Modifications to the Entropy of a Rotating Bardeen Black Hole Due to Magnetic Charge
Abstract
1. Introduction
2. Black Hole Metric, Temperature, and Rotating Angular Velocity
3. Impurely Thermal Spectrum and Radiation Rate
4. Modified Entropy
5. Conclusions and Discussion
Funding
Data Availability Statement
Conflicts of Interest
References
- Bekenstein, J.D. Black holes and entropy. Phys. Rev. D 1973, 7, 2333. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle creation by black holes. Commum. Math. Phys. 1975, 43, 199. [Google Scholar] [CrossRef]
- Kraus, P.; Wilczek, F. Self-interaction correction to black hole radiation. Nucl. Phys. B 1995, 433, 403. [Google Scholar] [CrossRef]
- Parikh, M.K.; Wilczek, F. Hawking radiation as tunneling. Phys. Rev. Lett. 2000, 85, 5042. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Zhao, Z. Hawking radiation of charged particles via tunneling from the Reissner-Nordström black hole. J. High Energy Phys. 2005, 10, 55. [Google Scholar] [CrossRef]
- Li, G.Q. Hawking radiation via tunneling from Kerr-Newman-de Sitter black hole. Europhys. Lett. 2006, 76, 203. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Fan, J.H. Tunnelling effect of charged and magnetized particles from the Kerr–Newman–Kasuya black hole. Phys. Lett. B 2007, 648, 133. [Google Scholar] [CrossRef]
- Liu, B.; Wang, G.; Liu, W.B. Modified Hawking radiation from a Kerr-Newman black hole due to backreaction. Mod. Phys. Lett. A 2008, 23, 281. [Google Scholar] [CrossRef]
- Li, G.Q. Hawking radiation and entropy of a black hole in Lovelock-Born-Infeld gravity from the quantum tunneling approach. Chin. Phys. C 2017, 41, 045103. [Google Scholar] [CrossRef]
- Li, R. Logarithmic entropy of black hole in gravity with conformal anomaly from quantum tunneling approach. Europhys. Lett. 2011, 96, 60014. [Google Scholar] [CrossRef]
- Solodukhin, S.N. The Conical singularity and quantum corrections to entropy of black hole. Phys. Rev. D 1996, 54, 3900. [Google Scholar] [CrossRef]
- Jing, J.L.; Yan, M.L. Effect of spins on the quantum entropy of black holes. Phys. Rev. D 2001, 63, 084028. [Google Scholar] [CrossRef]
- Li, Z.H. Quantum corrections to the entropy of a Reissner-Nordström black hole due to spin fields. Phys. Rev. D 2000, 62, 024001. [Google Scholar] [CrossRef]
- Hooft, G.‘t. On the quantum structure of a black hole. Nucl. Phys. B 1985, 256, 727. [Google Scholar] [CrossRef]
- Li, X. Black hole entropy without brick walls. Phys. Lett. B 2002, 540, 9. [Google Scholar] [CrossRef]
- Kim, W.; Kim, Y.W.; Park, Y.J. Entropy of the Randall-Sundrum brane world with the generalized uncertainty principle. Phys. Rev. D 2006, 74, 104001. [Google Scholar] [CrossRef]
- Yoon, M.; Ha, J.; Kim, W. Entropy of Reissner-Nordstrom black holes with minimal length revisited. Phys. Rev. D 2007, 76, 047501. [Google Scholar] [CrossRef]
- Liu, W.B. Reissner-Nordström Black Hole Entropy Inside and Outside the Brick Wall. Chin. Phys. Lett. 2003, 20, 440. [Google Scholar] [CrossRef]
- Li, X.; Xie, Y. Quantum tunneling from a Bardeen black hole. EPL 2021, 133, 40005. [Google Scholar]
- Zhan, Y.; Xu, H.; Zhang, S.J. Charged superradiant instability in a spherical regular black hole. EPJC 2024, 84, 1315. [Google Scholar] [CrossRef]
- Belfiglio, A.; Chandran, S.M.; Luongo, O.; Mancini, S. Horizon entanglement area law from regular black hole thermodynamics. Phys. Rev. D 2025, 111, 024013. [Google Scholar] [CrossRef]
- Boos, J. Regular black hole from a confined spin connection in Poincaré gauge gravity. Phys. Lett. B 2024, 848, 138403. [Google Scholar] [CrossRef]
- Dong, C.Y.; Tian, L.J. Hawking radiation and Page curve of regular black holes. Chin. Phys. B 2025, 34, 178–187. [Google Scholar] [CrossRef]
- Bueno, P.; Cano, P.A.; Hennigar, R.A. Regular black holes from pure gravity. Phys. Lett. B 2025, 861, 139260. [Google Scholar] [CrossRef]
- Naseer, T.; Said, J.L.; Sharif, M.; Abdel-Aty, A.-H. Thermodynamic properties of non-singular Hayward black hole through the lens of minimal gravitational decoupling. EPJC 2025, 85, 4. [Google Scholar] [CrossRef]
- Bardeen, J.M. Non-singular general-relativistic gravitational collapse. In Proceedings of the 5th International Conference on Gravitation and the Theory of Relativity, Tbilisi, Georgia, 25 March 1968; p. 174. [Google Scholar]
