The Influence of Zero-Point Fluctuations on the Photon Wave Packet Motion in a Vacuum
Abstract
1. Introduction
2. Optical Dirac Equation for the Photon Under Gravitational Background
3. Correlators of the Fluctuating Gravitational Field
Quantum Fields as a Source for Energy Density and Pressure Perturbation
4. Migdal Equation for Photon Density Matrix Evolution
5. Decoherence and Depolarization
6. Conclusions and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Correlators of Fermion Field
Appendix B. Solution of the Free Optical Dirac Equation
References
- Song, H.; Ma, B.Q. Lorentz invariance violation from gamma-ray bursts. Astrophys. J. 2025, 983, 9. [Google Scholar] [CrossRef]
- Mitrofanov, I.G. A constraint on canonical quantum gravity? Nature 2003, 426, 139. [Google Scholar] [CrossRef]
- Gharibyan, V. Testing Planck-Scale Gravity with Accelerators. Phys. Rev. Lett. 2012, 109, 141103. [Google Scholar] [CrossRef] [PubMed]
- Cherkas, S.L.; Kalashnikov, V.L. Wave optics of quantum gravity for massive particles. Phys. Scr. 2021, 96, 115001. [Google Scholar] [CrossRef]
- Arzano, M.; D’Esposito, V.; Gubitosi, G. Fundamental decoherence from quantum spacetime. arXiv 2023, arXiv:2208.14119. [Google Scholar] [CrossRef]
- Gundhi, A.; Ulbricht, H. Measuring decoherence due to quantum vacuum fluctuations. arXiv 2025, arXiv:2501.17928. [Google Scholar] [CrossRef] [PubMed]
- Wilczek, F. Foundations and working pictures in microphysical cosmology. Phys. Rep. 1984, 104, 143–157. [Google Scholar] [CrossRef]
- Gill, R.; Kole, M.; Granot, J. GRB Polarization: A Unique Probe of GRB Physics. arXiv 2021, arXiv:2109.03286. [Google Scholar]
- Wei, J.J. New Tests on Lorentz Invariance Violation Using Energy-Resolved Polarimetry of Gamma-Ray Bursts. arXiv 2025, arXiv:2503.18277. [Google Scholar] [CrossRef]
- Anastopoulos, C.; Hu, B.L. A master equation for gravitational decoherence: Probing the textures of spacetime. Class. Quant. Grav. 2013, 30, 165007. [Google Scholar] [CrossRef]
- Lagouvardos, M.; Anastopoulos, C. Gravitational decoherence of photons. Class. Quant. Grav. 2021, 38, 115012. [Google Scholar] [CrossRef]
- Barnett, S.M. Optical Dirac equation. New J. Phys. 2014, 16, 093008. [Google Scholar] [CrossRef]
- Cherkas, S.L.; Kalashnikov, V.L. An approach to the theory of gravity with an arbitrary reference level of energy density. Proc. Natl. Acad. Sci. Belarus Ser. Phys.-Math. 2019, 55, 83–96. [Google Scholar] [CrossRef]
- Haridasu, B.S.; Cherkas, S.L.; Kalashnikov, V.L. Reference Level of the Vacuum Energy Density of the Universe and Astrophysical Data. Fortschr. Phys. 2020, 68, 2000047. [Google Scholar] [CrossRef]
- Cherkas, S.L.; Kalashnikov, V.L. Vacuum Polarization Instead of Dark Matter in a Galaxy. Universe 2022, 8, 456. [Google Scholar] [CrossRef]
- Casadio, R.; Chataignier, L.; Kamenshchik, A.Y.; Pedro, F.G.; Tronconi, A.; Venturi, G. Relaxation of first-class constraints and the quantization of gauge theories: From “matter without matter” to the reappearance of time in quantum gravity. Ann. Phys. 2024, 470, 169783. [Google Scholar] [CrossRef]
