Previous Issue
Volume 10, May
 
 

Universe, Volume 10, Issue 6 (June 2024) – 19 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
29 pages, 1891 KiB  
Review
Decoding the Nature of Coherent Radio Emission in Pulsars I: Observational Constraints
by Dipanjan Mitra, Rahul Basu and George I. Melikizde
Universe 2024, 10(6), 248; https://doi.org/10.3390/universe10060248 (registering DOI) - 3 Jun 2024
Abstract
Radio observations from normal pulsars indicate that the coherent radio emission is excited by curvature radiation from charge bunches. In this review, we provide a systematic description of the various observational constraints on the radio emission mechanism. We have discussed the presence of [...] Read more.
Radio observations from normal pulsars indicate that the coherent radio emission is excited by curvature radiation from charge bunches. In this review, we provide a systematic description of the various observational constraints on the radio emission mechanism. We have discussed the presence of highly polarized time samples where the polarization position angle follow two orthogonal well-defined tracks across the profile that closely match the rotating vector model in an identical manner. The observations also show the presence of circular polarization, with both the right and left handed circular polarization seen across the profile. Other constraints on the emission mechanism are provided by the detailed measurements of the spectral index variation across the profile window, where the central part of the profile, corresponding to the core component, has a steeper spectrum than the surrounding cones. Finally, the detailed measurements of the subpulse drifting behaviour can be explained by considering the presence of non-dipolar field on the stellar surface and the formation of the partially screened gap (PSG) above the polar cap region. The PSG gives rise to a non-stationary plasma flow that has a multi-component nature, consisting of highly energetic primary particles, secondary pair plasma, and iron ions discharged from the surface, with large fragmentation resulting in dense plasma clouds and lower-density inter-cloud regions. The physical properties of the outflowing plasma and the observational constraints lead us to consider coherent curvature radiation as the most viable explanation for the emission mechanism in normal pulsars, where propagation effects due to adiabatic walking and refraction are largely inconsequential. Full article
(This article belongs to the Special Issue A New Horizon of Pulsar and Neutron Star: The 55-Year Anniversary)
Show Figures

Figure 1

10 pages, 679 KiB  
Review
Neutrino Masses and Right-Handed Weak Currents Studied by Neutrino-Less ββ-Decay Detectors
by Saori Umehara and Hiroyasu Ejiri
Universe 2024, 10(6), 247; https://doi.org/10.3390/universe10060247 (registering DOI) - 3 Jun 2024
Abstract
Detecting neutrino-less double beta (0νββ) decay with high-sensitivity 0νββ detectors is of current interest for studying the Majorana neutrino’s nature, the neutrino mass (ν-mass), right-handed weak currents (RHCs), and others beyond the Standard [...] Read more.
Detecting neutrino-less double beta (0νββ) decay with high-sensitivity 0νββ detectors is of current interest for studying the Majorana neutrino’s nature, the neutrino mass (ν-mass), right-handed weak currents (RHCs), and others beyond the Standard Model. Many experimental groups have studied 0νββ decay with ν-mass sensitivities on the order of 100 meV and RHC sensitivities on the order of 10 9–10 6, but no clear 0νββ signals have been observed so far in these ν-mass and RHC regions. Thus, several experimental groups are developing higher-sensitivity detectors to explore a smaller ν-mass region around 15–50 meV, which corresponds to the inverted hierarchy ν-mass, and smaller RHC regions on the order of 10 10–10 7 in the near future. Nuclear matrix elements (NMEs) for ν-mass and RHC processes are crucial for extracting the ν-mass and RHCs of particle physics interest from 0νββ experiments. This report briefly reviews detector sensitivities and upper limits on the ν-mass and right-handed currents for several current 0νββ detectors and the ν-mass and RHC sensitivities expected for some near-future ones. Full article
Show Figures

