 1

Article
A New Sample of Gamma-Ray Emitting Jetted Active Galactic Nuclei—Preliminary Results
Universe 2021, 7(10), 372; https://doi.org/10.3390/universe7100372 - 05 Oct 2021
Cited by 3 | Viewed by 1017
Abstract
We are compiling a new list of gamma-ray jetted active galactic nuclei (AGN), starting from the fourth catalog of point sources of the Fermi Large Area Telescope (LAT). Our aim is to prepare a list of jetted AGN with known redshifts and classifications [...] Read more.
We are compiling a new list of gamma-ray jetted active galactic nuclei (AGN), starting from the fourth catalog of point sources of the Fermi Large Area Telescope (LAT). Our aim is to prepare a list of jetted AGN with known redshifts and classifications to be used to calibrate jet power. We searched in the available literature for all the published optical spectra and multiwavelength studies useful to characterize the sources. We found new, missed, or even forgotten information leading to a substantial change in the redshift values and classification of many sources. We present here the preliminary results of this analysis and some statistics based on the gamma-ray sources with right ascension within the interval 0h--12h (J2000). Although flat-spectrum radio quasars and BL Lac objects are still the dominant populations, there is a significant increase in the number of other objects, such as misaligned AGN, narrow-line Seyfert 1 galaxies, and Seyfert galaxies. We also introduced two new classes of objects: changing-look AGN and ambiguous sources. About one third of the sources remain unclassified. Full article
(This article belongs to the Special Issue Panchromatic View of the Life-Cycle of AGN)
Show Figures

Figure 1

Article
High-Order Multipole and Binary Love Number Universal Relations
Universe 2021, 7(10), 368; https://doi.org/10.3390/universe7100368 - 30 Sep 2021
Cited by 5 | Viewed by 517
Abstract
Using a data set of approximately 2 million phenomenological equations of state consistent with observational constraints, we construct new equation-of-state-insensitive universal relations that exist between the multipolar tidal deformability parameters of neutron stars, Λl, for several high-order multipoles ( [...] Read more.
Using a data set of approximately 2 million phenomenological equations of state consistent with observational constraints, we construct new equation-of-state-insensitive universal relations that exist between the multipolar tidal deformability parameters of neutron stars, Λl, for several high-order multipoles (l=5,6,7,8), and we consider finite-size effects of these high-order multipoles in waveform modeling. We also confirm the existence of a universal relation between the radius of the 1.4M NS, R1.4 and the reduced tidal parameter of the binary, Λ˜, and the chirp mass. We extend this relation to a large number of chirp masses and to the radii of isolated NSs of different mass M, RM. We find that there is an optimal value of M for every M such that the uncertainty in the estimate of RM is minimized when using the relation. We discuss the utility and implications of these relations for the upcoming LIGO O4 run and third-generation detectors. Full article
(This article belongs to the Special Issue Properties and Dynamics of Neutron Stars and Proto-Neutron Stars)
Show Figures

Figure 1

Article
Hints for a Gravitational Transition in Tully–Fisher Data
Universe 2021, 7(10), 366; https://doi.org/10.3390/universe7100366 - 29 Sep 2021
Cited by 14 | Viewed by 675
Abstract
We use an up-to-date compilation of Tully–Fisher data to search for transitions in the evolution of the Tully–Fisher relation. Using an up-to-date data compilation, we find hints at 3σ level for a transition at critical distances Dc9 Mpc [...] Read more.
We use an up-to-date compilation of Tully–Fisher data to search for transitions in the evolution of the Tully–Fisher relation. Using an up-to-date data compilation, we find hints at 3σ level for a transition at critical distances Dc9 Mpc and Dc17 Mpc. We split the full sample in two subsamples, according to the measured galaxy distance with respect to splitting distance Dc, and identify the likelihood of the best-fit slope and intercept of one sample with respect to the best-fit corresponding values of the other sample. For Dc9 Mpc and Dc17 Mpc, we find a tension between the two subsamples at a level of Δχ2>17(3.5σ). Using Monte Carlo simulations, we demonstrate that this result is robust with respect to random statistical and systematic variations of the galactic distances and is unlikely in the context of a homogeneous dataset constructed using the Tully–Fisher relation. If the tension is interpreted as being due to a gravitational strength transition, it would imply a shift in the effective gravitational constant to lower values for distances larger than Dc by ΔGG0.1. Such a shift is of the anticipated sign and magnitude but at a somewhat lower distance (redshift) than the gravitational transition recently proposed to address the Hubble and growth tensions (ΔGG0.1 at the transition redshift of zt0.01 (Dc40 Mpc)). Full article
(This article belongs to the Section Cosmology)
Show Figures

Figure 1

Article
The Black Hole Firewall Transformation and Realism in Quantum Mechanics
Universe 2021, 7(8), 298; https://doi.org/10.3390/universe7080298 - 13 Aug 2021
Cited by 3 | Viewed by 5627
Abstract
A procedure to derive a unitary evolution law for a quantised black hole has been proposed by the author. The proposal requires that one starts off with the entire Penrose diagram for the eternal black hole as the background metric, after which one [...] Read more.
A procedure to derive a unitary evolution law for a quantised black hole has been proposed by the author. The proposal requires that one starts off with the entire Penrose diagram for the eternal black hole as the background metric, after which one has to invoke the antipodal identification in order to see how the two asymptotic domains of this metric both refer to the same outside world. In this paper, we focus on the need to include time reversal in applying this identification. This forces us to postulate the existence of an ‘anti-vacuum’ state in our world, which is the state where energy density reaches a maximal value. We find that this squares well with the deterministic interpretation of quantum mechanics, according to which quantum Hilbert space is to be regarded as the ‘vector representation’ of a real world. One has to understand how to deal with gravity in such considerations. The non-perturbative component of the gravitational force seems to involve cut-and-paste procedures as dynamical features of space and time, of which the re-arrangement of space-time into two connected domains in the Penrose diagram is a primary example. Thus, we attempt to obtain new insights in the nature of particle interactions at the Planck scale, as well as quantum mechanics itself. Full article
(This article belongs to the Special Issue Quantum Field Theory)
Show Figures

Figure 1

Article
Essential Quantum Einstein Gravity
Universe 2021, 7(8), 294; https://doi.org/10.3390/universe7080294 - 10 Aug 2021
Cited by 14 | Viewed by 598
Abstract
The non-perturbative renormalisation of quantum gravity is investigated allowing for the metric to be reparameterised along the RG flow, such that only the essential couplings constants are renormalised. This allows us to identify a universality class of quantum gravity which is guaranteed to [...] Read more.
The non-perturbative renormalisation of quantum gravity is investigated allowing for the metric to be reparameterised along the RG flow, such that only the essential couplings constants are renormalised. This allows us to identify a universality class of quantum gravity which is guaranteed to be unitary, since the physical degrees of freedom are those of general relativity without matter and with a vanishing cosmological constant. Considering all diffeomorphism invariant operators with up to four derivatives, only Newton’s constant is essential at the Gaussian infrared fixed point associated to the linearised Einstein–Hilbert action. The other inessential couplings can then be fixed to the values they take at the Gaussian fixed point along the RG flow within this universality class. In the ultraviolet, the corresponding beta function for Newton’s constant vanishes at the interacting Reuter fixed point. The properties of the Reuter fixed point are stable between the Einstein–Hilbert approximation and the approximation including all diffeomorphism invariant four derivative terms in the flow equation. Our results suggest that Newton’s constant is the only relevant essential coupling at the Reuter fixed point. Therefore, we conjecture that quantum Einstein gravity, the ultraviolet completion of Einstein’s theory of general relativity in the asymptotic safety scenario, has no free parameters in the absence of matter and in particular predicts a vanishing cosmological constant. Full article
(This article belongs to the Special Issue Asymptotic Safety in Quantum Gravity)
Show Figures

