A Short History of the First 50 Years: From the GRB Prompt Emission and Afterglow Discoveries to the Multimessenger Era
Abstract
:1. Introduction
2. GRB Discovery
3. Main Efforts Soon after the GRB Discovery
4. The BATSE Era
5. The BeppoSAX Afterglow Discovery
5.1. SAX Initial Goals and Evolution in Its Configuration
- A Gas Scintillator Proportional Counter (GSPC) with 2–35 keV energy passband, surmounted by a coded mask (3 deg FOV) with arcminute imaging capability. The Principal Investigator (PI) was Giuseppe Manzo from the CNR (Italian National Research Council) Institute of Cosmic Physics and Informatics.
- A Phoswich Detection System (PDS) at higher energies (15–300 keV), consisting of four independent detection units, each one made of a sandwich of NaI(Tl) plus CsI(Na) scintillator crystals. The NaI(Tl) was used as the main detector, with the CsI(Na) as an active shield from the bottom. This technique, called phoswich (=PHOSphor sandWICH), had been demonstrated to provide a very low instrument background (BKG). To further reduce the BKG, four slabs of CsI(Na) detectors, in anti-coincidence with the four phoswich units, laterally covered the instrument. The PDS FOV, of 1.5 deg (Full Width at Half Maximum, FWHM), was obtained by means of honeycomb collimators. The PI was myself, at that time a scientist of the CNR Institute of Technology and Study of the Extraterrestrial Radiations. See Frontera et al. [21].
5.2. Addition of a Gamma-Ray Burst Monitor GRBM and Establishment of a Team for GRBs Identification and Localization
5.3. The SAX Launch and the First Detected GRBs
5.4. The First GRB Afterglow Discovery
5.5. The First Measurement of a GRB Distance
6. Immediate Consequences of the BeppoSAX Discoveries
6.1. Scientific Community Reaction
- In the first two years (1997–1998), the number of papers citing BeppoSAX was similar to those citing Hubble Space Telescope (about 200/yr) (see Figure 15). The Science/AAAS journal classifed GRB discoveries among the top ten over the world and over all the science fields.
- The data flow from the INTEGRAL satellite was modified for a prompt localization of GRBs through an on-ground data analysis software of the IBIS instrument [48].
- NASA issued an Announcement of Opportunity for a new medium-size satellite mission, that led to the Swift selection (now Neil Gehrels Swift Observatory). The Swift mission, still operational, has a configuration similar to that of BeppoSAX, with a wide field GRB monitor (BAT (Burst Alert Telescope), [49]) for the prompt identification and localization of GRBs, and an X-ray Telescope (XRT, [50]) plus an Ultraviolet/Optical Telescope (UVOT, [51]) for the afterglow observation. In order to study the early afterglow, impossible with BeppoSAX (anything was known about the GRB evolution), the GRB follow-up is automatically performed in a very short time (∼100 s) [52].
- All scientists who managed large radio and optical telescopes devoted observation time to follow-up GRBs localized with BeppoSAX. Also the observation procedures and equipment were changed to make these observations faster.
- Several new optical and/or NIR telescopes were built or modified to allow the robotic pointing of the BeppoSAX GRB events.
- The BeppoSAX GRB coordinates were distributed through the already existing GCN (General Coordinates Network) circulars set up by NASA, which received an impressive boost by the BeppoSAX findings.
- Also, the Fermi high-energy gamma-ray satellite was designed taking into account the BeppoSAX payload configuration: a Gamma-Ray Burst Monitor GBM (8 keV–40 MeV over the full unocculted sky) to identify GRBs, and a LAT gamma-ray telescope (20 MeV–300 GeV, 2.3 sr FOV) to localize and study them in the MeV/GeV energy range [53,54].
- A similar design to BeppoSAX was adopted for the AGILE Italian satellite, with a hard X-ray imager (SuperAGILE) sensitive in the range 18–60 keV with about 1 sr FOV and a gamma-ray imager sensitive in the range 30 MeV–50 GeV [55].
6.2. Impact of the BeppoSAX Discoveries on GRB Theoretical Models
7. Other Relevant Results Obtained with BeppoSAX, with Most of Them Later Confirmed
7.1. Discovery of Transient Absorption Lines in the Prompt Emission
- A transient absorption edge at 3.8 keV in the prompt emission of the BeppoSAX GRB 990705 was first discovered [71]. The results are shown in Figure 17. The feature was found to be consistent with a red-shifted K-edge due to an iron environment. The confidence in the reality of this line is that the derived redshift () was later measured from the GRB host galaxy [72].
- Investigating the spectral evolution of the prompt emission from the BeppoSAX GRB 011211 with measured redshift (z = 2.140), also evidence of a transient absorption feature at keV during the rise of the primary event [73] was found. The significance of the feature was derived with non-parametric tests and numerical simulations, finding a chance probability of down to . The feature showed a Gaussian profile and an equivalent width of about 1 keV. See [73], where a possible interpretation is also discussed.
7.2. Detection of a Transient Column Density in the Prompt Emission
7.3. Discovery of the GRB–Supernova Connection
7.4. Discovery of the – Relation
7.5. Discovery of X-ray Flash and X-ray Rich Events
7.5.1. X-ray Flash Events
7.5.2. X-ray Rich Events
- (a)
- Low values of , thus main fraction of energy released in the X-ray band;
- (b)
- Low luminosity;
- (c)
- Long duration;
- (d)
- – correlation as GRBs;
- (e)
- Same redshift distributions as GRBs;
- (f)
- The association with SN explosions is favored.
7.6. Spectral Properties of the Late Afterglow of Long GRBs
- Photon spectra consistent with a photo-electrically absorbed power law, with photon indices distributed according to a Gaussian with average photon index and standard deviation .
- Fading behavior also consistent with a power law with index distributed according to a Gaussian (; ).
7.7. BeppoSAX GRBM Catalog of GRBs
8. New Discoveries on GRBs in the Post-BeppoSAX Era
8.1. Swift and Its Role in the Progress of the GRB Phenomenon
8.2. The Contribution to GRB Studies by High-Energy Gamma-Ray Space Missions and VHE Ground Telescopes
9. GRB Progenitors in the Post-BeppoSAX Era
9.1. Long GRBs
9.2. Short GRBs
10. Physics behind GRB Events in the Post-BeppoSAX Era: Inner Engine
- One central engine mechanism assumes that GRBs are powered by mass accretion onto a stellar mass black hole at a very high rate (from a fraction to a few solar masses per second). In this case, the plasma is extremely hot and forms a thick disk or torus around the central black hole, from which a GRB jet is launched via three possible mechanisms: (1) a neutrino dominated accretion flow [138]; (2) extraction of electromagnetic energy by rotation of the black hole via a Poynting flux (mechanism also called Blandford–Znajek process) [139]; and (3) for the case of a highly magnetized accretion disk, the accumulation of energy with the launch of magnetic blobs from the differential accretion of the disk [140].
- The other central engine mechanism assumes that a GRB is powered by a rapidly spinning ( ms period), highly magnetized ( Gauss) neutron star (“fast magnetar”) when it is spinning down. In this case, the maximum energy that can be extracted by the magnetar is given by [111]If the energy released by a GRB is higher than that given by , the fast magnetar mechanism can be ruled out.
11. GRBs in the Multi-Messenger Era
12. The Future for GRBs
12.1. Still Open Issues on GRBs
12.2. Role of GRBs for Cosmology and Fundamental Physics
- Test of the Lorentz invariance violation that is expected in some theories of quantum gravity. This test can be performed by measuring the time delay of photons as a function of energy.
- Investigation of the BH physics through signatures in the timing properties of GRB prompt emission.
- As also demonstrated by the gravitational wave event GW 170817 associated to GRB 170817A, these types of events provide the unique opportunity to study theories of gravity also beyond general relativity (see [152]).
- Given that, as discussed above, GRBs are the result of ultra-relativistic shocks with Lorentz factors of several hundreds, much higher than other possible accelerators like blazars, GRBs are believed to be strong candidates for particle acceleration to extreme energies that are currently observed among cosmic rays. From the study of their spectrum, it is possible to constrain the energy distribution of such accelerated particles. It has also been proposed that GRB reverse shocks may serve as potential accelerators of ultra-high-energy cosmic rays [153].
- GRBs are also strong candidates to contribute to the observed UHECRs and high-energy neutrinos because of the extreme shock acceleration caused by the newborn compact object. An important role in the production of high-energy neutrinos is expected by low-luminosity GRBs (see [154] and references therein).
- Another open issue of fundamental physics is the existence of axion-like particles (ALPs) and their oscillation with photons. Given their cosmological distance, GRBs could provide a tool for testing this issue from the observation of high-energy gamma-ray photons arriving from very high distances. The recent detection of photons at the energy of several TeV from the GRB221009A () seems to be in contradiction with the expected optical depth for electromagnetic radiation, and has been recently interpreted in terms of the existence of ALPs, with a mass in the range from to eV, that oscillate with photons [155].