Figure 1

18 pages, 6374 KiB  
Article
New Parametrization of the Dark-Energy Equation of State with a Single Parameter
by Jainendra Kumar Singh, Preeti Singh, Emmanuel N. Saridakis, Shynaray Myrzakul and Harshna Balhara
Universe 2024, 10(6), 246; https://doi.org/10.3390/universe10060246 (registering DOI) - 1 Jun 2024
Abstract
We propose a novel dark-energy equation-of-state parametrization, with a single parameter η that quantifies the deviation from ΛCDM cosmology. We first confront the scenario with various datasets, from the Hubble function (OHD), Pantheon, baryon acoustic oscillations (BAO), and their joint observations, and we [...] Read more.
We propose a novel dark-energy equation-of-state parametrization, with a single parameter η that quantifies the deviation from ΛCDM cosmology. We first confront the scenario with various datasets, from the Hubble function (OHD), Pantheon, baryon acoustic oscillations (BAO), and their joint observations, and we show that η has a preference for a non-zero value, namely, a deviation from ΛCDM cosmology is favored, although the zero value is marginally inside the 1σ confidence level. However, we find that the present Hubble function value acquires a higher value, namely, H0=66.6240.013+0.011 Km s1 Mpc1, which implies that the H0 tension can be partially alleviated. Additionally, we perform a cosmographic analysis, showing that the universe transits from deceleration to acceleration in the recent cosmological past; nevertheless, in the future, it will not result in a de Sitter phase since it exhibits a second transition from acceleration to deceleration. Finally, we perform the statefinder analysis. The scenario behaves similarly to the ΛCDM paradigm at high redshifts, while the deviation becomes significant at late and recent times and especially in the future. Full article
(This article belongs to the Collection Modified Theories of Gravity and Cosmological Applications)
9 pages, 696 KiB  
Communication
X-ray Redshifts for Obscured Active Galactic Nuclei with AXIS Deep and Intermediate Surveys
by Alessandro Peca, Nico Cappelluti, Stefano Marchesi, Edmund Hodges-Kluck and Adi Foord
Universe 2024, 10(6), 245; https://doi.org/10.3390/universe10060245 (registering DOI) - 1 Jun 2024
Abstract
This study presents the capabilities of the AXIS telescope in estimating redshifts from X-ray spectra alone (X-ray redshifts, XZs). Through extensive simulations, we establish that AXIS observations enable reliable XZ estimates for more than 5500 obscured active galactic nuclei (AGNs) up to redshift [...] Read more.
This study presents the capabilities of the AXIS telescope in estimating redshifts from X-ray spectra alone (X-ray redshifts, XZs). Through extensive simulations, we establish that AXIS observations enable reliable XZ estimates for more than 5500 obscured active galactic nuclei (AGNs) up to redshift z6 in the proposed deep (7 Ms) and intermediate (375 ks) surveys. Notably, at least 1600 of them are expected to be in the Compton-thick regime (logNH/cm224), underscoring the pivotal role of AXIS in sampling these elusive objects that continue to be poorly understood. XZs provide an efficient alternative for optical/infrared faint sources, overcoming the need for time-consuming spectroscopy, the potential limitations of photometric redshifts, and potential issues related to multi-band counterpart association. This approach will significantly enhance the accuracy of constraints on the X-ray luminosity function and obscured AGN fractions up to high redshifts. This white paper is part of a series commissioned for the AXIS Probe Concept Mission; additional AXIS white papers can be found at the AXIS website. Full article
(This article belongs to the Section Galaxies and Clusters)
21 pages, 1043 KiB  
Article
Charmonium Transport in Heavy-Ion Collisions at the LHC
by Biaogang Wu and Ralf Rapp
Universe 2024, 10(6), 244; https://doi.org/10.3390/universe10060244 - 31 May 2024
Abstract
We provide an update on our semi-classical transport approach for quarkonium production in high-energy heavy-ion collisions, focusing on J/ψ and ψ(2S) mesons in 5.02 TeV Pb-Pb collisions at the Large Hadron Collider (LHC) at both forward and [...] Read more.
We provide an update on our semi-classical transport approach for quarkonium production in high-energy heavy-ion collisions, focusing on J/ψ and ψ(2S) mesons in 5.02 TeV Pb-Pb collisions at the Large Hadron Collider (LHC) at both forward and mid-rapidity. In particular, we employ the most recent charm-production cross sections reported in pp collisions, which are pivotal for the magnitude of the regeneration contribution, and their modifications due to cold-nuclear-matter (CNM) effects. Multi-differential observables are calculated in terms of nuclear modification factors as a function of centrality, transverse momentum, and rapidity, including the contributions from feeddown from bottom hadron decays. For our predictions for ψ(2S) production, the mechanism of sequential regeneration relative to the more strongly bound J/ψ meson plays an important role in interpreting recent ALICE data. Full article
12 pages, 577 KiB  
Communication
Search for R-Parity-Violation-Induced Charged Lepton Flavor Violation at Future Lepton Colliders
by Xunye Cai, Jingshu Li, Ran Ding, Meng Lu, Zhengyun You and Qiang Li
Universe 2024, 10(6), 243; https://doi.org/10.3390/universe10060243 - 31 May 2024
Abstract
Interest in searches for Charged Lepton Flavor Violation (CLFV) has continued in the past few decades since the observation of CLFV would indicate a new physics Beyond the Standard Model (BSM). As several future lepton colliders with high luminosity have been proposed, the [...] Read more.
Interest in searches for Charged Lepton Flavor Violation (CLFV) has continued in the past few decades since the observation of CLFV would indicate a new physics Beyond the Standard Model (BSM). As several future lepton colliders with high luminosity have been proposed, the search for CLFV will reach an unprecedented level of precision. Many BSM models allow CLFV processes at the tree level, such as the R-parity-violating (RPV) Minimal Supersymmetric Standard Model (MSSM), which is a good choice for benchmarking. In this paper, we perform a detailed fast Monte Carlo simulation study on RPV-induced CLFV processes at future lepton colliders, including a 240 GeV circular electron positron collider (CEPC) and a 6 or 14 TeV Muon Collider. As a result, we found that the upper limits on the τ-related RPV couplings will be significantly improved, while several new limits on RPV couplings can be set, which are inaccessible by low-energy experiments. Full article
(This article belongs to the Special Issue Search for New Physics at the LHC and Future Colliders)
Show Figures