Figure 1

Article
Spherically Symmetric Exact Vacuum Solutions in Einstein-Aether Theory
Universe 2021, 7(8), 272; https://doi.org/10.3390/universe7080272 - 28 Jul 2021
Cited by 5 | Viewed by 690
Abstract
We study spherically symmetric spacetimes in Einstein-aether theory in three different coordinate systems, the isotropic, Painlevè-Gullstrand, and Schwarzschild coordinates, in which the aether is always comoving, and present both time-dependent and time-independent exact vacuum solutions. In particular, in the isotropic coordinates we find [...] Read more.
We study spherically symmetric spacetimes in Einstein-aether theory in three different coordinate systems, the isotropic, Painlevè-Gullstrand, and Schwarzschild coordinates, in which the aether is always comoving, and present both time-dependent and time-independent exact vacuum solutions. In particular, in the isotropic coordinates we find a class of exact static solutions characterized by a single parameter c14 in closed forms, which satisfies all the current observational constraints of the theory, and reduces to the Schwarzschild vacuum black hole solution in the decoupling limit (c14=0). However, as long as c140, a marginally trapped throat with a finite non-zero radius always exists, and on one side of it the spacetime is asymptotically flat, while on the other side the spacetime becomes singular within a finite proper distance from the throat, although the geometric area is infinitely large at the singularity. Moreover, the singularity is a strong and spacetime curvature singularity, at which both of the Ricci and Kretschmann scalars become infinitely large. Full article
(This article belongs to the Special Issue Inflation, Black Holes and Gravitational Waves)
Show Figures

Figure 1

Article
A Neutron Star Is Born
Universe 2021, 7(8), 267; https://doi.org/10.3390/universe7080267 - 26 Jul 2021
Cited by 8 | Viewed by 1232
Abstract
A neutron star was first detected as a pulsar in 1967. It is one of the most mysterious compact objects in the universe, with a radius of the order of 10 km and masses that can reach two solar masses. In fact, neutron [...] Read more.
A neutron star was first detected as a pulsar in 1967. It is one of the most mysterious compact objects in the universe, with a radius of the order of 10 km and masses that can reach two solar masses. In fact, neutron stars are star remnants, a kind of stellar zombie (they die, but do not disappear). In the last decades, astronomical observations yielded various contraints for neutron star masses, and finally, in 2017, a gravitational wave was detected (GW170817). Its source was identified as the merger of two neutron stars coming from NGC 4993, a galaxy 140 million light years away from us. The very same event was detected in γ-ray, X-ray, UV, IR, radio frequency and even in the optical region of the electromagnetic spectrum, starting the new era of multi-messenger astronomy. To understand and describe neutron stars, an appropriate equation of state that satisfies bulk nuclear matter properties is necessary. GW170817 detection contributed with extra constraints to determine it. On the other hand, magnetars are the same sort of compact object, but bearing much stronger magnetic fields that can reach up to 1015 G on the surface as compared with the usual 1012 G present in ordinary pulsars. While the description of ordinary pulsars is not completely established, describing magnetars poses extra challenges. In this paper, I give an overview on the history of neutron stars and on the development of nuclear models and show how the description of the tiny world of the nuclear physics can help the understanding of the cosmos, especially of the neutron stars. Full article
(This article belongs to the Special Issue Properties and Dynamics of Neutron Stars and Proto-Neutron Stars)
Show Figures

Figure 1

Article
Geometric Approach to Analytic Marginalisation of the Likelihood Ratio for Continuous Gravitational Wave Searches
Universe 2021, 7(6), 174; https://doi.org/10.3390/universe7060174 - 01 Jun 2021
Cited by 3 | Viewed by 711
Abstract
The likelihood ratio for a continuous gravitational wave signal is viewed geometrically as a function of the orientation of two vectors; one representing the optimal signal-to-noise ratio, and the other representing the maximised likelihood ratio or F-statistic. Analytic marginalisation over the angle [...] Read more.
The likelihood ratio for a continuous gravitational wave signal is viewed geometrically as a function of the orientation of two vectors; one representing the optimal signal-to-noise ratio, and the other representing the maximised likelihood ratio or F-statistic. Analytic marginalisation over the angle between the vectors yields a marginalised likelihood ratio, which is a function of the F-statistic. Further analytic marginalisation over the optimal signal-to-noise ratio is explored using different choices of prior. Monte-Carlo simulations show that the marginalised likelihood ratios had identical detection power to the F-statistic. This approach demonstrates a route to viewing the F-statistic in a Bayesian context, while retaining the advantages of its efficient computation. Full article
(This article belongs to the Special Issue Continuous Gravitational Waves)
Show Figures

Figure 1

Article
The “Emerging” Reality from “Hidden” Spaces
Universe 2021, 7(3), 75; https://doi.org/10.3390/universe7030075 - 23 Mar 2021
Cited by 2 | Viewed by 1922
Abstract
The main purpose of this paper is to show and introduce some new interpretative aspects of the concept of “emergent space” as geometric/topological approach in the cosmological field. We will present some possible applications of this theory, among which the possibility of considering [...] Read more.
The main purpose of this paper is to show and introduce some new interpretative aspects of the concept of “emergent space” as geometric/topological approach in the cosmological field. We will present some possible applications of this theory, among which the possibility of considering a non-orientable wormhole, but mainly we provide a topological interpretation, using this new approach, to M-Theory and String Theory in 10 dimensions. Further, we present some conclusions which this new interpretation suggests, and also some remarks considering a unifying approach between strings and dark matter. The approach shown in the paper considers that reality, as it appears to us, can be the “emerging” part of a more complex hidden structure. Pacs numbers: 11.25.Yb; 11.25.-w; 02.40.Ky; 02.40.-k; 04.50.-h; 95.35.+d. Full article
(This article belongs to the Section Cosmology)
Show Figures

Figure 1

Article
Benefit of New High-Precision LLR Data for the Determination of Relativistic Parameters
Universe 2021, 7(2), 34; https://doi.org/10.3390/universe7020034 - 03 Feb 2021
Cited by 6 | Viewed by 971
Abstract
Since 1969, Lunar Laser Ranging (LLR) data have been collected by various observatories and analysed by different analysis groups. In the recent years, observations with bigger telescopes (APOLLO) and at infra-red wavelength (OCA) are carried out, resulting in a better distribution of precise [...] Read more.
Since 1969, Lunar Laser Ranging (LLR) data have been collected by various observatories and analysed by different analysis groups. In the recent years, observations with bigger telescopes (APOLLO) and at infra-red wavelength (OCA) are carried out, resulting in a better distribution of precise LLR data over the lunar orbit and the observed retro-reflectors on the Moon. This is a great advantage for various investigations in the LLR analysis. The aim of this study is to evaluate the benefit of the new LLR data for the determination of relativistic parameters. Here, we show current results for relativistic parameters like a possible temporal variation of the gravitational constant G˙/G0=(5.0±9.6)×1015yr1, the equivalence principle with Δmg/miEM=(2.1±2.4)×1014, and the PPN parameters β1=(6.2±7.2)×105 and γ1=(1.7±1.6)×104. The results show a significant improvement in the accuracy of the various parameters, mainly due to better coverage of the lunar orbit, better distribution of measurements over the lunar retro-reflectors, and last but not least, higher accuracy of the data. Within the estimated accuracies, no violation of Einstein’s theory is found and the results set improved limits for the different effects. Full article
(This article belongs to the Special Issue Current and Future Tests of General Relativity)
Show Figures

