New Parametrization of the Dark-Energy Equation of State with a Single Parameter
Abstract
:1. Introduction
2. New Single-Parameter Equation-of-State Parametrization
3. Observational Constraints
4. Cosmographic Analysis and Statefinder Diagnostic
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Observational Data
Appendix A.1. H(z) Data
z | (km/s/Mpc) | Method | Reference |
---|---|---|---|
0.00 | 69.1 ± 1.3 | a | [85] |
0.07 | 70.4 ± 20 | a | [86] |
0.07 | 69.0 ± 19.6 | a | [86] |
0.09 | 70.4 ± 12.2 | a | [87] |
0.10 | 70.4 ± 12.2 | a | [86] |
0.120 | 68.6 ± 26.2 | a | [86] |
0.12 | 70.0 ± 26.7 | a | [85] |
0.170 | 83.0 ± 8 | a | [87] |
0.170 | 84.7 ± 8.2 | a | [87] |
0.179 | 76.5 ± 4 | a | [88] |
0.1791 | 75.0 ± 4 | a | [88] |
0.199 | 76.5 ± 5.1 | a | [88] |
0.1993 | 75.0 ± 5 | a | [88] |
0.200 | 72.9 ± 29.6 | a | [86] |
0.20 | 74.4 ± 30.2 | a | [86] |
0.24 | 81.5 ± 2.7 | b | [89] |
0.27 | 78.6 ± 14.3 | a | [87] |
0.280 | 88.8 ± 36.3 | a | [86] |
0.28 | 90.6 ± 37.3 | a | [85] |
0.35 | 84.4 ± 8.6 | b | [85] |
0.3519 | 83.0 ± 14 | a | [88] |
0.352 | 84.7 ± 14.3 | a | [88] |
0.38 | 81.5 ± 1.9 | b | [90] |
0.3802 | 83.0 ± 13.5 | a | [91] |
0.3802 | 84.7 ± 14.1 | a | [91] |
0.40 | 95.0 ± 17 | a | [87] |
0.40 | 96.9 ± 17.3 | a | [87] |
0.4004 | 77.0 ± 10.2 | a | [91] |
0.4004 | 78.6 ± 10.4 | a | [91] |
0.4247 | 87.1 ± 11.2 | a | [91] |
0.4247 | 88.9 ± 11.4 | a | [91] |
0.43 | 88.3 ± 3.8 | a | [85] |
0.44 | 84.3 ± 7.9 | a | [92] |
0.4497 | 92.8 ± 12.9 | a | [91] |
0.4497 | 94.7 ± 13.1 | a | [91] |
0.470 | 89.0 ± 34.0 | a | [93] |
0.47 | 90.8 ± 50.6 | a | [93] |
0.4783 | 80.0 ± 99.0 | a | [91] |
0.4783 | 82.5 ± 9.2 | a | [91] |
0.48 | 99.0 ± 63.2 | a | [93] |
0.51 | 90.8 ± 1.9 | b | [90] |
0.57 | 98.8 ± 3.4 | b | [86] |
0.593 | 104.0 ± 13.0 | a | [88] |
0.593 | 106.1 ± 13.3 | a | [88] |
0.60 | 89.7 ± 6.2 | a | [86] |
0.61 | 97.8 ± 2.1 | b | [90] |
0.64 | 98.82 ± 2.98 | b | [94] |
0.6797 | 92.0 ± 8 | a | [88] |
0.68 | 93.9 ± 8.1 | a | [88] |
0.73 | 99.3 ± 7.1 | a | [92] |
0.7812 | 105.0 ± 12 | a | [88] |
0.781 | 107.1 ± 12.2 | a | [88] |
0.875 | 127.6 ± 17.3 | a | [88] |
0.8754 | 125.0 ± 17 | a | [88] |
0.88 | 91.8 ± 40.8 | a | [95] |
0.880 | 90.0 ± 40 | a | [93] |
0.90 | 69.0 ± 12 | a | [87] |
0.90 | 119.4 ± 23.4 | a | [87] |
0.900 | 117.0 ± 23 | a | [87] |
1.037 | 157.2 ± 20.4 | a | [88] |
1.037 | 154.0 ± 20 | a | [88] |
1.30 | 171.4 ± 17.3 | a | [87] |
1.300 | 168.0 ± 17 | a | [87] |
1.363 | 160.0 ± 33.6 | a | [96] |
1.363 | 163.3 ± 34.3 | a | [96] |
1.430 | 177.0 ± 18 | a | [87] |
1.43 | 180.6 ± 18.3 | a | [87] |
1.530 | 140.0 ± 14 | a | [87] |
1.53 | 142.9 ± 14.2 | a | [87] |
1.750 | 202.0 ± 40 | a | [87] |
1.75 | 206.1 ± 40.8 | a | [87] |
1.965 | 186.5 ± 50.4 | a | [96] |
1.965 | 190.3 ± 51.4 | a | [96] |
2.30 | 228.0 ± 8.1 | c | [97] |
2.34 | 226.5 ± 7.1 | c | [97] |
2.36 | 230.6 ± 8.2 | c | [98] |
Appendix A.2. Pantheon Data
Appendix A.3. Baryon Acoustic Oscillations (BAO)
Appendix A.4. Joint Analysis