Figure 1

9 pages, 852 KiB  
Article
Optical Quasi-Periodic Oscillation of Blazar PKS 1440-389 in the TESS Light Curve
by He Lu, Tingfeng Yi, Yanke Tang, Junjie Wang, Shun Zhang, Liang Wang, Yutong Chen, Yuncai Shen, Liang Dong and Yangwei Zhang
Universe 2024, 10(6), 242; https://doi.org/10.3390/universe10060242 - 31 May 2024
Abstract
We report the results of time series analysis of blazar PKS 1440-389, observed by the Transiting Exoplanet Survey Satellite (TESS) in two sectors. We find that the source has a quasi-periodic oscillation (QPO) of about 3.1 days for sector 11 and around 3.7 [...] Read more.
We report the results of time series analysis of blazar PKS 1440-389, observed by the Transiting Exoplanet Survey Satellite (TESS) in two sectors. We find that the source has a quasi-periodic oscillation (QPO) of about 3.1 days for sector 11 and around 3.7 days for sector 38 in the optical band. We use two methods to assess the QPO and its confidence level: Lomb–Scargle periodogram and weighted wavelet Z-transforms. We explore various potential explanations for these rapid quasi-periodic variations and propose that their source most likely resides within the innermost region of the accretion disk. Within this framework, we estimate the mass of the central black hole of this blazar. We obtain black hole masses of 6.65 × 108M (Schwarzschild black hole) and 4.22 × 109M (maximally rotating Kerr black hole), with a main period of 3.7 days. Finally, we utilize the kink instability model to explain the QPO. Full article
(This article belongs to the Special Issue Blazar Bursts: Theory and Observation)
Show Figures