- Obukhov, Y.N. Electrodynamics in noninertial frames. Eur. Phys. J. C 2021, 81, 919. [Google Scholar] [CrossRef]
- Hwang, J.; Noh, H. Maxwell equations in curved spacetime. Eur. Phys. J. C 2023, 83, 969. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E. The Classical Theory of Fields; Butterworth-Heinemann: Oxford, UK, 1975; Volume 2. [Google Scholar]
- Gorbatenko, M.V.; Neznamov, V.P. Uniqueness and self-conjugacy of Dirac Hamiltonians in arbitrary gravitational fields. Phys. Rev. D 2011, 83, 105002. [Google Scholar] [CrossRef]
- Cherkas, S.L.; Kalashnikov, V.L. Plasma perturbations and cosmic microwave background anisotropy in the linearly expanding Milne-like universe. In Fractional Dynamics, Anomalous Transport and Plasma Science; Skiadas, C.H., Ed.; Springer: Cham, Switzerland, 2018; Chapter 9; pp. 181–201. [Google Scholar]
- Dodelson, S. Modern Cosmology; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Cherkas, S.L.; Kalashnikov, V.L. The equation of vacuum state and the structure formation in universe. Nonlin. Phenom. Compl. Syst. 2020, 23, 332–337. [Google Scholar] [CrossRef]
- Visser, M. Lorentz Invariance and the Zero-Point Stress-Energy Tensor. Particles 2018, 1, 138–154. [Google Scholar] [CrossRef]
- Cherkas, S.L.; Kalashnikov, V.L. Determination of the UV cut-off from the observed value of the Universe acceleration. J. Cosmol. Astropart. Phys. 2007, 01, 028. [Google Scholar] [CrossRef]
- Cherkas, S.L.; Kalashnikov, V.L. Aether as an Inevitable Consequence of Quantum Gravity. Universe 2022, 8, 626. [Google Scholar] [CrossRef]
- Carlip, S. Hiding the Cosmological Constant. Phys. Rev. Lett. 2019, 123, 131302. [Google Scholar] [CrossRef]
- Akhmedov, E.K. Vacuum energy and relativistic invariance. arXiv 2002, arXiv:hep-th/0204048. [Google Scholar] [CrossRef]
- Birrell, N.D.; Davis, P.C.W. Quantum Fields in Curved Space; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar]
- Landau, L.D.; Lifshitz, E. Quantum Mechanics: Non-Relativistic Theory; Butterworth-Heinemann: Oxford, UK, 1981; Volume 3. [Google Scholar]
- Migdal, A.B. Quantum kinetic equation for multiple scattering. Dokl. Akad. Nauk Ser. Fiz. 1955, 105, 77. [Google Scholar]
- Migdal, A.B. Bremsstrahlung and Pair Production in Condensed Media at High Energies. Phys. Rev. 1956, 103, 1811–1820. [Google Scholar] [CrossRef]
- Kagan, Y.; Kononets, Y.V. Theory of the channeling effect: II. Influence of inelastic collisions. Sov. J. Exp. Theor. Phys. 1973, 37, 530. [Google Scholar]
- Hawton, M. Photon position operator with commuting components. Phys. Rev. A 1999, 59, 954–959. [Google Scholar] [CrossRef]
- Brainis, E.; Emplit, P. Wave function formalism in quantum optics and generalized Huygens-Fresnel principle for N-photon states: Derivation and applications. In Proceedings of the SPIE—The International Society for Optical Engineering, Brussels, Belgium, 12–16 April 2010; Volume 7727. [Google Scholar] [CrossRef]
- Silenko, A.J. Zitterbewegung of massless particles. arXiv 2022, arXiv:2008.05954. [Google Scholar] [CrossRef]
- Morozov, A.V. Two-frequency mutual coherence function of electromagnetic waves in random media: A path-integral variational solution. J. Opt. Soc. Am. A 2002, 19, 2074–2084. [Google Scholar] [CrossRef]