13. Future Space Missions and Ground Facilities Devoted to GRBs
13.1. Space Missions
- A mission that has the potentiality of detecting GRBs in the X-ray energy band, where they are less explored, is the Chinese mission with an international participation Einstein Probe (EP), that has been very recently launched (9 January 2024). It has on board two instruments: (1) a Wide-field X-ray Telescope (WXT), based on lobster eye optics, with a large FOV (60 × 60 deg) for transient source survey and localization, and a passband from 0.5 to 4 keV; and (2) a Follow-up X-ray Telescope (FXT), with two units, each one with Wolter I focusing optics, a focal length of 1.6 m, a narrow FOV (1 × 1 deg) and an energy passband 0.2–10 keV [156]. Given the low-energy band of its instruments, the association of an EP transient event with a GRB requires the simultaneous detection of the event hard X-ray/soft gamma-ray emission.
- An X-ray/gamma-ray space mission, scheduled to be launched on 24 June 2024, is the Chinese–French mission SVOM that has on board a Gamma-ray Monitor (15 keV–5 MeV), an X-ray imager and trigger (ECLAIRs, 4–150 keV), a lobster eye telescope (MXT, 0.2–10 keV) and an optical telescope [157].
- An already mentioned mission concept for its importance is THESEUS [70], that has been approved by ESA for a new phase A study. If it will be adopted, the launch is expected to be in 2035. It has on board three instruments, two with a wide FOV (a Soft X-ray Imager (SXI, 0.3–5 keV), based on a lobster eye focusing system, and a broad energy band (2 keV–10 MeV) X-ray Gamma-ray Imaging Spectrometer (XGIS) for GRB identification and accurate localization), and a 70 cm class InfraRed Telescope (IRT, 0.7–1.8 m) with imaging and spectroscopic capabilities (resolving power, , through grism), for the GRB IR counterpart identification and its redshift determination.
- In the gravitational wave field, a large mission has been recently approved: the ESA-NASA mission eLISA (Laser Interferometer Space Antenna), foreseen to be launched in the early 2035s [158].
13.2. Ground Facilities
- Among the future optical facilities, I mention the largest ones: the European Extremely Large Telescope EELT (see [159]), the US Thirty Meter Telescope TMT (see [160], the American Giant Magellan Telescope (GMT) (see [161]) and the Vera Rubin Observatory [162]. In particular, the latter will execute a Legacy Survey of Space and Time (LSST) of the entire southern sky every four nights in six different bands during ten years.
- Also, new radio facilities are under development, particularly the Square Kilometer Array SKA, that will be the largest radio telescope in the world (see [163]).
- In the gravitational wave field, a gravitational wave European project is being developed (location still not decided): the Einstein Telescope (see [164]).
- In the Very-High-Energy (VHE) gamma-ray field, there are already several operational facilities, like MAGIC (see [165]) and HESS (see [166]) already seen, VERITAS (Very Energetic Radiation Imaging Telescope Array System; see [167]), and LHAASO (Large High Altitude Air Shower Observatory; see [168]). In addition, a very large project is under development: CTA (Cerenkov Telescope Array; see [169]).
- Also, large neutrino facilities are already operational, like the underwater telescope ANTARES (Astronomy with a Neutrino Telescope and Abyss environmental RESearch project; see [170]), and the ICECUBE neutrino observatory (see [171]). Instead, a next-generation neutrino facility is the telescope KM3NET (Cubic Kilometre Neutrino Telescope; see [172]).
14. Concluding Soft Gamma-Ray Mission Concept
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ASI | Italian Space Agency |
ASTENA | Advanced Surveyor of Transient Events and Nuclear Astrophysics |
BAT | Burst Alert Telescope, aboard Swift |
BATSE | Burst and Transient Source Experiment |
BH | Black Hole |
CGRO | Compton Gamma Ray Observatory |
FOV | Field of View |
FWHM | Full Width at Half Maximum |
GRB | Gamma-Ray Burst |
HPGSPC | High-Pressure Gas Scintillator Proportional Chamber, aboard BeppoSAX |
HRI | High-Resolution Imager aboard ROSAT |
IAU | International Astronomical Union |
IBIS | Imager on Board Integral Satellite |
LAD | Large Area Detectors of the BATSE experiment |
LECS | Low Energy Concentrator Spectrometer, aboard BeppoSAX |
MECS | Medium Energy Concentrator Spectrometer, aboard BeppoSAX |
NASA | National Aeronautics and Space Administration |
NFIs | Narrow Field Instruments aboard BeppoSAX |
NIR | NearInfraRed band |
NS | Neutron Star |
PI | Principal Investigator |
PDS | Phoswich Detection System, aboard BeppoSAX |
ROSAT | ROengten SATellite |
SAX | Satellite Astronomia X (X-ray Astronomy Satellite in Italian) |
SDC | SAX Data Center |
SFR | Star Formation Rate |
SRON | Space Research Of Netherlands |
THESEUS | Transient High-Energy Sky and Early Universe Surveyor |
UVOT | Ultraviolet/Optical Telescope, aboard Swift |
WD | White Dwarf |
WFCs | Wide Field Cameras, aboard BeppoSAX |
XRF | X-Ray Flash |
XRR | X-Ray Rich GRB |
XRT | X-Ray Telescope, aboard Swift |
References
- Klebesadel, R.W.; Strong, I.B.; Olson, R.A. Observations of Gamma-Ray Bursts of Cosmic Origin. Astrophys. J. 1973, 182, L85. [Google Scholar] [CrossRef]
- Strong, I.B.; Klebesadel, R.W.; Olson, R.A. A Preliminary Catalog of Transient Cosmic Gamma-Ray Sources Observed by the VELA Satellites. Astrophys. J. 1974, 188, L1. [Google Scholar] [CrossRef]
- Niel, M.; Hurley, K.; Vedrenne, G.; Estkhulin, I.V.; Melioranskii, A.S. The French-Russian 3 satellite gamma-burst experiment. Astrophys. Space Sci. 1976, 42, 99–102. [Google Scholar] [CrossRef]
- Barat, C.; Chambon, G.; Hurley, K.; Niel, M.; Vedrenne, G.; Estulin, I.V.; Kuznetsov, A.V.; Zenchenko, V.M. A review of recent results from the Franco-Soviet SIGNE gamma-burst experiments. Astrophys. Space Sci. 1981, 75, 83–91. [Google Scholar] [CrossRef]
- Mazets, E.P.; Golenetskii, S.V.; Ilinskii, V.N.; Panov, V.N.; Aptekar, R.L.; Gurian, I.A.; Sokolov, I.A.; Sokolova, Z.I.; Kharitonova, T.V. Venera 11 and 12 observations of gamma-ray bursts—The Cone experiment. Sov. Astron. Lett. 1979, 5, 163–167. [Google Scholar]
- Mazets, E.P.; Golenetskii, S.V.; Ilinskii, V.N.; Panov, V.N.; Aptekar, R.L.; Gurian, I.A.; Proskura, M.P.; Sokolov, I.A.; Sokolova, Z.I.; Kharitonova, T.V. Catalog of cosmic gamma-ray bursts from the KONUS experiment data. I. Astrophys. Space Sci. 1981, 80, 3–83. [Google Scholar] [CrossRef]
- Mazets, E.P.; Golenetskii, S.V. Observations of cosmic gamma-ray bursts. Sov. Sci. Rev. Sect. E 1988, 6, 281–311. [Google Scholar]
- Paciesas, W.S.; Meegan, C.A.; Pendleton, G.N.; Briggs, M.S.; Kouveliotou, C.; Koshut, T.M.; Lestrade, J.P.; McCollough, M.L.; Brainerd, J.J.; Hakkila, J.; et al. The Fourth BATSE Gamma-Ray Burst Catalog (Revised). Astrophys. J. Suppl. Ser. 1999, 122, 465–495. [Google Scholar] [CrossRef]
- Gehrels, N.; Chipman, E.; Kniffen, D.A. The Compton Gamma Ray Observatory. Astrophys. J. Suppl. Ser. 1993, 97, 5–12. [Google Scholar] [CrossRef]
- Fishman, G.J.; Meegan, C.A.; Wilson, R.B.; Paciesas, W.S.; Pendleton, G.N. The BATSE experiment on the Compton Gamma Ray Observatory: Status and some early results. In Proceedings of the NASA Conference Publication; Shrader, C.R., Gehrels, N., Dennis, B., Eds.; NASA Conference Publication: Washington, DC, USA, 1992; Volume 3137, pp. 26–34. [Google Scholar]
- McNamara, B. Flux Measurements Using the BATSE Spectroscopic Detectors. In Proceedings of the 1993 NASA/ASEE Summer Faculty Fellowship Program; 1993. Available online: https://ntrs.nasa.gov/citations/19940019962 (accessed on 23 April 2024).