Figure 1

21 pages, 596 KiB  
Article
Mechanisms for Producing Primordial Black Holes from Inflationary Models beyond Fine-Tuning
by Ioanna Stamou
Universe 2024, 10(6), 241; https://doi.org/10.3390/universe10060241 - 30 May 2024
Abstract
In this study, we present an analysis of the fine-tuning required in various inflationary models in order to explain the production of Primordial Black Holes (PBHs). We specifically examine the degree of fine-tuning necessary in two prominent single-field inflationary models: those with an [...] Read more.
In this study, we present an analysis of the fine-tuning required in various inflationary models in order to explain the production of Primordial Black Holes (PBHs). We specifically examine the degree of fine-tuning necessary in two prominent single-field inflationary models: those with an inflection point and those with step-like features in the potential. Our findings indicate that models with step-like features generally require less fine-tuning compared to those with an inflection point, making them more viable for consistent PBH production. An interesting outcome of these models is that, in addition to improved fine-tuning, they may also predict low-frequency signals that can be detected by pulsar timing array (PTA) collaborations. Additionally, we extend our analysis to multifield inflationary models to assess whether the integration of additional fields can further alleviate the fine-tuning demands. The study also explores the role of a spectator field and its impact on the fine-tuning process. Our results indicate that although mechanisms involving a spectator field can circumvent the issue of fine-tuning parameters for PBH production, both multifield models and models with step-like features present promising alternatives. While fine-tuning involves multiple considerations, our primary objective is to evaluate various inflationary models to identify the one that most naturally explains the formation of PBHs. Hence, this study introduces a novel approach by categorizing existing PBH mechanisms, paving the way for subsequent research to prioritize models that minimize the need for extensive fine-tuning. Full article
Show Figures

Figure 1

25 pages, 661 KiB  
Article
Renormalization Analysis of Magnetohydrodynamics: Two-Loop Approximation
by Michal Hnatič, Tomáš Lučivjanský, Lukáš Mižišin, Yurii Molotkov and Andrei Ovsiannikov
Universe 2024, 10(6), 240; https://doi.org/10.3390/universe10060240 - 30 May 2024
Abstract
We investigate the stochastic version of the paradigmatic model of magnetohydrodynamic turbulence. The model can be interpreted as an active vector admixture subject to advective processes governed by turbulent flow. The back influence on fluid dynamics is explicitly taken into account. The velocity [...] Read more.
We investigate the stochastic version of the paradigmatic model of magnetohydrodynamic turbulence. The model can be interpreted as an active vector admixture subject to advective processes governed by turbulent flow. The back influence on fluid dynamics is explicitly taken into account. The velocity field is generated through a fully developed turbulent flow taking into account the violation of spatial parity, which is introduced through the helicity parameter ρ. We consider a generalized setup in which parameter A is introduced in model formulation, which is associated with the interaction part of the model, and its actual value represents different physical systems. The model is analyzed by means of the field-theoretic renormalization group. The calculation is performed using ε-expansion, where ε is the deviation from the Kolmogorov scaling. Two-loop numerical calculations of the renormalization constant associated with the renormalization of the magnetic field are presented. Full article
(This article belongs to the Section Field Theory)
Show Figures

