Altitude Heterogeneity of Magnetic Fields and Doppler Velocities in the Area of Seismic Source of a Strong Solar Flare from Data in Helium, Sodium, and Nickel Lines
Abstract
:1. Introduction
2. Observations and Methods
3. Results
3.1. Selected Spectral Lines and Their I ± V Profiles
3.2. Effective Magnetic Field
3.3. Doppler Velocities
3.4. Possible Non-Zeeman Polarization
3.5. Modeling Atmospheric Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lozitska, N.; Yakovkin, I.; Lozitsky, V. Unique spectral manifestations around the D3 line observed in the region close to the seismic source of a large solar flare. Mon. Not. R. Astron. Soc. Lett. 2024, 528, L1–L3. [Google Scholar] [CrossRef]
- Laba, I. Solar proton flare 4B/X17. 2 on 28 October 2003. Photometric results. Kinemat. Phys. Celest. Bodies 2007, 23, 36–40. [Google Scholar] [CrossRef]
- Kosovichev, A. Properties of flares-generated seismic waves on the Sun. Sol. Phys. 2006, 238, 1–11. [Google Scholar] [CrossRef]
- Zharkova, V.V.; Zharkov, S.I. On the origin of three seismic sources in the proton-rich flare of 28 October 2003. Astrophys. J. 2007, 664, 573. [Google Scholar] [CrossRef]
- Hurford, G.; Krucker, S.; Lin, R.; Schwartz, R.; Share, G.; Smith, D. Gamma-ray imaging of the 2003 October/November solar flares. Astrophys. J. 2006, 644, L93. [Google Scholar] [CrossRef]
- Kosovichev, A. The cause of photospheric and helioseismic responses to solar flares: High-energy electrons or protons? Astrophys. J. 2007, 670, L65. [Google Scholar] [CrossRef]
- Kosovichev, A.G. Sunquakes: Helioseismic response to solar flares. arXiv 2014, arXiv:1402.1249. [Google Scholar]
- Zharkova, V.; Zharkov, S.; Druett, M.; Matthews, S.; Inoue, S. Sunquake with a second bounce, other sunquakes, and emission associated with the X9. 3 flare of 6 September 2017-II. Proposed interpretation. Astron. Astrophys. 2020, 639, A79. [Google Scholar] [CrossRef]
- Zharkov, S.; Matthews, S.; Zharkova, V.; Druett, M.; Inoue, S.; Dammasch, I.E.; Macrae, C. Sunquake with a second bounce, other sunquakes, and emission associated with the X9. 3 flare of 6 September 2017-I. Observations. Astron. Astrophys. 2020, 639, A78. [Google Scholar] [CrossRef]
- Lindsey, C.; Donea, A.C. Mechanics of seismic emission from solar flares. In Helioseismology, Asteroseismology, and MHD Connections; Springer: New York, NY, USA, 2008; pp. 625–637. [Google Scholar]
- Martínez-Oliveros, J.C.; Donea, A.C. Magnetic field variations and seismicity of solar active regions. Mon. Not. R. Astron. Soc. Lett. 2009, 395, L39–L42. [Google Scholar] [CrossRef]
- Zharkova, V.V.; Gordovskyy, M. Energy spectra of particles accelerated in a reconnecting current sheet with the guiding magnetic field. Mon. Not. R. Astron. Soc. 2005, 356, 1107–1116. [Google Scholar] [CrossRef]
- Donea, A.C.; Lindsey, C. Seismic emission from the solar flares of 28 and 29 October 2003. Astrophys. J. 2005, 630, 1168. [Google Scholar] [CrossRef]
- Kosovichev, A.; Zharkova, V. X-ray flare sparks quake inside Sun. Nature 1998, 393, 317–318. [Google Scholar] [CrossRef]