- Band, D.; Matteson, J.; Ford, L.; Schaefer, B.; Palmer, D.; Teegarden, B.; Cline, T.; Briggs, M.; Paciesas, W.; Pendleton, G.; et al. BATSE observations of gamma-ray burst spectra. I—Spectral diversity. Astrophys. J. 1993, 413, 281–292. [Google Scholar] [CrossRef]
- Briggs, M.S.; Band, D.L.; Kippen, R.M.; Preece, R.D.; Kouveliotou, C.; van Paradijs, J.; Share, G.H.; Murphy, R.J.; Matz, S.M.; Connors, A.; et al. Observations of GRB 990123 by the Compton Gamma Ray Observatory. Astrophys. J. 1999, 524, 82–91. [Google Scholar] [CrossRef]
- Meegan, C.A.; Pendleton, G.N.; Briggs, M.S.; Kouveliotou, C.; Koshut, T.M.; Lestrade, J.P.; Paciesas, W.S.; McCollough, M.L.; Brainerd, J.J.; Horack, J.M.; et al. The Third BATSE Gamma-Ray Burst Catalog. Astrophys. J. Supp. 1996, 106, 65. [Google Scholar] [CrossRef]
- Paczynski, B. How Far Away Are Gamma-Ray Bursters? Publ. Astron. Soc. Pac. 1995, 107, 1167–1175. [Google Scholar] [CrossRef]
- Lamb, D.Q. The Distance Scale to Gamma-Ray Bursts. Publ. Astron. Soc. Pac. 1995, 107, 1152. [Google Scholar] [CrossRef]
- Rees, M.J. Concluding Remarks. Publ. Astron. Soc. Pac. 1995, 107, 1176. [Google Scholar] [CrossRef]
- Boella, G.; Butler, R.C.; Perola, G.C.; Piro, L.; Scarsi, L.; Bleeker, J.A.M. BeppoSAX, the wide band mission for X-ray astronomy. Astron. Astrophys. Suppl. Ser. 1997, 122, 299–307. [Google Scholar] [CrossRef]
- Giacconi, R.; Branduardi, G.; Briel, U.; Epstein, A.; Fabricant, D.; Feigelson, E.; Forman, W.; Gorenstein, P.; Grindlay, J.; Gursky, H.; et al. The Einstein /HEAO 2/ X-ray Observatory. Astrophys. J. 1979, 230, 540–550. [Google Scholar] [CrossRef]
- Mazets, E.P.; Golentskii, S.V.; Ilinskii, V.N.; Aptekar, R.L.; Guryan, I.A. Observations of a flaring X-ray pulsar in Dorado. Nature 1979, 282, 587–589. [Google Scholar] [CrossRef]
- Frontera, F.; Costa, E.; dal Fiume, D.; Feroci, M.; Nicastro, L.; Orlandini, M.; Palazzi, E.; Zavattini, G. The high energy instrument PDS on-board the BeppoSAX X–ray astronomy satellite. Astron. Astrophys. Suppl. Ser. 1997, 122, 357–369. [Google Scholar] [CrossRef]
- Jager, R.; Mels, W.A.; Brinkman, A.C.; Galama, M.Y.; Goulooze, H.; Heise, J.; Lowes, P.; Muller, J.M.; Naber, A.; Rook, A.; et al. The Wide Field Cameras onboard the BeppoSAX X-ray Astronomy Satellite. Astron. Astrophys. Suppl. Ser. 1997, 125, 557–572. [Google Scholar] [CrossRef]
- Boella, G.; Chiappetti, L.; Conti, G.; Cusumano, G.; del Sordo, S.; La Rosa, G.; Maccarone, M.C.; Mineo, T.; Molendi, S.; Re, S.; et al. The medium-energy concentrator spectrometer on board the BeppoSAX X-ray astronomy satellite. Astron. Astrophys. Suppl. Ser. 1997, 122, 327–340. [Google Scholar] [CrossRef]
- Parmar, A.N.; Martin, D.D.E.; Bavdaz, M.; Favata, F.; Kuulkers, E.; Vacanti, G.; Lammers, U.; Peacock, A.; Taylor, B.G. The low-energy concentrator spectrometer on-board the BeppoSAX X-ray astronomy satellite. Astron. Astrophys. Suppl. Ser. 1997, 122, 309–326. [Google Scholar] [CrossRef]
- Manzo, G.; Giarrusso, S.; Santangelo, A.; Ciralli, F.; Fazio, G.; Piraino, S.; Segreto, A. The high pressure gas scintillation proportional counter on-board the BeppoSAX X-ray astronomy satellite. Astron. Astrophys. Suppl. Ser. 1997, 122, 341–356. [Google Scholar] [CrossRef]
- Hurley, K. Astronomical Issues; Liang, E.P., Petrosian, V., Eds.; American Institute of Physics Conference Series; AIP: Long Island, NY, USA, 1986; Volume 141, pp. 1–74. [Google Scholar]
- Costa, E.; Frontera, F.; dal Fiume, D.; Amati, L.; Cinti, M.N.; Collina, P.; Feroci, M.; Nicastro, L.; Orlandini, M.; Palazzi, E.; et al. The gamma-ray bursts monitor onboard SAX. Adv. Space Res. 1998, 22, 1129–1132. [Google Scholar] [CrossRef]
- Pamini, M.; Natalucci, L.; dal Fiume, D.; Frontera, F.; Costa, E. The gamma-ray burst monitor on board the SAX satellite. Nuovo Cimento C Geophys. Space Phys. C 1990, 13, 337–344. [Google Scholar] [CrossRef]
- Rapisarda, M.; Amati, L.; Cinti, M.N.; Feroci, M.; Costa, E.; Collina, P.; Zavattini, G.; Frontera, F.; Nicastro, L.; Orlandini, M.; et al. Gamma-ray burst monitor on board BeppoSAX: The Monte Carlo simulation for the response matrix. In Proceedings of the SPIE, EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy VIII; Siegmund, O.H., Gummin, M.A., Eds.; SPIE: Bellingham, WA, USA, 1997; Volume 3114, pp. 198–205. [Google Scholar]
- Amati, L.; Cinti, M.N.; Feroci, M.; Costa, E.; Frontera, F.; dal Fiume, D.; Collina, P.; Nicastro, L.; Orlandini, M.; Palazzi, E.; et al. BeppoSAX GRBM on-ground calibration data analysis. In Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; Siegmund, O.H., Gummin, M.A., Eds.; SPIE: Bellingham, WA, USA, 1997; Volume 3114, pp. 176–185. [Google Scholar]
- Piro, L.; Heise, J.; Jager, R.; Costa, E.; Frontera, F.; Feroci, M.; Muller, J.M.; Amati, L.; Cinti, M.N.; dal Fiume, D.; et al. The first X-ray localization of a gamma -ray burst by BeppoSAX and its fast spectral evolution. Astron. Astrophys. 1998, 329, 906–910. [Google Scholar]
- Feroci, M.; Antonelli, L.A.; Guainazzi, M.; Muller, J.M.; Costa, E.; Piro, L.; In’t Zand, J.J.M.; Frontera, F.; dal Fiume, D.; Nicastro, L.; et al. BeppoSAX follow-up search for the X-ray afterglow of GRB970111. Astron. Astrophys. 1998, 332, L29–L33. [Google Scholar]
- Frail, D.A.; Kulkarni, S.R.; Costa, E.; Frontera, F.; Heise, J.; Feroci, M.; Piro, L.; Dal Fiume, D.; Nicastro, L.; Palazzi, E.; et al. Radio Monitoring of the 1997 January 11 Gamma-Ray Burst. Astrophys. J. 1997, 483, L91–L94. [Google Scholar] [CrossRef]
- Costa, E.; Frontera, F.; Heise, J.; Feroci, M.; In’t Zand, J.; Fiore, F.; Cinti, M.N.; dal Fiume, D.; Nicastro, L.; Orlandini, M.; et al. Discovery of an X-ray afterglow associated with the gamma-ray burst of 28 February 1997. Nature 1997, 387, 783–785. [Google Scholar] [CrossRef]
- Costa, E.; Feroci, M.; Frontera, F.; Zavattini, G.; Nicastro, L.; Palazzi, E.; Spoliti, G.; di Ciolo, L.; Coletta, A.; D’Andreta, G.; et al. GRB 970228. IAU Circ. 1997, 6572. [Google Scholar]
- van Paradijs, J.; Groot, P.J.; Galama, T.; Kouveliotou, C.; Strom, R.G.; Telting, J.; Rutten, R.G.M.; Fishman, G.J.; Meegan, C.A.; Pettini, M.; et al. Transient optical emission from the error box of the gamma-ray burst of 28 February 1997. Nature 1997, 386, 686–689. [Google Scholar] [CrossRef]
- Frontera, F.; Greiner, J.; Antonelli, L.A.; Costa, E.; Fiore, F.; Parmar, A.N.; Piro, L.; Boller, T.; Voges, W. High resolution imaging of the X-ray afterglow of GRB970228 with ROSAT. Astron. Astrophys. 1998, 334, L69–L72. [Google Scholar]
- Frontera, F.; Costa, E.; Piro, L.; Muller, J.M.; Amati, L.; Feroci, M.; Fiore, F.; Pizzichini, G.; Tavani, M.; Castro-Tirado, A.; et al. Spectral Properties of the Prompt X-Ray Emission and Afterglow from the Gamma-Ray Burst of 1997 February 28. Astrophys. J. 1998, 493, L67. [Google Scholar] [CrossRef]