Figure 1

21 pages, 462 KiB  
Article
Inflaton Decay in No-Scale Supergravity and Starobinsky-like Models
by Yohei Ema, Marcos A. G. Garcia, Wenqi Ke, Keith A. Olive and Sarunas Verner
Universe 2024, 10(6), 239; https://doi.org/10.3390/universe10060239 - 30 May 2024
Abstract
We consider the decay of the inflaton in Starobinsky-like models arising from either an R+R2 theory of gravity or N=1 no-scale supergravity models. If Standard Model matter is simply introduced to the R+R2 theory, the [...] Read more.
We consider the decay of the inflaton in Starobinsky-like models arising from either an R+R2 theory of gravity or N=1 no-scale supergravity models. If Standard Model matter is simply introduced to the R+R2 theory, the inflaton (which appears when the theory is conformally transformed into the Einstein frame) couples to matter predominantly in Standard Model Higgs kinetic terms. This will typically lead to a reheating temperature of ∼3 × 109 GeV. However, if the Standard Model Higgs is conformally coupled to curvature, the decay rate may be suppressed and vanishes for conformal coupling ξ=1/6. Nevertheless, the inflaton decays through the conformal anomaly, leading to a reheating temperature of the order of 108 GeV. The Starobinsky potential may also arise in no-scale supergravity. In this case, the inflaton decays if there is a direct coupling of the inflaton to matter in the superpotential or to gauge fields through the gauge kinetic function. We also discuss the relation between the theories and demonstrate the correspondence between the no-scale models and the conformally coupled R+R2 theory (with ξ=1/6). Full article
Show Figures

Figure 1

25 pages, 990 KiB  
Review
Supernova Neutrinos: Flavour Conversion Mechanisms and New Physics Scenarios
by Manibrata Sen
Universe 2024, 10(6), 238; https://doi.org/10.3390/universe10060238 - 30 May 2024
Viewed by 49
Abstract
A core-collapse supernova (SN) releases almost all of its energy in the form of neutrinos, which provide a unique opportunity to probe the working machinery of an SN. These sites are prone to neutrino–neutrino refractive effects, which can lead to fascinating collective flavour [...] Read more.
A core-collapse supernova (SN) releases almost all of its energy in the form of neutrinos, which provide a unique opportunity to probe the working machinery of an SN. These sites are prone to neutrino–neutrino refractive effects, which can lead to fascinating collective flavour oscillations among neutrinos. This causes rapid neutrino flavour conversions deep inside the SN even for suppressed mixing angles, with intriguing consequences for the explosion mechanism as well as nucleosynthesis. We review the physics of collective oscillations of neutrinos—both slow and fast—along with the well-known resonant flavour conversion effects and discuss the current state-of-the-art of the field. Furthermore, we discuss how neutrinos from an SN can be used to probe novel particle physics properties, extreme values of which are otherwise inaccessible in laboratories. Full article
(This article belongs to the Special Issue Neutrinos across Different Energy Scales)
Show Figures

Figure 1

20 pages, 972 KiB  
Article
Tracking Supermassive Black Hole Mergers from kpc to sub-pc Scales with AXIS
by Adi Foord, Nico Cappelluti, Tingting Liu, Marta Volonteri, Melanie Habouzit, Fabio Pacucci, Stefano Marchesi, Nianyi Chen, Tiziana Di Matteo, Labani Mallick and Michael Koss
Universe 2024, 10(6), 237; https://doi.org/10.3390/universe10060237 - 28 May 2024
Viewed by 182
Abstract
We present an analysis showcasing how the Advanced X-ray Imaging Satellite (AXIS), a proposed NASA Probe-class mission, will significantly increase our understanding of supermassive black holes undergoing mergers—from kpc to sub-pc scales. In particular, the AXIS point spread function, field of view, and [...] Read more.
We present an analysis showcasing how the Advanced X-ray Imaging Satellite (AXIS), a proposed NASA Probe-class mission, will significantly increase our understanding of supermassive black holes undergoing mergers—from kpc to sub-pc scales. In particular, the AXIS point spread function, field of view, and effective area are expected to result in (1) the detection of hundreds to thousands of new dual AGNs across the redshift range 0<z<5 and (2) blind searches for binary AGNs that are exhibiting merger signatures in their light curves and spectra. AXIS will detect some of the highest-redshift dual AGNs to date, over a large range of physical separations. The large sample of AGN pairs detected by AXIS (over a magnitude more than currently known) will result in the first X-ray study that quantifies the frequency of dual AGNs as a function of redshift up to z=4. Full article
(This article belongs to the Section Galaxies and Clusters)
Show Figures