- Ding, M.; Fang, C. On the propagation of chromospheric condensations in solar flares (I) Dynamic Simulations. Astrophys. Space Sci. 1994, 213, 233–246. [Google Scholar] [CrossRef]
- Donea, A.C.; Besliu-Ionescu, D.; Cally, P.S.; Lindsey, C.; Zharkova, V. Seismic emission from a M9. 5-class solar flare. Sol. Phys. 2006, 239, 113–135. [Google Scholar] [CrossRef]
- Moradi, H.; Donea, A.C.; Lindsey, C.; Besliu-Ionescu, D.; Cally, P.S. Helioseismic analysis of the solar flare-induced sunquake of 2005 January 15. Mon. Not. R. Astron. Soc. 2007, 374, 1155–1163. [Google Scholar] [CrossRef]
- Hudson, H.; Fisher, G.; Welsch, B. Flare energy and magnetic field variations. Subsurf. Atmos. Influ. Sol. Act. 2008, 383, 221. [Google Scholar]
- Anwar, B.; Acton, L.; Hudson, H.; Makita, M.; McClymont, A.; Tsuneta, S. Rapid sunspot motion during a major solar flare. Sol. Phys. 1993, 147, 287–303. [Google Scholar] [CrossRef]
- Fisher, G.H.; Bercik, D.J.; Welsch, B.T.; Hudson, H.S. Global forces in eruptive solar flares: The Lorentz force acting on the solar atmosphere and the solar interior. Sol. Phys. 2012, 277, 59–76. [Google Scholar] [CrossRef]
- Kiener, J.; Gros, M.; Tatischeff, V.; Weidenspointner, G. Properties of the energetic particle distributions during the 28 October 2003 solar flare from INTEGRAL/SPI observations. Astron. Astrophys. 2006, 445, 725–733. [Google Scholar] [CrossRef]
- Mandrini, C.H.; Démoulin, P.; Schmieder, B.; Deluca, E.; Pariat, E.; Uddin, W. Companion event and precursor of the X17 flare on 28 October 2003. Sol. Phys. 2006, 238, 293–312. [Google Scholar] [CrossRef]
- Maurya, R.A.; Ambastha, A. Magnetic and velocity field variations in the active regions NOAA 10486 and NOAA 10488. J. Astrophys. Astron. 2008, 29, 103–105. [Google Scholar] [CrossRef]
- Maurya, R.; Ambastha, A. Transient magnetic and doppler features related to the white-light flares in NOAA 10486. Sol. Phys. 2009, 258, 31–52. [Google Scholar] [CrossRef]
- Lozitsky, V. Magnetic fields and Fe I line profiles in the major solar flare on 28 October 2003. Astron. Lett. 2009, 35, 136–142. [Google Scholar] [CrossRef]
- Lozitsky, V.; Baranovsky, E.; Lozitska, N.; Tarashchuk, V. Profiles of spectral lines, magnetic fields, and thermodynamical conditions in the X17. 2/4B solar flare of 2003 October 28. Mon. Not. R. Astron. Soc. 2018, 477, 2796–2803. [Google Scholar] [CrossRef]
- Harvey, J. Chromospheric magnetic field measurements in a flare and an active region filament. Sol. Phys. 2012, 280, 69–81. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, B.; Yu, S.; Wang, H.; Jing, J.; Gary, D.E. Coronal magnetic field measurements along a partially erupting filament in a solar flare. Astrophys. J. 2021, 923, 213. [Google Scholar] [CrossRef]
- Kleint, L. First detection of chromospheric magnetic field changes during an X1-flare. Astrophys. J. 2016, 834, 26. [Google Scholar] [CrossRef]
- Libbrecht, T.; de la Cruz Rodríguez, J.; Danilovic, S.; Leenaarts, J.; Pazira, H. Chromospheric condensations and magnetic field in a C3. 6-class flare studied via He I D3 spectro-polarimetry. Astron. Astrophys. 2019, 621, A35. [Google Scholar] [CrossRef]