- Wijers, R.A.M.J.; Rees, M.J.; Meszaros, P. Shocked by GRB 970228: The afterglow of a cosmological fireball. Mon. Not. R. Astron. Soc. 1997, 288, L51–L56. [Google Scholar] [CrossRef]
- Sahu, K.C.; Livio, M.; Petro, L.; Macchetto, F.D.; van Paradijs, J.; Kouveliotou, C.; Fishman, G.J.; Meegan, C.A.; Groot, P.J.; Galama, T. The optical counterpart to γ-ray burst GRB970228 observed using the Hubble Space Telescope. Nature 1997, 387, 476–478. [Google Scholar] [CrossRef]
- Fruchter, A.; Livio, M.; Macchetto, D.; Petro, L.; Sahu, K.; Pian, E.; Frontera, F.; Thorsett, S.; Tavani, M.; Lamb, D. GRB 970228. IAU Circ. 1997, 6747, 1. [Google Scholar]
- Costa, E.; Feroci, M.; Piro, L.; Soffitta, P.; Amati, L.; Cinti, M.N.; Frontera, F.; Zavattini, G.; Nicastro, L.; Palazzi, E.; et al. GRB 970508. IAU Circ. 1997, 6649, 1. [Google Scholar]
- Heise, J.; In’t Zand, J.; Costa, E.; Feroci, M.; Piro, L.; Soffitta, P.; Amati, L.; Cinti, M.N.; Frontera, F.; Zavattini, G.; et al. GRB 970508. IAU Circ. 1997, 6654, 2. [Google Scholar]
- Piro, L.; Amati, L.; Antonelli, L.A.; Butler, R.C.; Costa, E.; Cusumano, G.; Feroci, M.; Frontera, F.; Heise, J.; In’t Zand, J.J.M.; et al. Evidence for a late-time outburst of the X-ray afterglow of GB970508 from BeppoSAX. Astron. Astrophys. 1998, 331, L41–L44. [Google Scholar]
- Bond, H.E. GRB 970508. IAU Circ. 1997, 6654, 2. [Google Scholar]
- Metzger, M.R.; Djorgovski, S.G.; Kulkarni, S.R.; Steidel, C.C.; Adelberger, K.L.; Frail, D.A.; Costa, E.; Frontera, F. Spectral constraints on the redshift of the optical counterpart to the γ-ray burst of 8 May 1997. Nature 1997, 387, 878–880. [Google Scholar] [CrossRef]
- Frail, D.A.; Kulkarni, S.R.; Nicastro, L.; Feroci, M.; Taylor, G.B. The radio afterglow from the γ-ray burst of 8 May 1997. Nature 1997, 389, 261–263. [Google Scholar] [CrossRef]
- Mereghetti, S.; Brandt, S.; Jennings, D.; Borkowski, J.; Walter, R. The INTEGRAL burst alert system. In Proceedings of the Gamma-Ray Bursts, 5th Huntsville Symposium; American Institute of Physics Conference Series; Kippen, R.M., Mallozzi, R.S., Fishman, G.J., Eds.; AIP: Long Island, NY, USA, 2000; Volume 526, pp. 686–690. [Google Scholar] [CrossRef]
- Barthelmy, S.D.; Barbier, L.M.; Cummings, J.R.; Fenimore, E.E.; Gehrels, N.; Hullinger, D.; Krimm, H.A.; Markwardt, C.B.; Palmer, D.M.; Parsons, A.; et al. The Burst Alert Telescope (BAT) on the SWIFT Midex Mission. Space Sci. Rev. 2005, 120, 143–164. [Google Scholar] [CrossRef]
- Burrows, D.N.; Hill, J.E.; Nousek, J.A.; Kennea, J.A.; Wells, A.; Osborne, J.P.; Abbey, A.F.; Beardmore, A.; Mukerjee, K.; Short, A.D.T.; et al. The Swift X-Ray Telescope. Space Sci. Rev. 2005, 120, 165–195. [Google Scholar] [CrossRef]
- Roming, P.W.A.; Kennedy, T.E.; Mason, K.O.; Nousek, J.A.; Ahr, L.; Bingham, R.E.; Broos, P.S.; Carter, M.J.; Hancock, B.K.; Huckle, H.E.; et al. The Swift Ultra-Violet/Optical Telescope. Space Sci. Rev. 2005, 120, 95–142. [Google Scholar] [CrossRef]
- Gehrels, N.; Chincarini, G.; Giommi, P.E.; Mason, K.O.; Nousek, J.A.; Wells, A.A.; White, N.E.; Barthelmy, S.D.; Burrows, D.N.; Cominsky, L.R.; et al. The Swift Gamma-Ray Burst Mission. Astrophys. J. 2004, 611, 1005–1020. [Google Scholar] [CrossRef]
- Atwood, W.B.; Abdo, A.A.; Ackermann, M.; Althouse, W.; Anderson, B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D.L.; Barbiellini, G.; et al. The Large Area Telescope on the Fermi Gamma-Ray Space Telescope Mission. Astrophys. J. 2009, 697, 1071–1102. [Google Scholar] [CrossRef]
- Meegan, C.; Lichti, G.; Bhat, P.N.; Bissaldi, E.; Briggs, M.S.; Connaughton, V.; Diehl, R.; Fishman, G.; Greiner, J.; Hoover, A.S.; et al. The Fermi Gamma-ray Burst Monitor. Astrophys. J. 2009, 702, 791–804. [Google Scholar] [CrossRef]
- Tavani, M.; Barbiellini, G.; Argan, A.; Bulgarelli, A.; Caraveo, P.; Chen, A.; Cocco, V.; Costa, E.; De Paris, G.; Del Monte, E.; et al. The AGILE space mission. Nucl. Instruments Methods Phys. Res. A 2008, 588, 52–62. [Google Scholar] [CrossRef]
- Guilbert, P.W.; Fabian, A.C.; Rees, M.J. Spectral and variability constraints on compact sources. Mon. Not. R. Astron. Soc. 1983, 205, 593–603. [Google Scholar] [CrossRef]
- Goodman, J. Are gamma-ray bursts optically thick? Astrophys. J. 1986, 308, L47–L50. [Google Scholar] [CrossRef]
- Paczynski, B. Gamma-ray bursters at cosmological distances. Astrophys. J. 1986, 308, L43–L46. [Google Scholar] [CrossRef]
- Sari, R.; Piran, T.; Narayan, R. Spectra and Light Curves of Gamma-Ray Burst Afterglows. Astrophys. J. 1998, 497, L17. [Google Scholar] [CrossRef]
- Meszaros, P.; Rees, M.J.; Papathanassiou, H. Spectral properties of blast-wave models of gamma-ray burst sources. Astrophys. J. 1994, 432, 181–193. [Google Scholar] [CrossRef]
- Paczynski, B.; Xu, G. Neutrino bursts from gamma-ray bursts. Astrophys. J. 1994, 427, 708–713. [Google Scholar] [CrossRef]
- Daigne, F.; Mochkovitch, R. Gamma-ray bursts from internal shocks in a relativistic wind: Temporal and spectral properties. Mon. Not. R. Astron. Soc. 1998, 296, 275–286. [Google Scholar] [CrossRef]
- Dado, S.; Dar, A.; De Rújula, A.D. Critical Tests of Leading Gamma Ray Burst Theories. Universe 2022, 8, 350. [Google Scholar] [CrossRef]
- Narayan, R.; Paczynski, B.; Piran, T. Gamma-ray bursts as the death throes of massive binary stars. Astrophys. J. 1992, 395, L83–L86. [Google Scholar] [CrossRef]
- Woosley, S.E. Gamma-ray bursts from stellar mass accretion disks around black holes. Astrophys. J. 1993, 405, 273–277. [Google Scholar] [CrossRef]
- Paczynski, B. Are Gamma-Ray Bursts in Star-Forming Regions? Astrophys. J. 1998, 494, L45. [Google Scholar] [CrossRef]
- Vietri, M.; Stella, L. A Gamma-Ray Burst Model with Small Baryon Contamination. Astrophys. J. 1998, 507, L45–L48. [Google Scholar] [CrossRef]
- Berezhiani, Z.; Bombaci, I.; Drago, A.; Frontera, F.; Lavagno, A. Gamma-Ray Bursts from Delayed Collapse of Neutron Stars to Quark Matter Stars. Astrophys. J. 2003, 586, 1250–1253. [Google Scholar] [CrossRef]
- Ruffini, R.; Bianco, C.L.; Fraschetti, F.; Xue, S.S.; Chardonnet, P. On the Interpretation of the Burst Structure of Gamma-Ray Bursts. Astrophys. J. 2001, 555, L113–L116. [Google Scholar] [CrossRef]
- Amati, L. To be short or long is not the question. Nat. Astron. 2021, 5, 877–878. [Google Scholar] [CrossRef]
- Amati, L.; Frontera, F.; Vietri, M.; in’t Zand, J.J.M.; Soffitta, P.; Costa, E.; Del Sordo, S.; Pian, E.; Piro, L.; Antonelli, L.A.; et al. Discovery of a Transient Absorption Edge in the X-ray Spectrum of GRB 990705. Science 2000, 290, 953–955. [Google Scholar] [CrossRef] [PubMed]
