On the Effects of Non-Metricity in an Averaged Universe
Abstract
:1. Introduction
2. Averaging the (Pseudo-)Riemannian Geometry
2.1. Basics of Macroscopic Gravity Formalism
The Field Equations of Macroscopic Gravity
2.2. Non-Metricity of the Averaged Geometry
3. Structure Equations for Geometric Flows
3.1. The Raychaudhuri Equation
3.2. The Sachs Optical Equation
Expansion Scalar and Cross-Section of Null Bundles
4. The Geometry of Hypersurfaces
4.1. The Non-Metricity of the Hypersurface
4.2. The Gauss Equation
4.3. The Codazzi Equation
5. FLRW Cosmology in Macroscopic Gravity
5.1. Dynamics and Expansion History
5.2. Angular Diameter Distance
6. Summary and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Constraint on the Connection Correlation
1 | The signature is implicitly assumed to be Lorentzian. Therefore, the term ‘Riemannian’ here is used to mean pseudo-Riemannian. |
2 | |
3 | The Levi–Civita connection can be written in terms of metric as:
|
4 | In an even more general, metric-affine geometry, where the connection is not symmetric, one would have contributions from torsion even in the case of geodesic curves [23]. |
5 | This could mean that a covariant averaging, albeit over three-space, necessarily breaks the Riemannian nature of the space. One needs to be careful about this when comparing macroscopic gravity to spatial averaging schemes that deal only with scalars. |
References
- Ellis, G. Relativistic Cosmology: Its Nature, Aims and Problems. Fundam. Theor. Phys. 1984, 9, 215–288. [Google Scholar] [CrossRef]
- Ellis, G.; Stoeger, W. The ’fitting problem’ in cosmology. Class. Quantum Gravity 1987, 4, 1697–1729. [Google Scholar] [CrossRef]
- Ellis, G.F.; Buchert, T. The Universe seen at different scales. Phys. Lett. A 2005, 347, 38–46. [Google Scholar] [CrossRef]
- van den Hoogen, R. Averaging Spacetime: Where do we go from here? In Proceedings of the 12th Marcel Grossmann Meeting on General Relativity, Paris, France, 12–18 July 2009; Volume 3, pp. 578–588. [Google Scholar] [CrossRef]
- Clifton, T. Back-Reaction in Relativistic Cosmology. Int. J. Mod. Phys. D 2013, 22, 1330004. [Google Scholar] [CrossRef]
- Buchert, T.; Räsänen, S. Backreaction in Late-Time Cosmology. Annu. Rev. Nucl. Part. Sci. 2012, 62, 57–79. [Google Scholar] [CrossRef]
- Zalaletdinov, R.M. Averaging out the Einstein equations. Gen. Relativ. Gravit. 1992, 24, 1015–1031. [Google Scholar] [CrossRef]
- Zalaletdinov, R. Towards a theory of macroscopic gravity. Gen. Relativ. Gravit. 1993, 25, 673–695. [Google Scholar] [CrossRef]
- Mars, M.; Zalaletdinov, R.M. Space–time averages in macroscopic gravity and volume-preserving coordinates. J. Math. Phys. 1997, 38, 4741–4757. [Google Scholar] [CrossRef]
- Zalaletdinov, R.M. Averaged Lagrangians and MacCallum–Taub’s Limit in Macroscopic Gravity. Gen. Relativ. Gravit. 1996, 28, 953–979. [Google Scholar] [CrossRef]
- Zalaletdinov, R.M. Space-time Averages of Classical Physical Fields. Ann. Eur. Acad. Sci. 2004, 344–371. [Google Scholar] [CrossRef]
- Van Den Hoogen, R.J. Towards a covariant smoothing procedure for gravitational theories. J. Math. Phys. 2017, 58, 122501. [Google Scholar] [CrossRef]
- Misner, C.W.; Thorne, K.; Wheeler, J. Gravitation; W. H. Freeman: San Francisco, CA, USA, 1973. [Google Scholar]
- Zalaletdinov, R. The averaging problem in cosmology and macroscopic gravity. Int. J. Mod. Phys. A 2008, 23, 1173–1181. [Google Scholar] [CrossRef]
- Zalaletdinov, R.M. Averaging problem in general relativity, macroscopic gravity and using Einstein’s equations in cosmology. Bull. Astron. Soc. India 1997, 25, 401–416. [Google Scholar]