Figure 1

Article
Revisiting the Cosmological Constant Problem within Quantum Cosmology
Universe 2020, 6(8), 108; https://doi.org/10.3390/universe6080108 - 02 Aug 2020
Cited by 6 | Viewed by 1786
Abstract
A new perspective on the Cosmological Constant Problem (CCP) is proposed and discussed within the multiverse approach of Quantum Cosmology. It is assumed that each member of the ensemble of universes has a characteristic scale a that can be used as integration variable [...] Read more.
A new perspective on the Cosmological Constant Problem (CCP) is proposed and discussed within the multiverse approach of Quantum Cosmology. It is assumed that each member of the ensemble of universes has a characteristic scale a that can be used as integration variable in the partition function. An averaged characteristic scale of the ensemble is estimated by using only members that satisfy the Einstein field equations. The averaged characteristic scale is compatible with the Planck length when considering an ensemble of solutions to the Einstein field equations with an effective cosmological constant. The multiverse ensemble is split in Planck-seed universes with vacuum energy density of order one; thus, Λ˜8π in Planck units and a-derivable universes. For a-derivable universe with a characteristic scale of the order of the observed Universe a8×1060, the cosmological constant Λ=Λ˜/a2 is in the range 1012110122, which is close in magnitude to the observed value 10123. We point out that the smallness of Λ can be viewed to be natural if its value is associated with the entropy of the Universe. This approach to the CCP reconciles the Planck-scale huge vacuum energy–density predicted by QFT considerations, as valid for Planck-seed universes, with the observed small value of the cosmological constant as relevant to an a-derivable universe as observed. Full article
(This article belongs to the Special Issue Quantum Models for Cosmology)
Article
Langer Modification, Quantization Condition and Barrier Penetration in Quantum Mechanics
Universe 2020, 6(7), 90; https://doi.org/10.3390/universe6070090 - 30 Jun 2020
Cited by 3 | Viewed by 1051
Abstract
The WKB approximation plays an essential role in the development of quantum mechanics and various important results have been obtained from it. In this paper, we introduce another method, the so-called uniform asymptotic approximations, which is an analytical approximation method to calculate the [...] Read more.
The WKB approximation plays an essential role in the development of quantum mechanics and various important results have been obtained from it. In this paper, we introduce another method, the so-called uniform asymptotic approximations, which is an analytical approximation method to calculate the wave functions of the Schrödinger-like equations, and it is applicable to various problems, including cases with poles (singularities) and multiple turning points. A distinguished feature of the method is that in each order of the approximations the upper bounds of the errors are given explicitly. By properly choosing the freedom introduced in the method, the errors can be minimized, which significantly improves the accuracy of the calculations. A byproduct of the method is to provide a very clear explanation of the Langer modification encountered in the studies of the hydrogen atom and harmonic oscillator. To further test our method, we calculate (analytically) the wave functions for several exactly solvable potentials of the Schrödinger equation, and then obtain the transmission coefficients of particles over potential barriers, as well as the quantization conditions for bound states. We find that such obtained results agree with the exact ones extremely well. Possible applications of the method to other fields are also discussed. Full article
(This article belongs to the Section Foundations of Quantum Mechanics and Quantum Gravity)
Show Figures

Figure 1

Article
Was GW170817 a Canonical Neutron Star Merger? Bayesian Analysis with a Third Family of Compact Stars
Universe 2020, 6(6), 81; https://doi.org/10.3390/universe6060081 - 10 Jun 2020
Cited by 48 | Viewed by 1881
Abstract
We investigate the possibility that GW170817 was not the merger of two conventional neutron stars (NS), but involved at least one if not two hybrid stars with a quark matter core that might even belong to a third family of compact stars. To [...] Read more.
We investigate the possibility that GW170817 was not the merger of two conventional neutron stars (NS), but involved at least one if not two hybrid stars with a quark matter core that might even belong to a third family of compact stars. To this end, we develop a Bayesian analysis method for selecting the most probable equation of state (EoS) under a set of constraints from compact star physics, which now also include the tidal deformability from GW170817 and the first result for the mass and radius determination for PSR J0030+0451 by the NICER Collaboration. We apply this method for the first time to a two-parameter family of hybrid EoS based on the DD2 model with nucleonic excluded volume for hadronic matter and the color superconducting generalized nlNJL model for quark matter. The model has a variable onset density for deconfinement and can mimic the effects of pasta phases with the possibility of producing a third family of hybrid stars in the mass-radius diagram. The main findings of this study are that: (1) the presence of multiple configurations for a given mass (twins or even triples) corresponds to a set of disconnected lines in the Λ 1 Λ 2 diagram of tidal deformabilities for binary mergers, so that merger events from the same mass range may result in a probability landscape with different peak positions; (2) the Bayesian analysis with the above observational constraints favors an early onset of the deconfinement transition, at masses of M onset 0.8 M with an MR relationship that in the range of observed neutron star masses is almost indistinguishable from that of a soft hadronic Akmal, Pandharipande, and Ravenhall (APR) EoS; (3) a few, yet fictitious measurements of the NICER experiment two times more accurate than the present value and a different mass and radius that would change the posterior likelihood so that hybrid EoS with a phase transition onset in the range M onset = 1.1–1.6 M would be favored. Full article
Show Figures

Graphical abstract

Article
Towards a Fisher-Information Description of Complexity in de Sitter Universe
Universe 2019, 5(12), 221; https://doi.org/10.3390/universe5120221 - 29 Nov 2019
Cited by 4 | Viewed by 1342
Abstract
Recent developments on holography and quantum information physics suggest that quantum information theory has come to play a fundamental role in understanding quantum gravity. Cosmology, on the other hand, plays a significant role in testing quantum gravity effects. How to apply this idea [...] Read more.
Recent developments on holography and quantum information physics suggest that quantum information theory has come to play a fundamental role in understanding quantum gravity. Cosmology, on the other hand, plays a significant role in testing quantum gravity effects. How to apply this idea to a realistic universe is still unknown. Here, we show that some concepts in quantum information theory have cosmological descriptions. Particularly, we show that the complexity of a tensor network can be regarded as a Fisher information measure (FIM) of a dS universe, followed by several observations: (i) the holographic entanglement entropy has a tensor-network description and admits a information-theoretical interpretation, (ii) on-shell action of dS spacetime has a same description of FIM, (iii) complexity/action(CA) duality holds for dS spacetime. Our result is also valid for f ( R ) gravity, whose FIM exhibits the same features of a recent proposed L n norm complexity. Full article
(This article belongs to the Special Issue Inflation, Black Holes and Gravitational Waves)
Show Figures

Figure 1

Article
EHT Constraint on the Ultralight Scalar Hair of the M87 Supermassive Black Hole
Universe 2019, 5(12), 220; https://doi.org/10.3390/universe5120220 - 27 Nov 2019
Cited by 72 | Viewed by 1649
Abstract
Hypothetical ultralight bosonic fields will spontaneously form macroscopic bosonic halos around Kerr black holes, via superradiance, transferring part of the mass and angular momentum of the black hole into the halo. Such a process, however, is only efficient if resonant—when the Compton wavelength [...] Read more.
Hypothetical ultralight bosonic fields will spontaneously form macroscopic bosonic halos around Kerr black holes, via superradiance, transferring part of the mass and angular momentum of the black hole into the halo. Such a process, however, is only efficient if resonant—when the Compton wavelength of the field approximately matches the gravitational scale of the black hole. For a complex-valued field, the process can form a stationary, bosonic field black hole equilibrium state—a black hole with synchronised hair. For sufficiently massive black holes, such as the one at the centre of the M87 supergiant elliptic galaxy, the hairy black hole can be robust against its own superradiant instabilities, within a Hubble time. Studying the shadows of such scalar hairy black holes, we constrain the amount of hair which is compatible with the Event Horizon Telescope (EHT) observations of the M87 supermassive black hole, assuming the hair is a condensate of ultralight scalar particles of mass μ 10 20 eV, as to be dynamically viable. We show the EHT observations set a weak constraint, in the sense that typical hairy black holes that could develop their hair dynamically, are compatible with the observations, when taking into account the EHT error bars and the black hole mass/distance uncertainty. Full article
(This article belongs to the Special Issue Gravitational Lensing and Optical Geometry: A Centennial Perspective)
Show Figures