- Le Floc’h, E.; Duc, P.A.; Mirabel, I.F.; Sanders, D.B.; Bosch, G.; Rodrigues, I.; Courvoisier, T.J.L.; Mereghetti, S.; Melnick, J. Very Large Telescope and Hubble Space Telescope Observations of the Host Galaxy of GRB 990705. Astrophys. J. 2002, 581, L81–L84. [Google Scholar] [CrossRef]
- Frontera, F.; Amati, L.; In’t Zand, J.J.M.; Lazzati, D.; Königl, A.; Vietri, M.; Costa, E.; Feroci, M.; Guidorzi, C.; Montanari, E.; et al. The Prompt X-Ray Emission of GRB 011211: Possible Evidence of a Transient Absorption Feature. Astrophys. J. 2004, 616, 1078–1085. [Google Scholar] [CrossRef]
- Frontera, F.; Amati, L.; Lazzati, D.; Montanari, E.; Orlandini, M.; Perna, R.; Costa, E.; Feroci, M.; Guidorzi, C.; Kuulkers, E.; et al. A Decreasing Column Density during the Prompt Emission from GRB 000528 Observed with BeppoSAX. Astrophys. J. 2004, 614, 301–308. [Google Scholar] [CrossRef]
- Valan, V.; Larsson, J.; Ahlgren, B. Investigating Time Variability of X-Ray Absorption in Swift GRBs. Astrophys. J. 2023, 944, 73. [Google Scholar] [CrossRef]
- Galama, T.J.; Vreeswijk, P.M.; van Paradijs, J.; Kouveliotou, C.; Augusteijn, T.; Böhnhardt, H.; Brewer, J.P.; Doublier, V.; Gonzalez, J.F.; Leibundgut, B.; et al. An unusual supernova in the error box of the γ-ray burst of 25 April 1998. Nature 1998, 395, 670–672. [Google Scholar] [CrossRef]
- Patat, F.; Cappellaro, E.; Danziger, J.; Mazzali, P.A.; Sollerman, J.; Augusteijn, T.; Brewer, J.; Doublier, V.; Gonzalez, J.F.; Hainaut, O.; et al. The Metamorphosis of SN 1998bw. Astrophys. J. 2001, 555, 900–917. [Google Scholar] [CrossRef]
- Stanek, K.Z.; Matheson, T.; Garnavich, P.M.; Martini, P.; Berlind, P.; Caldwell, N.; Challis, P.; Brown, W.R.; Schild, R.; Krisciunas, K.; et al. Spectroscopic Discovery of the Supernova 2003dh Associated with GRB 030329. Astrophys. J. 2003, 591, L17–L20. [Google Scholar] [CrossRef]
- Cano, Z.; Wang, S.Q.; Dai, Z.G.; Wu, X.F. The Observer’s Guide to the Gamma-Ray Burst Supernova Connection. Adv. Astron. 2017, 2017, 8929054. [Google Scholar] [CrossRef]
- Della Valle, M.; Chincarini, G.; Panagia, N.; Tagliaferri, G.; Malesani, D.; Fugazza, D.; Testa, V.; Compana, S.; Covino, S.; Mangano, V.; et al. An enigmatic long-lasting γ-ray burst not accompanied by a bright supernova. Nature 2006, 444, 1050–1052. [Google Scholar] [CrossRef] [PubMed]
- Amati, L.; Frontera, F.; Tavani, M.; in’t Zand, J.J.M.; Antonelli, A.; Costa, E.; Feroci, M.; Guidorzi, C.; Heise, J.; Masetti, N.; et al. Intrinsic spectra and energetics of BeppoSAX Gamma-Ray Bursts with known redshifts. Astron. Astrophys. 2002, 390, 81–89. [Google Scholar] [CrossRef]
- Yonetoku, D.; Murakami, T.; Nakamura, T.; Yamazaki, R.; Inoue, A.K.; Ioka, K. Gamma-Ray Burst Formation Rate Inferred from the Spectral Peak Energy-Peak Luminosity Relation. Astrophys. J. 2004, 609, 935–951. [Google Scholar] [CrossRef]
- Ghirlanda, G.; Ghisellini, G.; Lazzati, D. The Collimation-corrected Gamma-Ray Burst Energies Correlate with the Peak Energy of Their νFν Spectrum. Astrophys. J. 2004, 616, 331–338. [Google Scholar] [CrossRef]
- Frontera, F.; Amati, L.; Guidorzi, C.; Landi, R.; in’t Zand, J. Broadband Time-resolved E p,i-L iso Correlation in Gamma-Ray Bursts. Astrophys. J. 2012, 754, 138, Erratum: Astrophys. J. 2012, 757, 107. [Google Scholar] [CrossRef]
- Dainotti, M.G.; Del Vecchio, R. Gamma Ray Burst afterglow and prompt-afterglow relations: An overview. New Astron. Rev. 2017, 77, 23–61. [Google Scholar] [CrossRef]
- Ghisellini, G.; Ghirlanda, G.; Mereghetti, S.; Bosnjak, Z.; Tavecchio, F.; Firmani, C. Are GRB980425 and GRB031203 real outliers or twins of GRB060218? Mon. Not. R. Astron. Soc. 2006, 372, 1699–1709. [Google Scholar] [CrossRef]
- Ghirlanda, G.; Ghisellini, G. GRB 060218 and the outliers with respect to the Ep − Eiso correlation. In Science with the New Generation of High Energy Gamma-Ray Experiments; Massai, M.M., Omodei, N., Spandre, G., Eds.; World Scientific: Singapore, 2007; pp. 194–201. [Google Scholar]
- Butler, N.R.; Kocevski, D.; Bloom, J.S. Generalized Tests for Selection Effects in Gamma-Ray Burst High-Energy Correlations. Astrophys. J. 2009, 694, 76–83. [Google Scholar] [CrossRef]
- Ghirlanda, G.; Nava, L.; Ghisellini, G. Spectral-luminosity relation within individual Fermi gamma rays bursts. Astron. Astrophys. 2010, 511, A43. [Google Scholar] [CrossRef]
- Maistrello, M.; Maccary, R.; Guidorzi, C.; Amati, L. The dispersion of the Ep,i-Liso correlation of long gamma-ray bursts is partially due to assembling different sources. Astron. Astrophys. 2024, 684, L10. [Google Scholar] [CrossRef]
- Frontera, F.; Amati, L.; Farinelli, R.; Dichiara, S.; Guidorzi, C.; Landi, R.; Titarchuk, L. Possible physical explanation of the intrinsic Ep,i-intensity correlation commonly used to standardize GRBs. Int. J. Mod. Phys. D 2016, 25, 1630014. [Google Scholar] [CrossRef]
- Demianski, M.; Piedipalumbo, E.; Sawant, D.; Amati, L. Cosmology with gamma-ray bursts. I. The Hubble diagram through the calibrated Ep,I-Eiso correlation. Astron. Astrophys. 2017, 598, A112. [Google Scholar] [CrossRef]
- Amati, L.; Della Valle, M. Measuring Cosmological Parameters with Gamma Ray Bursts. Int. J. Mod. Phys. D 2013, 22, 1330028. [Google Scholar] [CrossRef]
- Moresco, M.; Amati, L.; Amendola, L.; Birrer, S.; Blakeslee, J.P.; Cantiello, M.; Cimatti, A.; Darling, J.; Della Valle, M.; Fishbach, M.; et al. Unveiling the Universe with emerging cosmological probes. Living Rev. Relativ. 2022, 25, 6. [Google Scholar] [CrossRef]
- Heise, J.; Zand, J.I.; Kippen, R.M.; Woods, P.M. X-Ray Flashes and X-Ray Rich Gamma Ray Bursts. In Gamma-Ray Bursts in the Afterglow Era; Costa, E., Frontera, F., Hjorth, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; p. 16. [Google Scholar] [CrossRef]
- Heise, J. X-Ray Flashes and X-Ray Counterparts of Gamm-Ray Bursts. In Gamma-Ray Burst and Afterglow Astronomy 2001: A Workshop Celebrating the First Year of the HETE Mission; American Institute of Physics Conference, Series; Ricker, G.R., Vanderspek, R.K., Eds.; AIP: Long Island, NY, USA, 2003; Volume 662, pp. 229–236. [Google Scholar] [CrossRef]
- Lamb, D.Q.; Ricker, G.R.; Atteia, J.L.; Barraud, C.; Boer, M.; Braga, J.; Butler, N.; Cline, T.; Crew, G.B.; Dezalay, J.P.; et al. Scientific highlights of the HETE-2 mission. New Astron. Rev. 2004, 48, 423–430. [Google Scholar] [CrossRef]
- Pélangeon, A.; Atteia, J.L.; Nakagawa, Y.E.; Hurley, K.; Yoshida, A.; Vanderspek, R.; Suzuki, M.; Kawai, N.; Pizzichini, G.; Boër, M.; et al. Intrinsic properties of a complete sample of HETE-2 gamma-ray bursts. A measure of the GRB rate in the Local Universe. Astron. Astrophys. 2008, 491, 157–171. [Google Scholar] [CrossRef]