Figure 1

29 pages, 5836 KiB  
Article
Calibration Error in 21-Centimeter Global Spectrum Experiment
by Shijie Sun, Eloy de Lera Acedo, Fengquan Wu, Bin Yue, Jiacong Zhu and Xuelei Chen
Universe 2024, 10(6), 236; https://doi.org/10.3390/universe10060236 - 27 May 2024
Viewed by 245
Abstract
The redshifted 21 cm line signal is a powerful probe of the cosmic dawn and the epoch of reionization. The global spectrum can potentially be detected with a single antenna and spectrometer. However, this measurement requires an extremely accurate calibration of the instrument [...] Read more.
The redshifted 21 cm line signal is a powerful probe of the cosmic dawn and the epoch of reionization. The global spectrum can potentially be detected with a single antenna and spectrometer. However, this measurement requires an extremely accurate calibration of the instrument to facilitate the separation of the 21 cm signal from the much brighter foregrounds and possible variations in the instrument response. Understanding how the measurement errors propagate in a realistic instrument system and affect system calibration is the focus of this work. We simulate a 21 cm global spectrum observation based on the noise wave calibration scheme. We focus on how measurement errors in reflection coefficients affect the noise temperature and how typical errors impact the recovery of the 21 cm signal, especially in the frequency domain. Results show that for our example set up, a typical vector network analyzer (VNA) measurement error in the magnitude of the reflection coefficients of the antenna, receiver, and open cable, which are 0.001, 0.001, and 0.002 (linear), respectively, would result in a 200 mK deviation on the detected signal, and a typical measurement error of 0.48°, 0.78°, or 0.15° in the respective phases would cause a 40 mK deviation. The VNA measurement error can greatly affect the result of a 21 cm global spectrum experiment using this calibration technique, and such a feature could be mistaken for or be combined with the 21 cm signal. Full article
(This article belongs to the Special Issue Probing the Early Universe)
Show Figures

Figure 1

21 pages, 370 KiB  
Article
The Equation of State of Novel Double-Field Pure K-Essence for Inflation, Dark Matter and Dark Energy
by Changjun Gao
Universe 2024, 10(6), 235; https://doi.org/10.3390/universe10060235 - 24 May 2024
Viewed by 263
Abstract
K-essence theories are usually studied in the framework of a single scalar field ϕ. Namely, the Lagrangian of K-essence is the function of the single scalar field ϕ and its covariant derivative. However, in this paper, we explore a double-field pure K-essence, [...] Read more.
K-essence theories are usually studied in the framework of a single scalar field ϕ. Namely, the Lagrangian of K-essence is the function of the single scalar field ϕ and its covariant derivative. However, in this paper, we explore a double-field pure K-essence, i.e., the corresponding Lagrangian is the function of covariant derivatives of double scalar fields without a dependency on scalar fields themselves. This is why we call it double-field pure K-essence. The novelty of this K-essence is that its Lagrangian contains the quotient term of the kinetic energies from the two scalar fields. This results in the presence of many interesting features; for example, the equation of state can be arbitrarily small and arbitrarily large. In comparison, the range of the equation of state for quintessence is 1 to +1. Interestingly, this novel K-essence can play the role of an inflation field, dark matter, or dark energy by appropriately selecting the expressions of Lagrangian. Full article
Show Figures