- Khosravi, N. Geometric massive gravity in multiconnection framework. Phys. Rev. D 2014, 89, 024004. [Google Scholar] [CrossRef]
- Iosifidis, D.; Pallikaris, K. Biconnection gravity as a statistical manifold. Phys. Rev. D 2023, 108, 044026. [Google Scholar] [CrossRef]
- Obukhov, Y.N.; Puetzfeld, D. Demystifying autoparallels in alternative gravity. Phys. Rev. D 2021, 104, 044031. [Google Scholar] [CrossRef]
- Raychaudhuri, A. Relativistic cosmology. 1. Phys. Rev. 1955, 98, 1123–1126. [Google Scholar] [CrossRef]
- Sachs, R.; Bondi, H. Gravitational waves in general relativity. VI. The outgoing radiation condition. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1961, 264, 309–338. [Google Scholar] [CrossRef]
- Iosifidis, D.; Vogiatzis, I.G.; Tsagas, C.G. Friedmann-like universes with non-metricity. Eur. Phys. J. C 2023, 83, 216. [Google Scholar] [CrossRef]
- Poisson, E. A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar] [CrossRef]
- Agashe, A. Kinematics in metric-affine geometry. Phys. Scr. 2023, 98, 105210. [Google Scholar] [CrossRef]
- Capozziello, S.; Finch, A.; Said, J.L.; Magro, A. The 3 + 1 formalism in teleparallel and symmetric teleparallel gravity. Eur. Phys. J. C 2021, 81, 1141. [Google Scholar] [CrossRef]
- Coley, A.A.; Pelavas, N.; Zalaletdinov, R.M. Cosmological Solutions in Macroscopic Gravity. Phys. Rev. Lett. 2005, 95, 151102. [Google Scholar] [CrossRef]
- van den Hoogen, R.J. A complete cosmological solution to the averaged Einstein field equations as found in macroscopic gravity. J. Math. Phys. 2009, 50, 082503. [Google Scholar] [CrossRef]
- Wijenayake, T.; Ishak, M. Expansion and Growth of Structure Observables in a Macroscopic Gravity Averaged Universe. Phys. Rev. D 2015, 91, 063534. [Google Scholar] [CrossRef]
- Peebles, P. Principles of Physical Cosmology; Princeton University Press: Princeton, NJ, USA, 2019; Volume 99. [Google Scholar]
- Plebanski, J.; Krasinski, A. An Introduction to General Relativity and Cosmology; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Di Valentino, E.; Mena, O.; Pan, S.; Visinelli, L.; Yang, W.; Melchiorri, A.; Mota, D.F.; Riess, A.G.; Silk, J. In the realm of the Hubble tension—A review of solutions. Class. Quantum Gravity 2021, 38, 153001. [Google Scholar] [CrossRef]
- Clarkson, C.; Clifton, T.; Coley, A.; Sung, R. Observational Constraints on the Averaged Universe. Phys. Rev. D 2012, 85, 043506. [Google Scholar] [CrossRef]
- Wijenayake, T.; Lin, W.; Ishak, M. Averaged universe confronted with cosmological observations: A fully covariant approach. Phys. Rev. D 2016, 94, 083501. [Google Scholar] [CrossRef]
- Obukhov, Y.N.; Tresguerres, R. Hyperfluid: A Model of classical matter with hypermomentum. Phys. Lett. A 1993, 184, 17–22. [Google Scholar] [CrossRef]
- Iosifidis, D. The Perfect Hyperfluid of Metric-Affine Gravity: The Foundation. J. Cosmol. Astropart. Phys. 2021, 4, 72. [Google Scholar] [CrossRef]
- Van Den Hoogen, R. Spherically Symmetric Solutions in Macroscopic Gravity. Gen. Relativ. Gravit. 2008, 40, 2213–2227. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agashe, A.; Modumudi, S.M. On the Effects of Non-Metricity in an Averaged Universe. Universe 2024, 10, 261. https://doi.org/10.3390/universe10060261
Agashe A, Modumudi SM. On the Effects of Non-Metricity in an Averaged Universe. Universe. 2024; 10(6):261. https://doi.org/10.3390/universe10060261
Chicago/Turabian StyleAgashe, Anish, and Sai Madhav Modumudi. 2024. "On the Effects of Non-Metricity in an Averaged Universe" Universe 10, no. 6: 261. https://doi.org/10.3390/universe10060261
APA StyleAgashe, A., & Modumudi, S. M. (2024). On the Effects of Non-Metricity in an Averaged Universe. Universe, 10(6), 261. https://doi.org/10.3390/universe10060261