- Sakamoto, T.; Lamb, D.Q.; Kawai, N.; Yoshida, A.; Graziani, C.; Fenimore, E.E.; Donaghy, T.Q.; Matsuoka, M.; Suzuki, M.; Ricker, G.; et al. Global Characteristics of X-Ray Flashes and X-Ray-Rich Gamma-Ray Bursts Observed by HETE-2. Astrophys. J. 2005, 629, 311–327. [Google Scholar] [CrossRef]
- Pian, E.; Mazzali, P.A.; Masetti, N.; Ferrero, P.; Klose, S.; Palazzi, E.; Ramirez-Ruiz, E.; Woosley, S.E.; Kouveliotou, C.; Deng, J.; et al. An optical supernova associated with the X-ray flash XRF 060218. Nature 2006, 442, 1011–1013. [Google Scholar] [CrossRef]
- Bi, X.; Mao, J.; Liu, C.; Bai, J.M. Statistical Study of the Swift X-Ray Flash and X-Ray Rich Gamma-Ray Bursts. Astrophys. J. 2018, 866, 97. [Google Scholar] [CrossRef]
- Frontera, F. X-Ray Observations of gamma-Ray Burst Afterglows. In Supernovae and Gamma-Ray Bursters; Lecture Notes in Physics; Weiler, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2003; Volume 598, pp. 317–342. [Google Scholar]
- Maiorano, E.; Masetti, N.; Palazzi, E.; Frontera, F.; Grandi, P.; Pian, E.; Amati, L.; Nicastro, L.; Soffitta, P.; Guidorzi, C.; et al. The puzzling case of GRB 990123: Multiwavelength afterglow study. Astron. Astrophys. 2005, 438, 821–827. [Google Scholar] [CrossRef]
- Corsi, A.; Piro, L.; Kuulkers, E.; Amati, L.; Antonelli, L.A.; Costa, E.; Feroci, M.; Frontera, F.; Guidorzi, C.; Heise, J.; et al. The puzzling case of GRB 990123: Prompt emission and broad-band afterglow modeling. Astron. Astrophys. 2005, 438, 829–840. [Google Scholar] [CrossRef]
- Martin-Carrillo, A.; Hanlon, L.; Topinka, M.; LaCluyzé, A.P.; Savchenko, V.; Kann, D.A.; Trotter, A.S.; Covino, S.; Krühler, T.; Greiner, J.; et al. GRB 120711A: An intense INTEGRAL burst with long-lasting soft γ-ray emission and a powerful optical flash. Astron. Astrophys. 2014, 567, A84. [Google Scholar] [CrossRef]
- Kouveliotou, C.; Granot, J.; Racusin, J.L.; Bellm, E.; Vianello, G.; Oates, S.; Fryer, C.L.; Boggs, S.E.; Christensen, F.E.; Craig, W.W.; et al. NuSTAR Observations of GRB 130427A Establish a Single Component Synchrotron Afterglow Origin for the Late Optical to Multi-GeV Emission. Astrophys. J. 2013, 779, L1. [Google Scholar] [CrossRef]
- Bellm, E.C.; Barrière, N.M.; Bhalerao, V.; Boggs, S.E.; Cenko, S.B.; Christensen, F.E.; Craig, W.W.; Forster, K.; Fryer, C.L.; Hailey, C.J.; et al. X-Ray Spectral Components Observed in the Afterglow of GRB 130925A. Astrophys. J. 2014, 784, L19. [Google Scholar] [CrossRef]
- Frontera, F.; Guidorzi, C.; Montanari, E.; Rossi, F.; Costa, E.; Feroci, M.; Calura, F.; Rapisarda, M.; Amati, L.; Carturan, D.; et al. The Gamma–Ray Burst catalog obtained with the Gamma Ray Burst Monitor aboard BeppoSAX. Astrophys. J. Suppl. Ser. 2009, 180, 192–223. [Google Scholar] [CrossRef]
- Guidorzi, C.; Lacapra, M.; Frontera, F.; Montanari, E.; Amati, L.; Calura, F.; Nicastro, L.; Orlandini, M. Spectral catalogue of bright gamma-ray bursts detected with the BeppoSAX/GRBM. Astron. Astrophys. 2011, 526, A49. [Google Scholar] [CrossRef]
- Gehrels, N.; Ramirez-Ruiz, E.; Fox, D.B. Gamma-Ray Bursts in the Swift Era. Ann. Rev. Astron. Astrophys. 2009, 47, 567–617. [Google Scholar] [CrossRef]
- Kumar, P.; Zhang, B. The physics of gamma-ray bursts relativistic jets. Phys. Rep. 2015, 561, 1–109. [Google Scholar]
- Gehrels, N.; Cannizzo, J.K. Explosions throughout the universe. Int. J. Mod. Phys. D 2017, 26, 1730003. [Google Scholar] [CrossRef]
- Le, T.; Mehta, V. Revisiting the Redshift Distribution of Gamma-Ray Bursts in the Swift Era. Astrophys. J. 2017, 837, 17. [Google Scholar] [CrossRef]
- Li, L.; Wu, X.F.; Lei, W.H.; Dai, Z.G.; Liang, E.W.; Ryde, F. Constraining the Type of Central Engine of GRBs with Swift Data. Astrophys. J. Suppl. Ser. 2018, 236, 26. [Google Scholar] [CrossRef]
- Li, X.J.; Zhang, Z.B.; Zhang, X.L.; Zhen, H.Y. Temporal Properties of Precursors, Main Peaks, and Extended Emissions of Short GRBs in the Third Swift/BAT GRB Catalog. Astrophys. J. Suppl. Ser. 2021, 252, 16. [Google Scholar] [CrossRef]
- Li, L.; Mao, J. Temporal Analysis of GRB Precursors in the Third Swift-BAT Catalog. Astrophys. J. 2022, 928, 152. [Google Scholar] [CrossRef]
- Deng, Q.; Zhang, Z.B.; Li, X.J.; Chang, H.Y.; Zhang, X.L.; Zhen, H.Y.; Sun, H.; Pan, Q.; Dong, X.F. Reclassifying Swift Gamma-Ray Bursts with Diverse Duration Distributions. Astrophys. J. 2022, 940, 5. [Google Scholar] [CrossRef]
- Oates, S. Swift/UVOT: 18 Years of Long GRB Discoveries and Advances. Universe 2023, 9, 113. [Google Scholar] [CrossRef]
- Troja, E. Eighteen Years of Kilonova Discoveries with Swift. Universe 2023, 9, 245. [Google Scholar] [CrossRef]
- Nousek, J.A.; Kouveliotou, C.; Grupe, D.; Page, K.L.; Granot, J.; Ramirez-Ruiz, E.; Patel, S.K.; Burrows, D.N.; Mangano, V.; Barthelmy, S.; et al. Evidence for a Canonical Gamma-Ray Burst Afterglow Light Curve in the Swift XRT Data. Astrophys. J. 2006, 642, 389–400. [Google Scholar] [CrossRef]
- Margutti, R.; Zaninoni, E.; Bernardini, M.G.; Chincarini, G.; Pasotti, F.; Guidorzi, C.; Angelini, L.; Burrows, D.N.; Capalbi, M.; Evans, P.A.; et al. The prompt-afterglow connection in gamma-ray bursts: A comprehensive statistical analysis of Swift X-ray light curves. Mon. Not. R. Astron. Soc. 2013, 428, 729–742. [Google Scholar] [CrossRef]
- Robertson, B.E.; Ellis, R.S. Connecting the Gamma Ray Burst Rate and the Cosmic Star Formation History: Implications for Reionization and Galaxy Evolution. Astrophys. J. 2012, 744, 95. [Google Scholar] [CrossRef]
- Zhang, B.B.; Zhang, B.; Liang, E.W.; Fan, Y.Z.; Wu, X.F.; Pe’er, A.; Maxham, A.; Gao, H.; Dong, Y.M. A Comprehensive Analysis of Fermi Gamma-ray Burst Data. I. Spectral Components and the Possible Physical Origins of LAT/GBM GRBs. Astrophys. J. 2011, 730, 141. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Asano, K.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, D.; et al. Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A. Science 2014, 343, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Abdo, A.A.; Ackermann, M.; Arimoto, M.; Asano, K.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D.L.; Barbiellini, G.; et al. Fermi Observations of High-Energy Gamma-Ray Emission from GRB 080916C. Science 2009, 323, 1688–1693. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, M.; Ajello, M.; Asano, K.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, D.; Bechtol, K.; et al. Detection of a Spectral Break in the Extra Hard Component of GRB 090926A. Astrophys. J. 2011, 729, 114. [Google Scholar] [CrossRef]
- Abdalla, H.; Adam, R.; Aharonian, F.; Ait Benkhali, F.; Angüner, E.O.; Arakawa, M.; Arcaro, C.; Armand, C.; Ashkar, H.; Backes, M.; et al. A very-high-energy component deep in the γ-ray burst afterglow. Nature 2019, 575, 464–467. [Google Scholar] [CrossRef] [PubMed]