Figure 1

Article
Conceptual Challenges on the Road to the Multiverse
Universe 2019, 5(10), 212; https://doi.org/10.3390/universe5100212 - 10 Oct 2019
Cited by 7 | Viewed by 2029
Abstract
The current debate about a possible change of paradigm from a single universe to a multiverse scenario could have deep implications on our view of cosmology and of science in general. These implications therefore deserve to be analyzed from a fundamental conceptual level. [...] Read more.
The current debate about a possible change of paradigm from a single universe to a multiverse scenario could have deep implications on our view of cosmology and of science in general. These implications therefore deserve to be analyzed from a fundamental conceptual level. We briefly review the different multiverse ideas, both historically and within contemporary physics. We then discuss several positions within philosophy of science with regard to scientific progress, and apply these to the multiverse debate. Finally, we construct some key concepts for a physical multiverse scenario and discuss the challenges this scenario has to deal with in order to provide a solid, testable theory. Full article
(This article belongs to the Special Issue The Multiverse)
Article
Searching for Quantum Black Hole Structure with the Event Horizon Telescope
Universe 2019, 5(9), 201; https://doi.org/10.3390/universe5090201 - 17 Sep 2019
Cited by 33 | Viewed by 1687
Abstract
The impressive images from the Event Horizon Telescope (EHT) sharpen the conflict between our observations of gravitational phenomena and the principles of quantum mechanics. Two related scenarios for reconciling quantum mechanics with the existence of black hole-like objects, with “minimal” departure from general [...] Read more.
The impressive images from the Event Horizon Telescope (EHT) sharpen the conflict between our observations of gravitational phenomena and the principles of quantum mechanics. Two related scenarios for reconciling quantum mechanics with the existence of black hole-like objects, with “minimal” departure from general relativity and local quantum field theory, have been explored; one of these could produce signatures visible to EHT observations. A specific target is temporal variability of images, with a characteristic time scale determined by the classical black hole radius. The absence of evidence for such variability in the initial observational span of seven days is not expected to strongly constrain such variability. Theoretical and observational next steps towards investigating such scenarios are outlined. Full article
(This article belongs to the Special Issue Probing New Physics with Black Holes)
Article
A Particle Emitting Source From an Accelerating, Perturbative Solution of Relativistic Hydrodynamics
Universe 2019, 5(9), 194; https://doi.org/10.3390/universe5090194 - 04 Sep 2019
Viewed by 866
Abstract
The quark gluon plasma is formed in heavy-ion collisions, and it can be described by solutions of relativistic hydrodynamics. In this paper we utilize perturbative hydrodynamics, where we study first order perturbations on top of a known solution. We investigate the perturbations on [...] Read more.
The quark gluon plasma is formed in heavy-ion collisions, and it can be described by solutions of relativistic hydrodynamics. In this paper we utilize perturbative hydrodynamics, where we study first order perturbations on top of a known solution. We investigate the perturbations on top of the Hubble flow. From this perturbative solution we can give the form of the particle emitting source and calculate observables of heavy-ion collisions. We describe the source function and the single-particle momentum spectra for a spherically symmetric solution. Full article
(This article belongs to the Special Issue The Zimányi School and Analytic Hydrodynamics in High Energy Physics)
Show Figures

Figure 1

Article
Holographic Formulation of 3D Metric Gravity with Finite Boundaries
Universe 2019, 5(8), 181; https://doi.org/10.3390/universe5080181 - 31 Jul 2019
Cited by 6 | Viewed by 1312
Abstract
In this work we construct holographic boundary theories for linearized 3D gravity, for a general family of finite or quasi-local boundaries. These boundary theories are directly derived from the dynamics of 3D gravity by computing the effective action for a geometric boundary observable, [...] Read more.
In this work we construct holographic boundary theories for linearized 3D gravity, for a general family of finite or quasi-local boundaries. These boundary theories are directly derived from the dynamics of 3D gravity by computing the effective action for a geometric boundary observable, which measures the geodesic length from a given boundary point to some center in the bulk manifold. We identify the general form for these boundary theories and find that these are Liouville-like with a coupling to the boundary Ricci scalar. This is illustrated with various examples, which each offer interesting insights into the structure of holographic boundary theories. Full article
Article
The Geometrical Trinity of Gravity
Universe 2019, 5(7), 173; https://doi.org/10.3390/universe5070173 - 15 Jul 2019
Cited by 160 | Viewed by 3227
Abstract
The geometrical nature of gravity emerges from the universality dictated by the equivalence principle. In the usual formulation of General Relativity, the geometrisation of the gravitational interaction is performed in terms of the spacetime curvature, which is now the standard interpretation of gravity. [...] Read more.
The geometrical nature of gravity emerges from the universality dictated by the equivalence principle. In the usual formulation of General Relativity, the geometrisation of the gravitational interaction is performed in terms of the spacetime curvature, which is now the standard interpretation of gravity. However, this is not the only possibility. In these notes, we discuss two alternative, though equivalent, formulations of General Relativity in flat spacetimes, in which gravity is fully ascribed either to torsion or to non-metricity, thus putting forward the existence of three seemingly unrelated representations of the same underlying theory. Based on these three alternative formulations of General Relativity, we then discuss some extensions. Full article
Show Figures

Figure 1

Article
A HERO for General Relativity
Universe 2019, 5(7), 165; https://doi.org/10.3390/universe5070165 - 05 Jul 2019
Cited by 6 | Viewed by 1788
Abstract
HERO (Highly Eccentric Relativity Orbiter) is a space-based mission concept aimed to perform several tests of post-Newtonian gravity around the Earth with a preferably drag-free spacecraft moving along a highly elliptical path fixed in its plane undergoing a relatively fast secular precession. We [...] Read more.
HERO (Highly Eccentric Relativity Orbiter) is a space-based mission concept aimed to perform several tests of post-Newtonian gravity around the Earth with a preferably drag-free spacecraft moving along a highly elliptical path fixed in its plane undergoing a relatively fast secular precession. We considered two possible scenarios—a fast, 4-h orbit with high perigee height of 1047 km and a slow, 21-h path with a low perigee height of 642 km . HERO may detect, for the first time, the post-Newtonian orbital effects induced by the mass quadrupole moment J 2 of the Earth which, among other things, affects the semimajor axis a via a secular trend of ≃4–12 cm yr 1 , depending on the orbital configuration. Recently, the secular decay of the semimajor axis of the passive satellite LARES was measured with an error as little as 0 . 7 cm yr 1 . Also the post-Newtonian spin dipole (Lense-Thirring) and mass monopole (Schwarzschild) effects could be tested to a high accuracy depending on the level of compensation of the non-gravitational perturbations, not treated here. Moreover, the large eccentricity of the orbit would allow one to constrain several long-range modified models of gravity and accurately measure the gravitational red-shift as well. Each of the six Keplerian orbital elements could be individually monitored to extract the G J 2 / c 2 signature, or they could be suitably combined in order to disentangle the post-Newtonian effect(s) of interest from the competing mismodeled Newtonian secular precessions induced by the zonal harmonic multipoles J of the geopotential. In the latter case, the systematic uncertainty due to the current formal errors σ J of a recent global Earth’s gravity field model are better than 1 % for all the post-Newtonian effects considered, with a peak of 10 7 for the Schwarzschild-like shifts. Instead, the gravitomagnetic spin octupole precessions are too small to be detectable. Full article
(This article belongs to the Special Issue Rotation Effects in Relativity)
Show Figures