References
- Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. D 2006, 15, 1753–1935. [Google Scholar] [CrossRef]
- Cai, Y.F.; Saridakis, E.N.; Setare, M.R.; Xia, J.Q. Quintom Cosmology: Theoretical implications and observations. Phys. Rep. 2010, 493, 1–60. [Google Scholar] [CrossRef]
- Felice, A.D.; Tsujikawa, S. f(R) theories. Living Rev. Relativ. 2010, 13, 3. [Google Scholar] [CrossRef]
- Capozziello, S.; Laurentis, M.D. Extended Theories of Gravity. Phys. Rep. 2011, 509, 167–321. [Google Scholar] [CrossRef]
- Cai, Y.F.; Capozziello, S.; Laurentis, M.D.; Saridakis, E.N. f(T) teleparallel gravity and cosmology. Rep. Prog. Phys. 2016, 79, 106901. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-Time Evolution. Phys. Rep. 2017, 692, 1–104. [Google Scholar] [CrossRef]
- Saridakis, E.N.; Lazkoz, R.; Salzano, V.; Moniz, P.V.; Capozziello, S.; Jiménez, J.B. Modified Gravity and Cosmology: An Update by the CANTATA Network; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Castillo-Santos, M.N.; Hernández-Almada, A.; García-Aspeitia, M.A.; Magaña, J. An exponential equation of state of dark energy in the light of 2018 CMB Planck data. Phys. Dark Univ. 2023, 40, 101225. [Google Scholar] [CrossRef]
- Liu, D.J.; Li, X.Z.; Hao, J.; Jin, X.H. Revisiting the parametrization of Equation of State of Dark Energy via SNIa Data. Mon. Not. R. Astron. Soc. 2008, 388, 275–281. [Google Scholar] [CrossRef]
- Perkovic, D.; Stefancic, H. Barotropic fluid compatible parametrizations of dark energy. Eur. Phys. J. C 2020, 80, 629. [Google Scholar] [CrossRef]
- Gong, Y.G.; Zhang, Y.Z. Probing the curvature and dark energy. Phys. Rev. D 2005, 72, 043518. [Google Scholar] [CrossRef]
- Yang, W.; Pan, S.; Valentino, E.D.; Saridakis, E.N.; Chakraborty, S. Observational constraints on one-parameter dynamical dark-energy parametrizations and the H0 tension. Phys. Rev. D 2019, 99, 043543. [Google Scholar] [CrossRef]
- Chevallier, M.; Polarski, D. Accelerating universes with scaling dark matter. Int. J. Mod. Phys. D 2001, 10, 213–223. [Google Scholar] [CrossRef]
- Linder, E.V. Exploring the expansion history of the universe. Phys. Rev. Lett. 2003, 90, 091301. [Google Scholar] [CrossRef]
- Cooray, A.R.; Huterer, D. Gravitational lensing as a probe of quintessence. Astrophys. J. 1999, 513, L95. [Google Scholar] [CrossRef]
- Astier, P. Can luminosity distance measurements probe the equation of state of dark energy. Phys. Lett. B 2001, 500, 8–15. [Google Scholar] [CrossRef]
- Weller, J.; Albrecht, A. Future supernovae observations as a probe of dark energy. Phys. Rev. D 2002, 65, 103512. [Google Scholar] [CrossRef]
- Efstathiou, G. Constraining the equation of state of the universe from distant type Ia supernovae and cosmic microwave background anisotropies. Mon. Not. R. Astron. Soc. 1999, 310, 842–850. [Google Scholar] [CrossRef]