- Yakovkin, I.; Veronig, A.; Lozitsky, V. Magnetic field measurements in a limb solar flare by hydrogen, helium and ionized calcium lines. Adv. Space Res. 2021, 68, 1507–1518. [Google Scholar] [CrossRef]
- Yakovkin, I.; Lozitsky, V. Signatures of superstrong magnetic fields in a limb solar flare from observations of the Hα line. Adv. Space Res. 2022, 69, 4408–4418. [Google Scholar] [CrossRef]
- Yakovkin, I.; Lozitsky, V. Search for superstrong magnetic fields in active processes on the Sun using spectro-polarimetry within 15 angstroms around the D3 line. Mon. Not. R. Astron. Soc. 2023, 523, 5812–5822. [Google Scholar] [CrossRef]
- Livingston, W.; Harvey, J.; Malanushenko, O.; Webster, L. Sunspots with the strongest magnetic fields. Sol. Phys. 2006, 239, 41–68. [Google Scholar] [CrossRef]
- van Noort, M.; Lagg, A.; Tiwari, S.; Solanki, S. Peripheral downflows in sunspot penumbrae. Astron. Astrophys. 2013, 557, A24. [Google Scholar] [CrossRef]
- Lozitsky, V. Indications of 8-kilogauss magnetic field existence in the sunspot umbra. Adv. Space Res. 2016, 57, 398–407. [Google Scholar] [CrossRef]
- Durán, J.C.; Lagg, A.; Solanki, S.K.; Van Noort, M. Detection of the strongest magnetic field in a sunspot light bridge. Astrophys. J. 2020, 895, 129. [Google Scholar] [CrossRef]
- Lozitsky, V.; Yurchyshyn, V.; Ahn, K.; Wang, H. Observations of Extremely Strong Magnetic Fields in Active Region NOAA 12673 Using GST Magnetic Field Measurement. Astrophys. J. 2022, 928, 41. [Google Scholar] [CrossRef]
- Brooks, D.H.; Warren, H.P.; Landi, E. Measurements of coronal magnetic field strengths in solar active region loops. Astrophys. J. Lett. 2021, 915, L24. [Google Scholar] [CrossRef]
- Zhu, R.; Tan, B.; Su, Y.; Tian, H.; Xu, Y.; Chen, X.; Song, Y.; Tan, G. Microwave diagnostics of magnetic field strengths in solar flaring loops. Sci. China Technol. Sci. 2021, 64, 169–178. [Google Scholar] [CrossRef]
- Landi, E.; Li, W.; Brage, T.; Hutton, R. Hinode/EIS coronal magnetic field measurements at the onset of a C2 flare. Astrophys. J. 2021, 913, 1. [Google Scholar] [CrossRef]
- Liu, Y.; Welsch, B.T.; Valori, G.; Georgoulis, M.K.; Guo, Y.; Pariat, E.; Park, S.H.; Thalmann, J.K. Changes of magnetic energy and helicity in solar active regions from major flares. Astrophys. J. 2023, 942, 27. [Google Scholar] [CrossRef]
- Fleishman, G.D.; Gary, D.E.; Chen, B.; Kuroda, N.; Yu, S.; Nita, G.M. Decay of the coronal magnetic field can release sufficient energy to power a solar flare. Science 2020, 367, 278–280. [Google Scholar] [CrossRef] [PubMed]
- Judge, P.; Rempel, M.; Ezzeddine, R.; Kleint, L.; Egeland, R.; Berdyugina, S.V.; Berger, T.; Bryans, P.; Burkepile, J.; Centeno, R.; et al. Measuring the Magnetic Origins of Solar Flares, Coronal Mass Ejections, and Space Weather. Astrophys. J. 2021, 917, 27. [Google Scholar] [CrossRef]
- Moore, C.E.; Minnaert, M.G.J.; Houtgast, J. The Solar Spectrum 2935 Å to 8770 Å: Second Revision of Rowland’s Preliminary Table of Solar Spectrum Wavelengths; National Bureau of Standards: Gaithersburg, MD, USA, 1966; Volume 61.