Figure A1

Article
General Relativity Measurements in the Field of Earth with Laser-Ranged Satellites: State of the Art and Perspectives
Universe 2019, 5(6), 141; https://doi.org/10.3390/universe5060141 - 07 Jun 2019
Cited by 19 | Viewed by 1475
Abstract
Recent results of the LARASE research program in terms of model improvements and relativistic measurements are presented. In particular, the results regarding the development of new models for the non-gravitational perturbations that affect the orbit of the LAGEOS and LARES satellites are described [...] Read more.
Recent results of the LARASE research program in terms of model improvements and relativistic measurements are presented. In particular, the results regarding the development of new models for the non-gravitational perturbations that affect the orbit of the LAGEOS and LARES satellites are described and discussed. These are subtle and complex effects that need a deep knowledge of the structure and the physical characteristics of the satellites in order to be correctly accounted for. In the field of gravitational measurements, we present a new measurement of the relativistic Lense-Thirring precession with a 0.5 % precision. In this measurement, together with the relativistic effect we also estimated two even zonal harmonics coefficients. The uncertainties of the even zonal harmonics of the gravitational field of the Earth have been responsible, until now, of the larger systematic uncertainty in the error budget of this kind of measurements. For this reason, the role of the errors related to the model used for the gravitational field of the Earth in these measurements is discussed. In particular, emphasis is given to GRACE temporal models, that strongly help to reduce this kind of systematic errors. Full article
Show Figures

Figure 1

Article
Switching Internal Times and a New Perspective on the ‘Wave Function of the Universe’
Universe 2019, 5(5), 116; https://doi.org/10.3390/universe5050116 - 14 May 2019
Cited by 45 | Viewed by 2272
Abstract
Despite its importance in general relativity, a quantum notion of general covariance has not yet been established in quantum gravity and cosmology, where, given the a priori absence of coordinates, it is necessary to replace classical frames with dynamical quantum reference systems. As [...] Read more.
Despite its importance in general relativity, a quantum notion of general covariance has not yet been established in quantum gravity and cosmology, where, given the a priori absence of coordinates, it is necessary to replace classical frames with dynamical quantum reference systems. As such, quantum general covariance bears on the ability to consistently switch between the descriptions of the same physics relative to arbitrary choices of quantum reference system. Recently, a systematic approach for such switches has been developed. It links the descriptions relative to different choices of quantum reference system, identified as the correspondingly reduced quantum theories, via the reference-system-neutral Dirac quantization, in analogy to coordinate changes on a manifold. In this work, we apply this method to a simple cosmological model to demonstrate how to consistently switch between different internal time choices in quantum cosmology. We substantiate the argument that the conjunction of Dirac and reduced quantized versions of the theory defines a complete relational quantum theory that not only admits a quantum general covariance, but, we argue, also suggests a new perspective on the ‘wave function of the universe’. It assumes the role of a perspective-neutral global state, without immediate physical interpretation that, however, encodes all the descriptions of the universe relative to all possible choices of reference system at once and constitutes the crucial link between these internal perspectives. While, for simplicity, we use the Wheeler-DeWitt formulation, the method and arguments might be also adaptable to loop quantum cosmology. Full article
(This article belongs to the Special Issue Progress in Group Field Theory and Related Quantum Gravity Formalisms)
Show Figures

Figure 1

Article
The Gravitational Magnetoelectric Effect
Universe 2019, 5(4), 88; https://doi.org/10.3390/universe5040088 - 01 Apr 2019
Cited by 7 | Viewed by 1621
Abstract
Electromagnetism in spacetime can be treated in terms of an analogue linear dielectric medium. In this paper, we discuss the gravitational analogue of the linear magnetoelectric effect, which can be found in multiferroic materials. While this is known to occur for metrics with [...] Read more.
Electromagnetism in spacetime can be treated in terms of an analogue linear dielectric medium. In this paper, we discuss the gravitational analogue of the linear magnetoelectric effect, which can be found in multiferroic materials. While this is known to occur for metrics with non-zero mixed components, we show how it depends on the choice of spatial formalism for the electromagnetic fields, including differences in tensor weight, and also on the choice of coordinate chart. This is illustrated for Langevin–Minkowski, four charts of Schwarzschild spacetime, and two charts of pp gravitational waves. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2019 - Gravitational Physics)
Article
A Universe that Does Not Know the Time
Universe 2019, 5(3), 84; https://doi.org/10.3390/universe5030084 - 21 Mar 2019
Cited by 21 | Viewed by 2282
Abstract
In this paper, we propose that cosmological time is a quantum observable that does not commute with other quantum operators essential for the definition of cosmological states, notably the cosmological constant. This is inspired by properties of a measure of time—the Chern–Simons time—and [...] Read more.
In this paper, we propose that cosmological time is a quantum observable that does not commute with other quantum operators essential for the definition of cosmological states, notably the cosmological constant. This is inspired by properties of a measure of time—the Chern–Simons time—and the fact that in some theories it appears as a conjugate to the cosmological constant, with the two promoted to non-commuting quantum operators. Thus, the Universe may be “delocalised” in time: it does not know the time, a property which opens up new cosmological scenarios, as well as invalidating several paradoxes, such as the timelike tower of turtles associated with an omnipresent time line. Alternatively, a Universe with a sharply defined clock time must have an indeterminate cosmological constant. The challenge then is to explain how islands of localized time may emerge, and give rise to localized histories. In some scenarios, this is achieved by backward transitions in quantum time, cycling the Universe in something akin to a time machine cycle, with classical flow and quantum ebbing. The emergence of matter in a sea of Lambda probably provides the ballast behind classical behaviour. Full article
Article
Bounce Cosmology in Generalized Modified Gravities
Universe 2019, 5(3), 74; https://doi.org/10.3390/universe5030074 - 10 Mar 2019
Cited by 21 | Viewed by 1822
Abstract
We investigate the bounce realization in the framework of generalized modified gravities arising from Finsler and Finsler-like geometries. In particular, a richer intrinsic geometrical structure is reflected in the appearance of extra degrees of freedom in the Friedmann equations that can drive the [...] Read more.
We investigate the bounce realization in the framework of generalized modified gravities arising from Finsler and Finsler-like geometries. In particular, a richer intrinsic geometrical structure is reflected in the appearance of extra degrees of freedom in the Friedmann equations that can drive the bounce. We examine various Finsler and Finsler-like constructions. In the cases of general very special relativity, as well as of Finsler-like gravity on the tangent bundle, we show that a bounce cannot easily be obtained. However, in the Finsler–Randers space, induced scalar anisotropy can fulfil bounce conditions, and bouncing solutions are easily obtained. Finally, for the general class of theories that include a nonlinear connection, a new scalar field is induced, leading to a scalar–tensor structure that can easily drive a bounce. These features reveal the capabilities of Finsler and Finsler-like geometries. Full article
(This article belongs to the Special Issue Bounce Cosmology)
Show Figures

Figure 1

Article
QUBIC: Exploring the Primordial Universe with the Q&U Bolometric Interferometer
by , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and add Show full author list remove Hide full author list
Universe 2019, 5(2), 42; https://doi.org/10.3390/universe5020042 - 23 Jan 2019
Cited by 14 | Viewed by 2952
Abstract
In this paper, we describe QUBIC, an experiment that will observe the polarized microwave sky with a novel approach, which combines the sensitivity of state-of-the-art bolometric detectors with the systematic effects control typical of interferometers. QUBIC’s unique features are the so-called “self-calibration”, a [...] Read more.
In this paper, we describe QUBIC, an experiment that will observe the polarized microwave sky with a novel approach, which combines the sensitivity of state-of-the-art bolometric detectors with the systematic effects control typical of interferometers. QUBIC’s unique features are the so-called “self-calibration”, a technique that allows us to clean the measured data from instrumental effects, and its spectral imaging power, i.e., the ability to separate the signal into various sub-bands within each frequency band. QUBIC will observe the sky in two main frequency bands: 150 GHz and 220 GHz. A technological demonstrator is currently under testing and will be deployed in Argentina during 2019, while the final instrument is expected to be installed during 2020. Full article
Show Figures