- Jassal, H.K.; Bagla, J.S.; Padmanabhan, T. Observational constraints on low redshift evolution of dark energy: How consistent are different observations? Phys. Rev. D 2005, 72, 103503. [Google Scholar] [CrossRef]
- Barboza, E.M., Jr.; Alcaniz, J.S. A parametric model for dark energy. Phys. Lett. B 2008, 666, 415–419. [Google Scholar] [CrossRef]
- Banerjee, A.; Cai, H.; Heisenberg, L.; Colgáin, E.; Sheikh-Jabbari, M.M.; Yang, T. Hubble sinks in the low-redshift swampland. Phys. Rev. D 2021, 103, L081305. [Google Scholar] [CrossRef]
- Lee, B.H.; Lee, W.; Colgáin, E.; Sheikh-Jabbari, M.M.; Thakur, S. Is local H0 at odds with dark energy EFT? J. Cosmol. Astropart. Phys. 2022, 2022, 004. [Google Scholar]
- Ma, J.Z.; Zhang, X. Probing the dynamics of dark energy with novel parametrizations. Phys. Lett. B 2011, 699, 233–238. [Google Scholar] [CrossRef]
- Nesseris, S.; Perivolaropoulos, L. A Comparison of cosmological models using recent supernova data. Phys. Rev. D 2004, 70, 043531. [Google Scholar] [CrossRef]
- Linder, E.V.; Huterer, D. How many dark energy parameters? Phys. Rev. D 2005, 72, 043509. [Google Scholar] [CrossRef]
- Feng, B.; Li, M.; Piao, Y.S.; Zhang, X. Oscillating quintom and the recurrent universe. Phys. Lett. B 2006, 634, 101–105. [Google Scholar] [CrossRef]
- Zhao, G.B.; Xia, J.Q.; Li, H.; Tao, C.; Virey, J.M.; Zhu, Z.H.; Zhang, X. Probing for dynamics of dark energy and curvature of universe with latest cosmological observations. Phys. Lett. B 2007, 648, 8–13. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. The Oscillating dark energy: Future singularity and coincidence problem. Phys. Lett. B 2006, 637, 139–148. [Google Scholar] [CrossRef]
- Saridakis, E.N. Theoretical Limits on the Equation-of-State Parameter of Phantom Cosmology. Phys. Lett. B 2009, 676, 7–11. [Google Scholar] [CrossRef]
- Dutta, S.; Saridakis, E.N.; Scherrer, R.J. Dark energy from a quintessence (phantom) field rolling near potential minimum (maximum). Phys. Rev. D 2009, 79, 103005. [Google Scholar] [CrossRef]
- Lazkoz, R.; Salzano, V.; Sendra, I. Oscillations in the dark energy EoS: New MCMC lessons. Phys. Lett. B 2011, 694, 198. [Google Scholar] [CrossRef]
- Feng, L.; Lu, T. A new equation of state for dark energy model. J. Cosmol. Astropart. Phys. 2011, 2011, 034. [Google Scholar] [CrossRef]
- Saridakis, E.N. Phantom evolution in power-law potentials. Nucl. Phys. B 2009, 819, 116–126. [Google Scholar] [CrossRef]
- Felice, A.D.; Nesseris, S.; Tsujikawa, S. Observational constraints on dark energy with a fast varying equation of state. J. Cosmol. Astropart. Phys. 2012, 2012, 029. [Google Scholar] [CrossRef]
- Saridakis, E.N. Quintom evolution in power-law potentials. Nucl. Phys. B 2010, 830, 374–389. [Google Scholar] [CrossRef]
- Feng, C.J.; Shen, X.Y.; Li, P.; Li, X.Z. A New Class of Parametrization for Dark Energy without Divergence. J. Cosmol. Astropart. Phys. 2012, 2012, 023. [Google Scholar] [CrossRef]