- MAGIC Collaboration; Acciari, V.A.; Ansoldi, S.; Antonelli, L.A.; Arbet Engels, A.; Baack, D.; Babić, A.; Banerjee, B.; Barres de Almeida, U.; Barrio, J.A.; et al. Teraelectronvolt emission from the <italic>γ</italic>-ray burst GRB 190114C. Nature 2019, 575, 455–458. [Google Scholar] [CrossRef]
- H. E. S. S. Collaboration; Abdalla, H.; Aharonian, F.; Ait Benkhali, F.; Angüner, E.O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; et al. Revealing x-ray and gamma ray temporal and spectral similarities in the GRB 190829A afterglow. Science 2021, 372, 1081–1085. [Google Scholar] [CrossRef]
- MAGIC Collaboration; Acciari, V.A.; Ansoldi, S.; Antonelli, L.A.; Engels, A.A.; Baack, D.; Babić, A.; Banerjee, B.; Barres de Almeida, U.; Barrio, J.A.; et al. Observation of inverse Compton emission from a long <italic>γ</italic>-ray burst. Nature 2019, 575, 459–463. [Google Scholar] [CrossRef]
- Rastinejad, J.C.; Gompertz, B.P.; Levan, A.J.; Fong, W.f.; Nicholl, M.; Lamb, G.P.; Malesani, D.B.; Nugent, A.E.; Oates, S.R.; Tanvir, N.R.; et al. A kilonova following a long-duration gamma-ray burst at 350 Mpc. Nature 2022, 612, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Troja, E.; Fryer, C.L.; O’Connor, B.; Ryan, G.; Dichiara, S.; Kumar, A.; Ito, N.; Gupta, R.; Wollaeger, R.T.; Norris, J.P.; et al. A nearby long gamma-ray burst from a merger of compact objects. Nature 2022, 612, 228–231. [Google Scholar] [CrossRef] [PubMed]
- Ruffini, R.; Rueda, J.A.; Muccino, M.; Aimuratov, Y.; Becerra, L.M.; Bianco, C.L.; Kovacevic, M.; Moradi, R.; Oliveira, F.G.; Pisani, G.B.; et al. On the Classification of GRBs and Their Occurrence Rates. Astrophys. J. 2016, arXiv:astro-ph.HE/1602.02732832, 136. [Google Scholar] [CrossRef]
- Izzo, L.; Rueda, J.A.; Ruffini, R. GRB 090618: A candidate for a neutron star gravitational collapse onto a black hole induced by a type Ib/c supernova. Astron. Astrophys. 2012, 548, L5. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. 2017, 848, L12. [Google Scholar]
- Ahumada, T.; Singer, L.P.; Anand, S.; Coughlin, M.W.; Kasliwal, M.M.; Ryan, G.; Andreoni, I.; Cenko, S.B.; Fremling, C.; Kumar, H.; et al. Discovery and confirmation of the shortest gamma-ray burst from a collapsar. Nat. Astron. 2021, 5, 917–927. [Google Scholar] [CrossRef]
- Rossi, A.; Rothberg, B.; Palazzi, E.; Kann, D.A.; D’Avanzo, P.; Amati, L.; Klose, S.; Perego, A.; Pian, E.; Guidorzi, C.; et al. The Peculiar Short-duration GRB 200826A and Its Supernova. Astrophys. J. 2022, 932, 1. [Google Scholar] [CrossRef]
- Chen, W.X.; Beloborodov, A.M. Neutrino-cooled Accretion Disks around Spinning Black Holes. Astrophys. J. 2007, 657, 383–399. [Google Scholar] [CrossRef]
- Lee, H.K.; Wijers, R.A.M.J.; Brown, G.E. The Blandford-Znajek process as a central engine for a gamma-ray burst. Phys. Rep. 2000, 325, 83–114. [Google Scholar] [CrossRef]
- Uzdensky, D.A.; MacFadyen, A.I. Stellar Explosions by Magnetic Towers. Astrophys. J. 2006, 647, 1192–1212. [Google Scholar] [CrossRef]
- Guidorzi, C.; Sartori, M.; Maccary, R.; Tsvetkova, A.; Amati, L.; Bazzanini, L.; Bulla, M.; Camisasca, A.E.; Ferro, L.; Frontera, F.; et al. Distribution of number of peaks within a long gamma-ray burst. arXiv 2024, arXiv:2402.17282. [Google Scholar] [CrossRef]
- Maccary, R.; Guidorzi, C.; Amati, L.; Bazzanini, L.; Bulla, M.; Camisasca, A.E.; Ferro, L.; Frontera, F.; Tsvetkova, A. Distributions of Energy, Luminosity, Duration, and Waiting Times of Gamma-Ray Burst Pulses with Known Redshift Detected by Fermi/GBM. Astrophys. J. 2024, 965, 72. [Google Scholar] [CrossRef]
- O’Connor, B.; Troja, E.; Ryan, G.; Beniamini, P.; van Eerten, H.; Granot, J.; Dichiara, S.; Ricci, R.; Lipunov, V.; Gillanders, J.H.; et al. A structured jet explains the extreme GRB 221009A. Sci. Adv. 2023, 9, eadi1405. [Google Scholar] [CrossRef] [PubMed]
- An, Z.H.; Antier, S.; Bi, X.Z.; Bu, Q.C.; Cai, C.; Cao, X.L.; Camisasca, A.E.; Chang, Z.; Chen, G.; Chen, L.; et al. Insight-HXMT and GECAM-C observations of the brightest-of-all-time GRB 221009A. arXiv 2023, arXiv:2303.01203. [Google Scholar]
- Zhang, B. TeV emission as an independent probe of GRB jet properties. Sci. China Physics, Mech. Astron. 2023, 66, 289532. [Google Scholar] [CrossRef]
- Mészáros, P.; Fox, D.B.; Hanna, C.; Murase, K. Multi-messenger astrophysics. Nat. Rev. Phys. 2019, 1, 585–599. [Google Scholar] [CrossRef]
- Oikonomou, F. High-energy neutrino emission from blazars. In Proceedings of the 37th International Cosmic Ray Conference, Berlin, Germany, 12–23 July 2021; p. 30. [Google Scholar] [CrossRef]
- Pian, E.; D’Avanzo, P.; Benetti, S.; Branchesi, M.; Brocato, E.; Campana, S.; Cappellaro, E.; Covino, S.; D’Elia, V.; Fynbo, J.P.U.; et al. Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature 2017, 551, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Chiummo, A. The Einstein Telescope: Status of the project. Eur. Phys. J. Web Conf. 2023, 280, 03003. [Google Scholar] [CrossRef]
- Bartos, I.; Kocsis, B.; Haiman, Z.; Márka, S. Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei. Astrophys. J. 2017, 835, 165. [Google Scholar] [CrossRef]
- Abbasi, R.; Ackermann, M.; Adams, J.; Agarwalla, S.K.; Aggarwal, N.; Aguilar, J.A.; Ahlers, M.; Alameddine, J.M.; Amin, N.M.; Andeen, K.; et al. Limits on Neutrino Emission from GRB 221009A from MeV to PeV Using the IceCube Neutrino Observatory. Astrophys. J. 2023, 946, L26. [Google Scholar] [CrossRef]
- Jana, S.; Chakravarty, G.K.; Mohanty, S. Constraints on Born-Infeld gravity from the speed of gravitational waves after GW170817 and GRB 170817A. Phys. Rev. D 2018, 97, 084011. [Google Scholar] [CrossRef]
- Zhang, B.T.; Murase, K.; Ioka, K.; Zhang, B. The origin of very-high-energy gamma-rays from GRB 221009A: Implications for reverse shock proton synchrotron emission. arXiv 2023, arXiv:2311.13671. [Google Scholar]
- Mészáros, P. Astrophysical Sources of High-Energy Neutrinos in the IceCube Era. Annu. Rev. Nucl. Part. Sci. 2017, 67, 45–67. [Google Scholar] [CrossRef]
- Galanti, G.; Nava, L.; Roncadelli, M.; Tavecchio, F.; Bonnoli, G. Observability of the Very-High-Energy Emission from GRB 221009A. Phys. Rev. Lett. 2023, 131, 251001. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Zhang, C.; Chen, Y.; Ling, Z. The Einstein Probe Mission. In Handbook of X-ray and Gamma-ray Astrophysics; Springer: Berlin/Heidelberg, Germany, 2022; p. 86. [Google Scholar] [CrossRef]
- SVOM, Collaboration; Atteia, J.L.; Cordier, B.; Wei, J. The SVOM mission. In Proceedings of the Sixteenth Marcel Grossmann Meeting. On Recent Developments in Theoretical and Experimental General Relativity, Virtual, 5–9 July 2021; pp. 104–132. [Google Scholar] [CrossRef]