Figure 1

Article
Equivalence of Models in Loop Quantum Cosmology and Group Field Theory
Universe 2019, 5(2), 41; https://doi.org/10.3390/universe5020041 - 23 Jan 2019
Cited by 8 | Viewed by 1485
Abstract
The paradigmatic models often used to highlight cosmological features of loop quantum gravity and group field theory are shown to be equivalent, in the sense that they are different realizations of the same model given by harmonic cosmology. The loop version of harmonic [...] Read more.
The paradigmatic models often used to highlight cosmological features of loop quantum gravity and group field theory are shown to be equivalent, in the sense that they are different realizations of the same model given by harmonic cosmology. The loop version of harmonic cosmology is a canonical realization, while the group-field version is a bosonic realization. The existence of a large number of bosonic realizations suggests generalizations of models in group field cosmology. Full article
(This article belongs to the Special Issue Progress in Group Field Theory and Related Quantum Gravity Formalisms)
Article
Finite-Energy Dressed String-Inspired Dirac-Like Monopoles
Universe 2019, 5(1), 8; https://doi.org/10.3390/universe5010008 - 30 Dec 2018
Cited by 8 | Viewed by 1257
Abstract
On extending the Standard Model (SM) Lagrangian, through a non-linear Born–Infeld (BI) hypercharge term with a parameter β (of dimensions of [mass] 2 ), a finite energy monopole solution was claimed by Arunasalam and Kobakhidze. We report on a new class of solutions [...] Read more.
On extending the Standard Model (SM) Lagrangian, through a non-linear Born–Infeld (BI) hypercharge term with a parameter β (of dimensions of [mass] 2 ), a finite energy monopole solution was claimed by Arunasalam and Kobakhidze. We report on a new class of solutions within this framework that was missed in the earlier analysis. This new class was discovered on performing consistent analytic asymptotic analyses of the nonlinear differential equations describing the model; the shooting method used in numerical solutions to boundary value problems for ordinary differential equations is replaced in our approach by a method that uses diagonal Padé approximants. Our work uses the ansatz proposed by Cho and Maison to generate a static and spherically-symmetric monopole with finite energy and differs from that used in the solution of Arunasalam and Kobakhidze. Estimates of the total energy of the monopole are given, and detection prospects at colliders are briefly discussed. Full article
Show Figures

Figure 1

Article
Primordial Power Spectra from an Emergent Universe: Basic Results and Clarifications
Universe 2018, 4(12), 149; https://doi.org/10.3390/universe4120149 - 18 Dec 2018
Cited by 5 | Viewed by 1340
Abstract
Emergent cosmological models, together with the Big Bang and bouncing scenarios, are among the possible descriptions of the early Universe. This work aims at clarifying some general features of the primordial tensor power spectrum in this specific framework. In particular, some naive beliefs [...] Read more.
Emergent cosmological models, together with the Big Bang and bouncing scenarios, are among the possible descriptions of the early Universe. This work aims at clarifying some general features of the primordial tensor power spectrum in this specific framework. In particular, some naive beliefs are corrected. Using a toy model, we investigate the conditions required to produce a scale-invariant spectrum and show to what extent this spectrum can exhibit local features sensitive to the details of the scale factor evolution near the transition time. Full article
(This article belongs to the Special Issue Progress in Group Field Theory and Related Quantum Gravity Formalisms)
Show Figures

Figure 1

Article
SU(2) Quantum Yang–Mills Thermodynamics: Some Theory and Some Applications
Universe 2018, 4(12), 132; https://doi.org/10.3390/universe4120132 - 22 Nov 2018
Viewed by 3037
Abstract
In the first part of this talk, we review some prerequisites for and essential arguments involved in the construction of the thermal-ground-state estimate underlying the deconfining phase in the thermodynamics of SU(2) Quantum Yang–Mills theory and how this structure supports its distinct excitations. [...] Read more.
In the first part of this talk, we review some prerequisites for and essential arguments involved in the construction of the thermal-ground-state estimate underlying the deconfining phase in the thermodynamics of SU(2) Quantum Yang–Mills theory and how this structure supports its distinct excitations. The second part applies deconfining SU(2) Yang–Mills thermodynamics to the Cosmic Microwave Background in view of (i) a modified temperature-redshift relation with an interesting link to correlation-length criticality in the 3D Ising model, (ii) the implied minimal changes in the dark sector of the cosmological model, and (iii) best-fit parameter values of this model when confronted with the spectra of the angular two-point functions temperature-temperature (TT), temperature-E-mode-polarisation (TE), E-mode-polarisation-E-mode-polarisation (EE), excluding the low-l physics. The latter, which so far is treated in an incomplete way due to the omission of radiative effects, is addressed in passing. Full article
Show Figures

Figure 1

Article
Collider Searches for Dark Matter (ATLAS + CMS)
Universe 2018, 4(11), 131; https://doi.org/10.3390/universe4110131 - 20 Nov 2018
Cited by 6 | Viewed by 2225
Abstract
Several searches for dark matter have been performed by the CMS and ATLAS collaborations, using proton-proton collisions with a center-of-mass energy of 13 TeV produced by the Large Hadron Collider. Different signatures may highlight the presence of dark matter: the imbalance in the [...] Read more.
Several searches for dark matter have been performed by the CMS and ATLAS collaborations, using proton-proton collisions with a center-of-mass energy of 13 TeV produced by the Large Hadron Collider. Different signatures may highlight the presence of dark matter: the imbalance in the transverse momentum in an event due to the presence of undetectable dark matter particles, produced together with one Standard Model particle, a bump in the di-jet or di-lepton invariant mass distributions, or an excess of events in the di-jet angular distribution, produced by a dark matter mediator. No significant discrepancies with respect to the Standard Model predictions have been found in data, so that limits on the dark matter couplings to ordinary matter, or limits on the dark matter particles and mediators masses have been set. The results are also re-interpreted as limits on the dark matter interaction cross-section with baryonic matter, so that a comparison with direct detection experiments is allowed. Full article
Show Figures

Figure 1

Article
Small Black/White Hole Stability and Dark Matter
Universe 2018, 4(11), 127; https://doi.org/10.3390/universe4110127 - 17 Nov 2018
Cited by 41 | Viewed by 4462
Abstract
We show that the expected lifetime of white holes formed as remnants of evaporated black holes is consistent with their production at reheating. We give a simple quantum description of these objects and argue that a quantum superposition of black and white holes [...] Read more.
We show that the expected lifetime of white holes formed as remnants of evaporated black holes is consistent with their production at reheating. We give a simple quantum description of these objects and argue that a quantum superposition of black and white holes with large interiors is stable, because it is protected by the existence of a minimal eigenvalue of the area, predicted by Loop Quantum Gravity. These two results support the hypothesis that a component of dark matter could be formed by small black hole remnants. Full article
Show Figures

Figure 1

Article
A Status Report on the Phenomenology of Black Holes in Loop Quantum Gravity: Evaporation, Tunneling to White Holes, Dark Matter and Gravitational Waves
Universe 2018, 4(10), 102; https://doi.org/10.3390/universe4100102 - 02 Oct 2018
Cited by 30 | Viewed by 5029
Abstract
The understanding of black holes in loop quantum gravity is becoming increasingly accurate. This review focuses on the possible experimental or observational consequences of the underlying spinfoam structure of space-time. It addresses both the aspects associated with the Hawking evaporation and the ones [...] Read more.
The understanding of black holes in loop quantum gravity is becoming increasingly accurate. This review focuses on the possible experimental or observational consequences of the underlying spinfoam structure of space-time. It addresses both the aspects associated with the Hawking evaporation and the ones due to the possible existence of a bounce. Finally, consequences for dark matter and gravitational waves are considered. Full article
Show Figures