- Drake, G. High precision calculations for helium. In Springer Handbook of Atomic; Springer: New York, NY, USA, 2006; p. 199. [Google Scholar]
- Ryabchikova, T.; Piskunov, N.; Kurucz, R.; Stempels, H.; Heiter, U.; Pakhomov, Y.; Barklem, P.S. A major upgrade of the VALD database. Phys. Scr. 2015, 90, 054005. [Google Scholar] [CrossRef]
- Banasek, J.; Engelbrecht, J.; Pikuz, S.; Shelkovenko, T.; Hammer, D. Measuring 10-20 T magnetic fields in single wire explosions using Zeeman splitting. Rev. Sci. Instrum. 2016, 87, 103506. [Google Scholar] [CrossRef]
- Hori, H.; Miki, M.; Date, M. Paschen-back effect of D-lines in sodium under a high magnetic field. J. Phys. Soc. Jpn. 1982, 51, 1566–1570. [Google Scholar] [CrossRef]
- Momier, R.; Papoyan, A.V.; Leroy, C. Sub-Doppler spectra of sodium D lines in a wide range of magnetic field: Theoretical study. J. Quant. Spectrosc. Radiat. Transf. 2021, 272, 107780. [Google Scholar] [CrossRef]
- Ramos, A.A.; Bueno, J.T.; Degl’Innocenti, E.L. Advanced forward modeling and inversion of stokes profiles resulting from the joint action of the Hanle and Zeeman effects. Astrophys. J. 2008, 683, 542. [Google Scholar] [CrossRef]
- Rachkovsky, D.; Tsap, T.; Lozitsky, V. Small-scale magnetic field diagnostics outside sunspots: Comparison of different methods. J. Astrophys. Astron. 2005, 26, 435–445. [Google Scholar] [CrossRef]
- Babcock, H.W. The Solar Magnetograph. Astrophys. J. 1953, 118, 387. [Google Scholar] [CrossRef]
- Lozitskaia, N.; Lozitskii, V.; Solov’ev, A. Strong magnetic fields in solar flares: Observation data and theoretical model. Kinemat. I Fiz. Nebesnykh Tel 1991, 7, 40–47. [Google Scholar]
- Juncar, P.; Pinard, J.; Hamon, J.; Chartier, A. Absolute determination of the wavelengths of the sodium D1 and D2 lines by using a cw tunable dye laser stabilized on iodine. Metrologia 1981, 17, 77. [Google Scholar] [CrossRef]
- Striganov, A.R.; Sventitskii, N.S. Tables of Spectral Lines of Neutral and Ionized Atoms; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Unno, W. Line formation of a normal Zeeman triplet. Publ. Astron. Soc. Jpn. 1956, 8, 108. [Google Scholar]
- Jäger, F. Instrumental polarization concerning magnetographic measurements. Sol. Phys. 1972, 27, 481–488. [Google Scholar] [CrossRef]
- Jäger, F. Instrumental polarization concerning magnetographic measurements, II. Sol. Phys. 1974, 39, 499–504. [Google Scholar] [CrossRef]
- Grigor’ev, V.; Golovko, A. A study of the instrumental phase polarization of the horizontal solar telescope. Byulletin Solnechnye Dannye Akad. Nauk. SSSR 1975, 1975, 78–85. [Google Scholar]
- Frish, S. Optical Atom Spectra; Lan’: St. Peterburg, Russia, 2010; p. 656. [Google Scholar]
- Degl’Innocenti, M.L.; Landolfi, M. Polarization in Spectral Lines; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; Volume 307. [Google Scholar]
- Solanki, S.K. Sunspots: An overview. Astron. Astrophys. Rev. 2003, 11, 153–286. [Google Scholar] [CrossRef]
- Li, T.; Zheng, Y.; Li, X.; Hou, Y.; Li, X.; Zhang, Y.; Chen, A. Survey of Magnetic Field Parameters Associated with Large Solar Flares. arXiv 2024, arXiv:2402.18890. [Google Scholar] [CrossRef]