- Basilakos, S.; Solá, J. Effective equation of state for running vacuum: ‘mirage’ quintessence and phantom dark energy. Mon. Not. R. Astron. Soc. 2014, 437, 3331–3342. [Google Scholar] [CrossRef]
- Pantazis, G.; Nesseris, S.; Perivolaropoulos, L. Comparison of thawing and freezing dark energy parametrizations. Phys. Rev. D 2016, 93, 103503. [Google Scholar] [CrossRef]
- Valentino, E.D.; Melchiorri, A.; Silk, J. Reconciling Planck with the local value of H0 in extended parameter space. Phys. Lett. B 2016, 761, 242–246. [Google Scholar] [CrossRef]
- Chávez, R.; Plionis, M.; Basilakos, S.; Terlevich, R.; Terlevich, E.; Melnick, J.; Bresolin, F.; González-Morán, A.L. Constraining the dark energy equation of state with HII galaxies. Mon. Not. R. Astron. Soc. 2016, 462, 2431–2439. [Google Scholar] [CrossRef]
- Zhao, G.B.; Raveri, M.; Pogosian, L.; Wang, Y.; Crittenden, R.G.; Handley, W.J.; Percival, W.J.; Beutler, F.; Brinkmann, J.; Zhang, H.; et al. Dynamical dark energy in light of the latest observations. Nat. Astron. 2017, 1, 627–632. [Google Scholar] [CrossRef]
- Yang, W.; Nunes, R.C.; Pan, S.; Mota, D.F. Effects of neutrino mass hierarchies on dynamical dark energy models. Phys. Rev. D 2017, 95, 103522. [Google Scholar] [CrossRef]
- Valentino, E.D.; Melchiorri, A.; Linder, E.V.; Silk, J. Constraining Dark Energy Dynamics in Extended Parameter Space. Phys. Rev. D 2017, 96, 023523. [Google Scholar] [CrossRef]
- Di Valentino, E. Crack in the cosmological paradigm. Nat. Astron. 2017, 1, 569–570. [Google Scholar] [CrossRef]
- Yang, W.; Pan, S.; Paliathanasis, A. Latest astronomical constraints on some nonlinear parametric dark energy models. Mon. Not. R. Astron. Soc. 2018, 475, 2605–2613. [Google Scholar] [CrossRef]
- Pan, S.; Saridakis, E.N.; Yang, W. Observational Constraints on Oscillating Dark-Energy Parametrizations. Phys. Rev. D 2018, 98, 063510. [Google Scholar] [CrossRef]
- Pan, S.; Yang, W.; Singha, C.; Saridakis, E.N. Observational constraints on sign-changeable interaction models and alleviation of the H0 tension. Phys. Rev. D 2019, 100, 083539. [Google Scholar] [CrossRef]
- Pan, S.; Yang, W.; Valentino, E.D.; Saridakis, E.N.; Chakraborty, S. Interacting scenarios with dynamical dark energy: Observational constraints and alleviation of the H0 tension. Phys. Rev. D 2019, 100, 103520. [Google Scholar] [CrossRef]
- Singh, J.K.; Balhara, H.; Bamba, K.; Jena, J. Bouncing cosmology in modified gravity with higher-order curvature terms. J. High Energy Phys. 2023, 3, 191. [Google Scholar] [CrossRef]
- Singh, J.K.; Shaily; Ram, S.; Santos, J.R.L.; Fortunato, J.A.S. The constrained cosmological model in Lyra geometry. Int. J. Mod. Phys. D 2023, 32, 2350040. [Google Scholar] [CrossRef]
- Cunha, J.V.; Lima, J.A.S. Transition Redshift: New Kinematic Constraints from Supernovae. Mon. Not. R. Astron. Soc. 2008, 390, 210–217. [Google Scholar] [CrossRef]
- Akarsu, O.; Dereli, T.; Kumar, S.; Xu, L. Probing kinematics and fate of the Universe with linearly time-varying deceleration parameter. Eur. Phys. J. Plus 2014, 129, 22. [Google Scholar] [CrossRef]