Figure 1

Article
Inconsistencies of the New No-Boundary Proposal
Universe 2018, 4(10), 100; https://doi.org/10.3390/universe4100100 - 29 Sep 2018
Cited by 37 | Viewed by 2166
Abstract
In previous works, we have demonstrated that the path integral for real, Lorentzian four-geometries in Einstein gravity yields sensible results in well-understood physical situations, but leads to uncontrolled fluctuations when the “no boundary” condition proposed by Hartle and Hawking is imposed. In order [...] Read more.
In previous works, we have demonstrated that the path integral for real, Lorentzian four-geometries in Einstein gravity yields sensible results in well-understood physical situations, but leads to uncontrolled fluctuations when the “no boundary” condition proposed by Hartle and Hawking is imposed. In order to circumvent our result, new definitions for the gravitational path integral have been sought, involving specific choices for a class of complex four-geometries to be included. In their latest proposal, Diaz Dorronsoro et al. advocate for integrating the lapse over a complex circular contour enclosing the origin. In this note, we show that, like their earlier proposal, this leads to mathematical and physical inconsistencies and thus cannot be regarded as a basis for quantum cosmology. We also comment on Vilenkin and Yamada’s recent modification of the “tunneling" proposal, made in order to avoid the same problems. We show that it leads to the breakdown of perturbation theory in a strong coupling regime. Full article
Show Figures

Figure 1

Article
Two Novel Approaches to the Hadron-Quark Mixed Phase in Compact Stars
Universe 2018, 4(9), 94; https://doi.org/10.3390/universe4090094 - 05 Sep 2018
Cited by 23 | Viewed by 1637
Abstract
First-order phase transitions, such as the liquid-gas transition, proceed via formation of structures, such as bubbles and droplets. In strongly interacting compact star matter, at the crust-core transition but also the hadron-quark transition in the core, these structures form different shapes dubbed “pasta [...] Read more.
First-order phase transitions, such as the liquid-gas transition, proceed via formation of structures, such as bubbles and droplets. In strongly interacting compact star matter, at the crust-core transition but also the hadron-quark transition in the core, these structures form different shapes dubbed “pasta phases”. We describe two methods to obtain one-parameter families of hybrid equations of state (EoS) substituting the Maxwell construction that mimic the thermodynamic behaviour of pasta phase in between a low-density hadron and a high-density quark matter phase without explicitly computing geometrical structures. Both methods reproduce the Maxwell construction as a limiting case. The first method replaces the behaviour of pressure against chemical potential in a finite region around the critical pressure of the Maxwell construction by a polynomial interpolation. The second method uses extrapolations of the hadronic and quark matter EoS beyond the Maxwell point to define a mixing of both with weight functions bounded by finite limits around the Maxwell point. We apply both methods to the case of a hybrid EoS with a strong first order transition that entails the formation of a third family of compact stars and the corresponding mass twin phenomenon. For both models, we investigate the robustness of this phenomenon against variation of the single parameter: the pressure increment at the critical chemical potential that quantifies the deviation from the Maxwell construction. We also show sets of results for compact star observables other than mass and radius, namely the moment of inertia and the baryon mass. Full article
(This article belongs to the Special Issue Compact Stars in the QCD Phase Diagram)
Show Figures

Figure 1

Article
Cosmological Constant from Condensation of Defect Excitations
Universe 2018, 4(7), 81; https://doi.org/10.3390/universe4070081 - 19 Jul 2018
Cited by 7 | Viewed by 1577
Abstract
A key challenge for many quantum gravity approaches is to construct states that describe smooth geometries on large scales. Here we define a family of (2+1)-dimensional quantum gravity states which arise from curvature excitations concentrated at point like [...] Read more.
A key challenge for many quantum gravity approaches is to construct states that describe smooth geometries on large scales. Here we define a family of (2+1)-dimensional quantum gravity states which arise from curvature excitations concentrated at point like defects and describe homogeneously curved geometries on large scales. These states represent therefore vacua for three-dimensional gravity with different values of the cosmological constant. They can be described by an anomaly-free first class constraint algebra quantized on one and the same Hilbert space for different values of the cosmological constant. A similar construction is possible in four dimensions, in this case the curvature is concentrated along string-like defects and the states are vacua of the Crane-Yetter model. We will sketch applications for quantum cosmology and condensed matter. Full article
Show Figures

Figure 1

Article
New Exact Solutions of Relativistic Hydrodynamics for Longitudinally Expanding Fireballs
Universe 2018, 4(6), 69; https://doi.org/10.3390/universe4060069 - 01 Jun 2018
Cited by 15 | Viewed by 1524
Abstract
We present new, exact, finite solutions of relativistic hydrodynamics for longitudinally expanding fireballs for arbitrary constant value of the speed of sound. These new solutions generalize earlier, longitudinally finite, exact solutions, from an unrealistic to a reasonable equation of state, characterized by a [...] Read more.
We present new, exact, finite solutions of relativistic hydrodynamics for longitudinally expanding fireballs for arbitrary constant value of the speed of sound. These new solutions generalize earlier, longitudinally finite, exact solutions, from an unrealistic to a reasonable equation of state, characterized by a temperature independent (average) value of the speed of sound. Observables such as the rapidity density and the pseudorapidity density are evaluated analytically, resulting in simple and easy to fit formulae that can be matched to the high energy proton–proton and heavy ion collision data at RHIC and LHC. In the longitudinally boost-invariant limit, these new solutions approach the Hwa–Bjorken solution and the corresponding rapidity distributions approach a rapidity plateaux. Full article
Show Figures

Figure 1

Article
On a Model of Magnetically Charged Black Hole with Nonlinear Electrodynamics
Universe 2018, 4(5), 66; https://doi.org/10.3390/universe4050066 - 19 May 2018
Cited by 14 | Viewed by 1583
Abstract
The Bronnikov model of nonlinear electrodynamics is investigated in general relativity. The magnetic black hole is considered and we obtain a solution giving corrections to the Reissner-Nordström solution. In this model spacetime at r becomes Minkowski’s spacetime. We calculate the magnetic [...] Read more.
The Bronnikov model of nonlinear electrodynamics is investigated in general relativity. The magnetic black hole is considered and we obtain a solution giving corrections to the Reissner-Nordström solution. In this model spacetime at r becomes Minkowski’s spacetime. We calculate the magnetic mass of the black hole and the metric function. At some parameters of the model there can be one, two or no horizons. The Hawking temperature and the heat capacity of black holes are calculated. We show that a second-order phase transition takes place and black holes are thermodynamically stable at some range of parameters. Full article
(This article belongs to the Collection Open Questions in Black Hole Physics)
Show Figures

Figure 1

Article
Perspectives on Constraining a Cosmological Constant-Type Parameter with Pulsar Timing in the Galactic Center
Universe 2018, 4(4), 59; https://doi.org/10.3390/universe4040059 - 26 Mar 2018
Cited by 12 | Viewed by 1723
Abstract
Independent tests aiming to constrain the value of the cosmological constant Λ are usually difficult because of its extreme smallness [...] Read more.
Independent tests aiming to constrain the value of the cosmological constant Λ are usually difficult because of its extreme smallness ( Λ 1 × 10 - 52 m - 2 , or 2 . 89 × 10 - 122 in Planck units ) . Bounds on it from Solar System orbital motions determined with spacecraft tracking are currently at the 10 - 43 10 - 44 m - 2 ( 5 1 × 10 - 113 in Planck units ) level, but they may turn out to be optimistic since Λ has not yet been explicitly modeled in the planetary data reductions. Accurate ( σ τ p 1 10 μ s ) timing of expected pulsars orbiting the Black Hole at the Galactic Center, preferably along highly eccentric and wide orbits, might, at least in principle, improve the planetary constraints by several orders of magnitude. By looking at the average time shift per orbit Δ δ τ ¯ p Λ , an S2-like orbital configuration with e = 0 . 8839 , P b = 16 yr would permit a preliminarily upper bound of the order of Λ 9 × 10 - 47 m - 2 2 × 10 - 116 in Planck units if only σ τ p were to be considered. Our results can be easily extended to modified models of gravity using Λ -type parameters. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2018 - Gravitational Physics)
Show Figures