- Koval, A.; Stepanyan, N.; Stepanjan, N. Variations of magnetic fields of sunspots at two levels in connection with the development of active regions. Byulletin Solnechnye Dannye Akad. Nauk SSSR 1972, 1972, 83–91. [Google Scholar]
- Chen, B.; Shen, C.; Gary, D.E.; Reeves, K.K.; Fleishman, G.D.; Yu, S.; Guo, F.; Krucker, S.; Lin, J.; Nita, G.M.; et al. Measurement of magnetic field and relativistic electrons along a solar flare current sheet. Nat. Astron. 2020, 4, 1140–1147. [Google Scholar] [CrossRef]
- Zharkova, V.V.; Gordovskyy, M. The effect of the electric field induced by precipitating electron beams on hard X-ray photon and mean electron spectra. Astrophys. J. 2006, 651, 553. [Google Scholar] [CrossRef]
- Stenflo, J. Magnetic-field structure of the photospheric network. Sol. Phys. 1973, 32, 41–63. [Google Scholar] [CrossRef]
- Stenflo, J. Small-scale magnetic structures on the Sun. Astron. Astrophys. Rev. 1989, 1, 3–48. [Google Scholar] [CrossRef]
- Cerdeña, I.D.; Almeida, J.S.; Kneer, F. Inter-network magnetic fields observed with sub-arcsec resolution. Astron. Astrophys. 2003, 407, 741–757. [Google Scholar] [CrossRef]
No. | Element, Multiplet | (Å) | EP (eV) | (mÅ) | ||
---|---|---|---|---|---|---|
1 | NaI—1 (D1) | 5895.924 | 0.00 | 564 | 4/3 | 1.36 |
2 | NaI—1 (D2) | 5889.952 | 0.00 | 752 | 3/4 | 1.22 |
3 | HeI—1 (D3) | 5875.6 | 20.87 1 | … | … | 0.94 |
4 | NiI—68 2 | 5892.883 | 1.99 | 66 | 1.00 | … |
Model | Component | (kG) | (km s−1) | (km s−1) | Filling Factor | ||
---|---|---|---|---|---|---|---|
A | A1 | 0 | 4 | 10 | 8 | 11 | 1 |
A | A2 | −3.9 | 0.35 | 45 | 125 | 29 | 1 |
A | A3 | −4.9 | 0.45 | 39 | 235 | 19 | 1 |
A | A4 | +5.0 | 1.9 | 40 | 275 | 1 | 1 |
B | B1 | 0 | 1.3 | 10 | 8 | 4 | 0.8 |
B | B2 | −100 | 0.5 | 10 | 300 | 7 | 0.2 |
B | B3 | 0 | 0.1 | 10 | 400 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yakovkin, I.I.; Lozitska, N.I.; Lozitsky, V.G. Altitude Heterogeneity of Magnetic Fields and Doppler Velocities in the Area of Seismic Source of a Strong Solar Flare from Data in Helium, Sodium, and Nickel Lines. Universe 2024, 10, 262. https://doi.org/10.3390/universe10060262
Yakovkin II, Lozitska NI, Lozitsky VG. Altitude Heterogeneity of Magnetic Fields and Doppler Velocities in the Area of Seismic Source of a Strong Solar Flare from Data in Helium, Sodium, and Nickel Lines. Universe. 2024; 10(6):262. https://doi.org/10.3390/universe10060262
Chicago/Turabian StyleYakovkin, Ivan I., Natalia I. Lozitska, and Vsevolod G. Lozitsky. 2024. "Altitude Heterogeneity of Magnetic Fields and Doppler Velocities in the Area of Seismic Source of a Strong Solar Flare from Data in Helium, Sodium, and Nickel Lines" Universe 10, no. 6: 262. https://doi.org/10.3390/universe10060262
APA StyleYakovkin, I. I., Lozitska, N. I., & Lozitsky, V. G. (2024). Altitude Heterogeneity of Magnetic Fields and Doppler Velocities in the Area of Seismic Source of a Strong Solar Flare from Data in Helium, Sodium, and Nickel Lines. Universe, 10(6), 262. https://doi.org/10.3390/universe10060262