Figure 1

16 pages, 1464 KiB  
Article
Classification of Major Solar Flares from Extremely Imbalanced Multivariate Time Series Data Using Minimally Random Convolutional Kernel Transform
by Kartik Saini, Khaznah Alshammari, Shah Muhammad Hamdi and Soukaina Filali Boubrahimi
Universe 2024, 10(6), 234; https://doi.org/10.3390/universe10060234 - 24 May 2024
Viewed by 300
Abstract
Solar flares are characterized by sudden bursts of electromagnetic radiation from the Sun’s surface, and are caused by the changes in magnetic field states in active solar regions. Earth and its surrounding space environment can suffer from various negative impacts caused by solar [...] Read more.
Solar flares are characterized by sudden bursts of electromagnetic radiation from the Sun’s surface, and are caused by the changes in magnetic field states in active solar regions. Earth and its surrounding space environment can suffer from various negative impacts caused by solar flares, ranging from electronic communication disruption to radiation exposure-based health risks to astronauts. In this paper, we address the solar flare prediction problem from magnetic field parameter-based multivariate time series (MVTS) data using multiple state-of-the-art machine learning classifiers that include MINImally RandOm Convolutional KErnel Transform (MiniRocket), Support Vector Machine (SVM), Canonical Interval Forest (CIF), Multiple Representations Sequence Learner (Mr-SEQL), and a Long Short-Term Memory (LSTM)-based deep learning model. Our experiment is conducted on the Space Weather Analytics for Solar Flares (SWAN-SF) benchmark data set, which is a partitioned collection of MVTS data of active region magnetic field parameters spanning over nine years of operation of the Solar Dynamics Observatory (SDO). The MVTS instances of the SWAN-SF dataset are labeled by GOES X-ray flux-based flare class labels, and attributed to extreme class imbalance because of the rarity of the major flaring events (e.g., X and M). As a performance validation metric in this class-imbalanced dataset, we used the True Skill Statistic (TSS) score. Finally, we demonstrate the advantages of the MVTS learning algorithm MiniRocket, which outperformed the aforementioned classifiers without the need for essential data preprocessing steps such as normalization, statistical summarization, and class imbalance handling heuristics. Full article
(This article belongs to the Special Issue Solar and Stellar Activity: Exploring the Cosmic Nexus)
Show Figures

Figure 1

17 pages, 3765 KiB  
Article
Strange Quark Stars: The Role of Excluded Volume Effects
by G. Lugones and Ana G. Grunfeld
Universe 2024, 10(6), 233; https://doi.org/10.3390/universe10060233 - 24 May 2024
Viewed by 299
Abstract
We study cold strange quark stars employing an enhanced version of the quark-mass density-dependent model, which incorporates excluded volume effects to address non-perturbative QCD repulsive interactions. We provide a comparative analysis of our mass formula parametrization with previous models from the literature. We [...] Read more.
We study cold strange quark stars employing an enhanced version of the quark-mass density-dependent model, which incorporates excluded volume effects to address non-perturbative QCD repulsive interactions. We provide a comparative analysis of our mass formula parametrization with previous models from the literature. We identify the regions within the parameter space where three-flavor quark matter is more stable than the most tightly bound atomic nucleus (stability window). Specifically, we show that excluded volume effects do not change the Gibbs free energy per baryon at zero pressure, rendering the stability window unaffected. The curves of pressure versus energy density exhibit various shapes—convex upward, concave downward, or nearly linear—depending on the mass parametrization. This behavior results in different patterns of increase, decrease, or constancy in the speed of sound as a function of baryon number density. We analyze the mass–radius relationship of strange quark stars, revealing a significant increase in maximum gravitational mass and a shift in the curves toward larger radii as the excluded volume effect intensifies. Excluded volume effects render our models compatible with all modern astrophysical constraints, including the properties of the recently observed low-mass compact object HESSJ1731. Full article
(This article belongs to the Special Issue Studies in Neutron Stars)
Show Figures