- Ayon-Beato, E.; Garcia, A. Regular Black Hole in General Relativity Coupled to Nonlinear Electrodynamics. PRL 2000, 80, 23. [Google Scholar] [CrossRef]
- Estrada, M.; Aros, R. Pure Lovelock gravity regular black holes. JCAP 2025, 2025, 32. [Google Scholar] [CrossRef]
- Chen, C.M.; Chen, Y.; Ishibashi, A.; Nobuyoshi, O. Quantum improved regular Kerr black holes. Chin. J. Phys. 2024, 92, 766–778. [Google Scholar] [CrossRef]
- Hayward, S.A. Formation and Evaporation of Nonsingular Black Holes. PRL 2006, 96, 031103. [Google Scholar] [CrossRef]
- Frolov, V.P.; Zelnikov, A. Self-energy of a scalar charge near higher-dimensional black holes. Phys. Rev. D 2012, 85, 124042. [Google Scholar] [CrossRef]
- Frolov, V.P. Notes on nonsingular models of black holes. Phys. Rev. D 2014, 94, 104056. [Google Scholar] [CrossRef]
- Mo, J.X. Phase transition, geometrothermodynamics and critical exponents of Bardeen black hole. J. Mod. Phys. D 2014, 23, 1450040. [Google Scholar] [CrossRef]
- Yang, H.; Miao, Y.G. Superradiance of massive scalar particles around rotating regular black holes. Chin. Phys. C 2023, 47, 075101. [Google Scholar] [CrossRef]
- Simpson, A.; Visser, M. Regular black holes with asymptotically Minkowski cores. Universe 2020, 6, 8. [Google Scholar] [CrossRef]
- Tharanath, R.; Suresh, J.; Kuriakose, V.C. Phase transitions and Geometrothermodynamics of Regular black holes. Gen. Rel. Grav. 2015, 47, 4. [Google Scholar] [CrossRef]
- Dymnikova, I.; Galaktionov, E. Regular rotating electrically charged black holes and solitons in non-linear electrodynamics minimally coupled to gravity. Class. Quant. Grav. 2015, 32, 16. [Google Scholar] [CrossRef]
- Ibohal, N. Rotating metrics admitting non-perfect fluids. Gen. Relat. Grav. 2005, 37, 1. [Google Scholar] [CrossRef]
- Ansoldi, S. Spherical black holes with regular center: A review of existing models including a recent realization with Gaussian sources. arXiv 2018, arXiv:0802.0330. [Google Scholar]
- Bambi, C.; Modesto, L. Rotating regular black hole. Phys. Lett. B 2013, 721, 329. [Google Scholar] [CrossRef]
- Ayon-Beato, E.; Garcia, A. New regular black hole solution from nonlinear electrodynamics. Phys. Lett. B 1999, 464, 25. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Zhao, Z. New coordinates for Kerr–Newman black hole radiation. Phys. Lett. B 2005, 618, 14. [Google Scholar] [CrossRef]
- Akhmedov, E.T.; Akhmedova, V.; Singleton, D. Hawking temperature in the tunneling picture. Phys. Lett. B 2006, 642, 124. [Google Scholar] [CrossRef]
- Chowdhury, B.D. Problems with tunneling of thin shells from black holes. Pramana 2008, 70, 3. [Google Scholar] [CrossRef]
- Akhmedova, V.; Pilling, T.; Gill, A.D.; Singleton, D. Temporal contribution to gravitational WKB-like calculations. Phys. Lett. B 2008, 666, 269. [Google Scholar] [CrossRef]
- Akhmedov, E.T.; Pilling, T.; Singleton, D. Subtleties in the quasi-classical calculation of Hawking radiation. Int. J. Mod. Phys. D 2008, 17, 2453. [Google Scholar] [CrossRef]
- Keski-Vakkuri, E.; Kraus, P. Microcanonical D-branes and back reaction. Nucl. Phys. B 1997, 491, 249. [Google Scholar] [CrossRef]
- Sharif, M.; Javed, W. Thermodynamics of a Bardeen black hole in noncommutative space. Can. J. Phys. 2011, 89, 1027. [Google Scholar] [CrossRef]
- Bredberg, I.; Keeler, C.; Lysov, V.; Strominger, A. From Navier-Stokes to Einstein. J. High Energy Phys. 2012, 2012, 146. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.-Q. Modifications to the Entropy of a Rotating Bardeen Black Hole Due to Magnetic Charge. Universe 2025, 11, 264. https://doi.org/10.3390/universe11080264
Li G-Q. Modifications to the Entropy of a Rotating Bardeen Black Hole Due to Magnetic Charge. Universe. 2025; 11(8):264. https://doi.org/10.3390/universe11080264
Chicago/Turabian StyleLi, Gu-Qiang. 2025. "Modifications to the Entropy of a Rotating Bardeen Black Hole Due to Magnetic Charge" Universe 11, no. 8: 264. https://doi.org/10.3390/universe11080264
APA StyleLi, G.-Q. (2025). Modifications to the Entropy of a Rotating Bardeen Black Hole Due to Magnetic Charge. Universe, 11(8), 264. https://doi.org/10.3390/universe11080264