- Mao, H.; Zhao, D. Second-order intensity-moment characteristics for broadband partially coherent flat-topped beams in atmospheric turbulence. Opt. Express 2010, 18, 1741–1755. [Google Scholar] [CrossRef]
- Ostashev, V.E.; Wilson, D.; Collier, S.; Cain, J.; Cheinet, S. Cross-frequency coherence and pulse propagation in a turbulent atmosphere. J. Acoust. Soc. Am. 2016, 140, 678–691. [Google Scholar] [CrossRef] [PubMed]
- Tinin, M. Two-Frequency Coherence Function for the Field of a Wave Propagating Through a Multiscale Randomly Inhomogeneous Medium. Radiophys. Quant. Electr. 2018, 61, 259–271. [Google Scholar] [CrossRef]
- Ke, X.; Ke, C. Optical Wireless Coherent Communication Systems. In Partially Coherent Optical Transmission Theory in Optical Wireless Communication; Springer: Heidelberg, Germany, 2025; pp. 23–59. [Google Scholar] [CrossRef]
- Palazzi, G.D. High-Energy Bremsstrahlung and Electron Pair Production in Thin Crystals. Rev. Mod. Phys. 1968, 40, 611–631. [Google Scholar] [CrossRef]
- Baryshevskii, V.G.; Tikhomirov, V.V. Synchrotron-type radiation processes in crystals and polarization phenomena accompanying them. Usp. Fiz. Nauk 1989, 159, 529, reprinted in Sov. Phys. Usp. 1989, 32, 1013. [Google Scholar] [CrossRef]
- Boldyshev, V.; Vinokurov, E.; Merenkov, N.; Peresunko, Y. Measurement of photon beam linear polarization using asymmetry of the recoil electrons from the photoproduction of e+ e− pairs. Phys. Part. Nucl. 1994, 25, 292–331, reprinted in Fiz. Elem. Chastits At. Yadra. 1994, 25, 696–778. [Google Scholar]
- NA59 Collaboration; Apyan, A.; Avakian, R.O.; Badelek, B.; Ballestrero, S.; Biino, C.; Birol, I.; Cenci, P.; Connell, S.H.; Eichblatt, S.; et al. Measurement of Coherent Emission and Linear Polarization of Photons by Electrons in the Strong Fields of Aligned Crystals. arXiv 2004, arXiv:hep-ex/0406026. [Google Scholar] [CrossRef]
- Berestetskii, V.B.; Landau, L.; Lifshitz, E.; Pitaevskii, L.P. Quantum Electrodynamics; Butterworth-Heinemann: Oxford, UK, 1982. [Google Scholar]
- Parker, L. Quantized Fields and Particle Creation in Expanding Universes. II. Phys. Rev. D 1971, 3, 346–356. [Google Scholar] [CrossRef]
- Greene, P.B.; Kofman, L. Theory of fermionic preheating. Phys. Rev. D 2000, 62, 123516. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cherkas, S.L.; Kalashnikov, V.L. The Influence of Zero-Point Fluctuations on the Photon Wave Packet Motion in a Vacuum. Universe 2025, 11, 277. https://doi.org/10.3390/universe11080277
Cherkas SL, Kalashnikov VL. The Influence of Zero-Point Fluctuations on the Photon Wave Packet Motion in a Vacuum. Universe. 2025; 11(8):277. https://doi.org/10.3390/universe11080277
Chicago/Turabian StyleCherkas, S. L., and V. L. Kalashnikov. 2025. "The Influence of Zero-Point Fluctuations on the Photon Wave Packet Motion in a Vacuum" Universe 11, no. 8: 277. https://doi.org/10.3390/universe11080277
APA StyleCherkas, S. L., & Kalashnikov, V. L. (2025). The Influence of Zero-Point Fluctuations on the Photon Wave Packet Motion in a Vacuum. Universe, 11(8), 277. https://doi.org/10.3390/universe11080277