Figure 1

15 pages, 1443 KiB  
Article
Phantom Scalar Field Cosmologies Constrained by Early Cosmic Measurements
by José Antonio Nájera and Celia Escamilla-Rivera
Universe 2024, 10(6), 232; https://doi.org/10.3390/universe10060232 - 23 May 2024
Viewed by 273
Abstract
In this work, we explore new constraints on phantom scalar field cosmologies with a scalar field employing early-time catalogs related to CMB measurements, along with the local standard observables, like Supernovae Type Ia (SNIa), H(z) measurements (Cosmick clocks), and Baryon [...] Read more.
In this work, we explore new constraints on phantom scalar field cosmologies with a scalar field employing early-time catalogs related to CMB measurements, along with the local standard observables, like Supernovae Type Ia (SNIa), H(z) measurements (Cosmick clocks), and Baryon Acoustic Oscillation (BAO) baselines. In particular, we studied a tracker phantom field with hyperbolic polar coordinates that have been proposed in the literature. The main goal is to obtain precise cosmological constraints for H0 and σ8, in comparison to other constructions that present tension in early cosmological parameters. Our results show that phantom scalar field cosmologies have a reduced statistical tension on H0 that it is less than 3σ using model-independent CMB catalogs as SPT-3G+WMAP9 and ACTPol DR-4+WMAP9 baselines. This suggests that these models, using a different phantom potential, might address the Hubble constant problem and reduce the systematics involved. Full article
(This article belongs to the Special Issue The Nature of Dark Energy)
Show Figures

Figure 1

34 pages, 7190 KiB  
Review
Magnetar QPOs and Neutron Star Crust Elasticity
by Hajime Sotani
Universe 2024, 10(6), 231; https://doi.org/10.3390/universe10060231 - 22 May 2024
Viewed by 480
Abstract
The crust region is a tiny fraction of neutron stars, but it has a variety of physical properties and plays an important role in astronomical observations. One of the properties characterizing the crust is elasticity. In this review, with the approach of asteroseismology, [...] Read more.
The crust region is a tiny fraction of neutron stars, but it has a variety of physical properties and plays an important role in astronomical observations. One of the properties characterizing the crust is elasticity. In this review, with the approach of asteroseismology, we systematically examine neutron star oscillations excited by crust elasticity, adopting the Cowling approximation. In particular, by identifying the quasi-periodic oscillations observed in magnetar flares with the torsional oscillations, we make a constraint on the nuclear saturation parameters. In addition, we also discuss how the shear and interface modes depend on the neutron star properties. Once one detects an additional signal associated with neutron star oscillations, one can obtain a more severe constraint on the saturation parameters and/or neutron star properties, which must be a qualitatively different constraint obtained from terrestrial experiments and help us to complementarily understand astrophysics and nuclear physics. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2024 – Compact Objects)
Show Figures

Figure 1

22 pages, 2070 KiB  
Article
Improved Galaxy Morphology Classification with Convolutional Neural Networks
by Raul Urechiatu and Marc Frincu
Universe 2024, 10(6), 230; https://doi.org/10.3390/universe10060230 - 21 May 2024
Viewed by 396
Abstract
The increased volume of images and galaxies surveyed by recent and upcoming projects consolidates the need for accurate and scalable automated AI-driven classification methods. This paper proposes a new algorithm based on a custom neural network architecture for classifying galaxies from deep space [...] Read more.
The increased volume of images and galaxies surveyed by recent and upcoming projects consolidates the need for accurate and scalable automated AI-driven classification methods. This paper proposes a new algorithm based on a custom neural network architecture for classifying galaxies from deep space surveys. The convolutional neural network (CNN) presented is trained using 10,000 galaxy images obtained from the Galaxy Zoo 2 dataset. It is designed to categorize galaxies into five distinct classes: completely round smooth, in-between smooth (falling between completely round and cigar-shaped), cigar-shaped smooth, edge-on, and spiral. The performance of the proposed CNN is assessed using a set of metrics such as accuracy, precision, recall, F1 score, and area under the curve. We compare our solution with well-known architectures like ResNet-50, DenseNet, EfficientNet, Inception, MobileNet, and one proposed model for galaxy classification found in the recent literature. The results show an accuracy rate of 96.83%, outperforming existing algorithms. Full article
(This article belongs to the Section Galaxies and Clusters)
Show Figures

Figure 1

Previous Issue
Back to TopTop