Figure A1

Article
Investigating the Poor Match among Different Precessing Gravitational Waveforms
Universe 2018, 4(3), 56; https://doi.org/10.3390/universe4030056 - 16 Mar 2018
Viewed by 1300
Abstract
The sixfold direct detection of gravitational waves opened the era of gravitational wave astronomy. All of these gravitational waves were emitted by black hole or neutron star binaries. The determination of the parameters characterizing compact binaries requires the accurate knowledge of waveforms. Three [...] Read more.
The sixfold direct detection of gravitational waves opened the era of gravitational wave astronomy. All of these gravitational waves were emitted by black hole or neutron star binaries. The determination of the parameters characterizing compact binaries requires the accurate knowledge of waveforms. Three different waveforms (Spin Dominated, SpinTaylorT4 and Spinning Effective One Body fitted to Numerical Relativity, SEOBNR) are considered in the spin-aligned and precessing cases, in the parameter ranges where the larger spin dominates over the orbital angular momentum. The degeneracy in the parameter space of each waveform is analyzed, then the matches among the waveforms are investigated. Our results show that in the spin-aligned case only the inspiral Spin-dominated and SpinTaylorT4 waveforms agree well with each other. The highest matches of these with SEOBNR are at different parameters as compared to where SEOBNR shows the best match with itself, reflecting SEOBNR being full inspiral-merger-ringdown waveform, with coefficients fitted to numerical relativity, rather than arising from post-Newtonian (PN) calculations. In the precessing case, the matches between the pairs of all waveforms are significantly lower. We identify possible causes of this in (1) the implementation of the angular dynamics carried out at different levels of accuracy for different waveforms; (2) differences in the inclusiveness of the merger process and in the PN coefficients of the inspiral waveforms (Spin-Dominated, SpinTaylorT4) and the full SEOBNR waveform. Full article
Show Figures

Figure 1

Article
The ABC of Higher-Spin AdS/CFT
Universe 2018, 4(1), 18; https://doi.org/10.3390/universe4010018 - 19 Jan 2018
Cited by 22 | Viewed by 1943
Abstract
In recent literature, one-loop tests of the higher-spin AdS d + 1 /CFT d correspondences were carried out. Here, we extend these results to a more general set of theories in d > 2 . First, we consider the Type B higher spin [...] Read more.
In recent literature, one-loop tests of the higher-spin AdS d + 1 /CFT d correspondences were carried out. Here, we extend these results to a more general set of theories in d > 2 . First, we consider the Type B higher spin theories, which have been conjectured to be dual to CFTs consisting of the singlet sector of N free fermion fields. In addition to the case of N Dirac fermions, we carefully study the projections to Weyl, Majorana, symplectic and Majorana–Weyl fermions in the dimensions where they exist. Second, we explore theories involving elements of both Type A and Type B theories, which we call Type AB. Their spectrum includes fields of every half-integer spin, and they are expected to be related to the U ( N ) / O ( N ) singlet sector of the CFT of N free complex/real scalar and fermionic fields. Finally, we explore the Type C theories, which have been conjectured to be dual to the CFTs of p-form gauge fields, where p = d 2 1 . In most cases, we find that the free energies at O ( N 0 ) either vanish or give contributions proportional to the free-energy of a single free field in the conjectured dual CFT. Interpreting these non-vanishing values as shifts of the bulk coupling constant G N 1 / ( N k ) , we find the values k = 1 , 1 / 2 , 0 , 1 / 2 , 1 , 2 . Exceptions to this rule are the Type B and AB theories in odd d; for them, we find a mismatch between the bulk and boundary free energies that has a simple structure, but does not follow from a simple shift of the bulk coupling constant. Full article
(This article belongs to the Special Issue Higher Spin Gauge Theories)

Review

Review
Technological Novelties of Ground-Based Very High Energy Gamma-Ray Astrophysics with the Imaging Atmospheric Cherenkov Telescopes
Universe 2022, 8(4), 219; https://doi.org/10.3390/universe8040219 - 29 Mar 2022
Cited by 1 | Viewed by 699
Abstract
In the past three decades, the ground-based technique of imaging atmospheric Cherenkov telescopes has established itself as a powerful discipline in science. Approximately 250 sources of very high gamma rays of both galactic and extra-galactic origin have been discovered largely due to this [...] Read more.
In the past three decades, the ground-based technique of imaging atmospheric Cherenkov telescopes has established itself as a powerful discipline in science. Approximately 250 sources of very high gamma rays of both galactic and extra-galactic origin have been discovered largely due to this technique. The study of these sources is providing clues to many basic questions in astrophysics, astro-particle physics, physics of cosmic rays and cosmology. The currently operational generation of telescopes offer a solid performance. Further improvements of this technique led to the next-generation large instrument known as the Cherenkov Telescope Array. In its final configuration, the sensitivity of CTA will be several times higher than that of the currently best instruments VERITAS, H.E.S.S., and MAGIC. This article is devoted to outlining the technological developments that shaped this technique and led to today’s success. Full article
Show Figures

Figure 1

Review
Milky Way Star Clusters and Gaia: A Review of the Ongoing Revolution
Universe 2022, 8(2), 111; https://doi.org/10.3390/universe8020111 - 09 Feb 2022
Cited by 4 | Viewed by 1132
Abstract
The unprecedented quality of the astrometric measurements obtained with the ESA Gaia spacecraft have initiated a revolution in Milky Way astronomy. Studies of star clusters in particular have been transformed by the precise proper motions and parallaxes measured by Gaia over the entire [...] Read more.
The unprecedented quality of the astrometric measurements obtained with the ESA Gaia spacecraft have initiated a revolution in Milky Way astronomy. Studies of star clusters in particular have been transformed by the precise proper motions and parallaxes measured by Gaia over the entire sky as well as Gaia’s deep all-sky photometry. This paper presents an overview of the many topics of cluster science that have been impacted by the Gaia DR1, DR2, and EDR3 catalogues from their release to the end of the year 2021. These topics include the identification of known clusters and the discovery of new objects, the formation of young clusters and associations, and the long-term evolution of clusters and their stellar content. In addition to the abundance of scientific results, Gaia is changing the way astronomers work with high-volume and high-dimensionality datasets and is teaching us precious lessons to deal with its upcoming data releases and with the large-scale astronomical surveys of the future. Full article
(This article belongs to the Special Issue Star Clusters)
Show Figures

Figure 1

Review
Testing Screened Modified Gravity
Universe 2022, 8(1), 11; https://doi.org/10.3390/universe8010011 - 26 Dec 2021
Cited by 5 | Viewed by 893
Abstract
Long range scalar fields with a coupling to matter appear to violate known bounds on gravitation in the solar system and the laboratory. This is evaded thanks to screening mechanisms. In this short review, we shall present the various screening mechanisms from an [...] Read more.
Long range scalar fields with a coupling to matter appear to violate known bounds on gravitation in the solar system and the laboratory. This is evaded thanks to screening mechanisms. In this short review, we shall present the various screening mechanisms from an effective field theory point of view. We then investigate how they can and will be tested in the laboratory and on astrophysical and cosmological scales. Full article
(This article belongs to the Special Issue Large Scale Structure of the Universe)
Show Figures

Figure 1