- Amaro-Seoane, P.; Audley, H.; Babak, S.; Baker, J.; Barausse, E.; Bender, P.; Berti, E.; Binetruy, P.; Born, M.; Bortoluzzi, D.; et al. Laser Interferometer Space Antenna. arXiv 2017, arXiv:1702.00786. [Google Scholar]
- Ramsay, S.; Amico, P.; Bezawada, N.; Cirasuolo, M.; Derie, F.; Egner, S.; George, E.; Gonté, F.; González Herrera, J.C.; Hammersley, P.; et al. The ESO Extremely Large Telescope instrumentation programme. In Advances in Optical Astronomical Instrumentation 2019; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, Series; Ellis, S.C., d’Orgeville, C., Eds.; SPIE: Bellingham, WA, USA, 2020; Volume 11203, p. 1120303. [Google Scholar] [CrossRef]
- Skidmore, W.; Anupama, G.C.; Srianand, R. The Thirty Meter Telescope International Observatory facilitating transformative astrophysical science. arXiv 2018, arXiv:1806.02481. [Google Scholar] [CrossRef]
- Fanson, J.; Bernstein, R.; Ashby, D.; Bigelow, B.; Brossus, G.; Burgett, W.; Demers, R.; Fischer, B.; Figueroa, F.; Groark, F.; et al. Overview and status of the Giant Magellan Telescope project. In Ground-Based and Airborne Telescopes IX; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, Series; Marshall, H.K., Spyromilio, J., Usuda, T., Eds.; SPIE: Bellingham, WA, USA, 2022; Volume 12182, p. 121821C. [Google Scholar] [CrossRef]
- Ivezić, Ž.; Kahn, S.M.; Tyson, J.A.; Abel, B.; Acosta, E.; Allsman, R.; Alonso, D.; AlSayyad, Y.; Anderson, S.F.; Andrew, J.; et al. LSST: From Science Drivers to Reference Design and Anticipated Data Products. Astrophys. J. 2019, 873, 111. [Google Scholar] [CrossRef]
- McPherson, A.M.; McMullin, J.; Stevenson, T.; Dewdney, P.; Casson, A.; Stringhetti, L.; Deegan, M.; Hekman, P.; Austin, M.; Harman, M.; et al. Square Kilometer Array project status report. In Ground-Based and Airborne Telescopes VII; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, Series; Marshall, H.K., Spyromilio, J., Eds.; SPIE: Bellingham, WA, USA, 2018; Volume 10700, p. 107000Y. [Google Scholar] [CrossRef]
- Branchesi, M.; Maggiore, M.; Alonso, D.; Badger, C.; Banerjee, B.; Beirnaert, F.; Belgacem, E.; Bhagwat, S.; Boileau, G.; Borhanian, S.; et al. Science with the Einstein Telescope: A comparison of different designs. J. Cosmol. Astropart. Phys. 2023, 2023, 068. [Google Scholar] [CrossRef]
- Ahnen, M.L.; Ansoldi, S.; Antonelli, L.A.; Antoranz, P.; Arcaro, C.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J.A.; et al. Detection of very high energy gamma-ray emission from the gravitationally lensed blazar QSO B0218+357 with the MAGIC telescopes. Astron. Astrophys. 2016, 595, A98. [Google Scholar] [CrossRef]
- Aharonian, F.; Benkhali, F.A.; Aschersleben, J.; Ashkar, H.; Backes, M.; Martins, V.B.; Barnard, J.; Batzofin, R.; Becherini, Y.; Berge, D.; et al. The Vanishing of the Primary Emission Region in PKS 1510–089. Astrophys. J. Lett. 2023, 952, L38. [Google Scholar] [CrossRef]
- Acharyya, A.; Adams, C.B.; Archer, A.; Bangale, P.; Bartkoske, J.T.; Batista, P.; Benbow, W.; Brill, A.; Brose, R.; Buckley, J.H.; et al. VTSCat: The VERITAS Catalog of Gamma-Ray Observations. Res. Notes AAS 2023, 7, 6. [Google Scholar] [CrossRef]
- Ma, X.H.; Bi, Y.J.; Cao, Z.; Chen, M.J.; Chen, S.Z.; Cheng, Y.D.; Gong, G.H.; Gu, M.H.; He, H.H.; Hou, C.; et al. Chapter 1 LHAASO Instruments and Detector technology. Chin. Phys. C 2022, 46, 030001. [Google Scholar] [CrossRef]
- Hofmann, W.; Zanin, R. The Cherenkov Telescope Array. arXiv 2023, arXiv:2305.12888. [Google Scholar]
- Ageron, M.; Aguilar, J.A.; Al Samarai, I.; Albert, A.; Ameli, F.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; et al. ANTARES: The first undersea neutrino telescope. Nucl. Instruments Methods Phys. Res. A 2011, 656, 11–38. [Google Scholar] [CrossRef]
- Aartsen, M.; Ackermann, M.; Adams, J.; Aguilar, J.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. The IceCube Neutrino Observatory: Instrumentation and online systems. J. Instrum. 2017, 12, P03012. [Google Scholar] [CrossRef]
- Aiello, S.; Albert, A.; Garre, S.A.; Aly, Z.; Ambrosone, A.; Ameli, F.; Andre, M.; Androulakis, G.; Anghinolfi, M.; Anguita, M.; et al. The KM3NeT potential for the next core-collapse supernova observation with neutrinos: KM3NeT Collaboration. Eur. Phys. J. C 2021, 81, 445. [Google Scholar] [CrossRef]
- Frontera, F.; Virgilli, E.; Guidorzi, C.; Rosati, P.; Diehl, R.; Siegert, T.; Fryer, C.; Amati, L.; Auricchio, N.; Campana, R.; et al. Understanding the origin of the positron annihilation line and the physics of supernova explosions. Exp. Astron. 2021, 51, 1175–1202. [Google Scholar] [CrossRef]
- Guidorzi, C.; Frontera, F.; Ghirlanda, G.; Stratta, G.; Mundell, C.G.; Virgilli, E.; Rosati, P.; Caroli, E.; Amati, L.; Pian, E.; et al. A deep study of the high-energy transient sky. Exp. Astron. 2021, 51, 1203–1223. [Google Scholar] [CrossRef]
GRB | Redshift, z | GRB Type | SN Search |
---|---|---|---|
980425 | 0.0085 | long, ll | 1998bw |
011121 | 0.362 | long | 2001ke |
021211 | 1.004 | long | 2002lt |
030329 | 0.16867 | long | 2003dh |
031203 | 0.10536 | long, ll | 2003nw |
050525A | 0.606 | long | 2005nc |
060218 | 0.03342 | long, ll | 2006aj |
081007 | 0.5295 | long | 2008hw |
091127 | 0.49044 | long | 2009nz |
100316D | 0.0592 | long, ll | 2010bh |
101219B | 0.55185 | long | 2010ma |
111209A | 0.67702 | UL | 2011kl |
120422A | 0.28253 | long | 2012bz |
120714B | 0.3984 | long, INT | 2012eb |
130215A | 0.597 | long | 2013ez |
130427A | 0.3399 | long | 2013cq |
130702A | 0.145 | long, INT | 2013dx |
130831A | 0.479 | long | 2013fu |
161219B | 0.1475 | long, INT | 2016jca |
171010A | 0.3285 | long | 2017htp |
171205A | 0.037 | long, ll | 2017iuk |
180728A | 0.117 | long | 2018fip |
190114C | 0.4245 | long | 2019jrj |
190829A | 0.07 | long, ll | 2019oyw |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frontera, F. A Short History of the First 50 Years: From the GRB Prompt Emission and Afterglow Discoveries to the Multimessenger Era. Universe 2024, 10, 260. https://doi.org/10.3390/universe10060260
Frontera F. A Short History of the First 50 Years: From the GRB Prompt Emission and Afterglow Discoveries to the Multimessenger Era. Universe. 2024; 10(6):260. https://doi.org/10.3390/universe10060260
Chicago/Turabian StyleFrontera, Filippo. 2024. "A Short History of the First 50 Years: From the GRB Prompt Emission and Afterglow Discoveries to the Multimessenger Era" Universe 10, no. 6: 260. https://doi.org/10.3390/universe10060260
APA StyleFrontera, F. (2024). A Short History of the First 50 Years: From the GRB Prompt Emission and Afterglow Discoveries to the Multimessenger Era. Universe, 10(6), 260. https://doi.org/10.3390/universe10060260