- Xu, L.; Lu, J. Cosmic constraints on deceleration parameter with Sne Ia and CMB. Mod. Phys. Lett. A 2009, 24, 369–376. [Google Scholar] [CrossRef]
- Colgáin, E.Ó.; Sheikh-Jabbari, M.M.; Yin, L. Can dark energy be dynamical? Phys. Rev. D 2021, 104, 023510. [Google Scholar] [CrossRef]
- Singh, J.K.; Bamba, K.; Nagpal, R.; Pacif, S.K.J. Bouncing cosmology in f(R,T) gravity. Phys. Rev. D 2018, 97, 123536. [Google Scholar] [CrossRef]
- Singh, J.K.; Nagpal, R. FLRW cosmology with EDSFD parametrization. Eur. Phys. J. C 2020, 80, 295. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Singular inflation from generalized equation of state fluids. Phys. Lett. B 2015, 747, 310–320. [Google Scholar] [CrossRef]
- Nagpal, R.; Singh, J.K.; Beesham, A.; Shabani, H. Cosmological aspects of a hyperbolic solution in f(R,T) gravity. Ann. Phys. 2019, 405, 234–255. [Google Scholar] [CrossRef]
- Abdalla, E.; Abellán, G.F.; Aboubrahim, A.; Agnello, A.; Akarsu, Ö.; Akrami, Y.; Alestas, G.; Aloni, D.; Amendola, L.; Pettorino, V.; et al. Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies. J. High Energy Astrophys. 2022, 34, 49–211. [Google Scholar]
- Valentino, E.D.; Saridakis, E.; Riess, A. Cosmological tensions in the birthplace of the heliocentric model. Nat. Astron. 2022, 6, 1353–1355. [Google Scholar] [CrossRef]
- Lenart, A. Ł; Bargiacchi, G.; Dainotti, M.G.; Nagataki, S.; Capozziello, S. A Bias-free Cosmological Analysis with Quasars Alleviating H0 Tension. Astrophys. J. Suppl. Ser. 2023, 264, 46. [Google Scholar]
- Dainotti, M.G.; Bargiacchi, G.; Bogdan, M.; Capozziello, S.; Nagataki, S. Reduced uncertainties up to 43% on the Hubble constant and the matter density with the SNe Ia with a new statistical analysis. arXiv 2023, arXiv:2303.06974. [Google Scholar]
- Dainotti, M.G.; Simone, B.D.; Schiavone, T.; Montani, G.; Rinaldi, E.; Lambiase, G. On the Hubble constant tension in the SNe Ia Pantheon sample. Astrophys. J. 2021, 912, 150. [Google Scholar] [CrossRef]
- Schiavone, T.; Montani, G.; Dainotti, M.G.; Simone, B.D.; Rinaldi, E.; Lambiase, G. Running Hubble constant from the SNe Ia Pantheon sample? arXiv 2022, arXiv:2205.07033. [Google Scholar]
- Dainotti, M.G.; Simone, B.D.; Schiavone, T.; Montani, G.; Rinaldi, E.; Lambiase, G.; Bogdan, M.; Ugale, S. On the Evolution of the Hubble Constant with the SNe Ia Pantheon Sample and Baryon Acoustic Oscillations: A Feasibility Study for GRB-Cosmology in 2030. Galaxies 2022, 10, 24. [Google Scholar] [CrossRef]
- Schiavone, T.; Montani, G.; Bombacigno, F. f(R) gravity in the Jordan frame as a paradigm for the Hubble tension. Mon. Not. R. Astron. Soc. 2023, 522, L72–L77. [Google Scholar] [CrossRef]
- Mukhanov, V.F.; Feldman, H.A.; Brandenberger, R.H. Theory of cosmological perturbations. Phys. Rep. 1992, 215, 203–333. [Google Scholar] [CrossRef]
- Ma, C.P.; Bertschinger, E. Cosmological perturbation theory in the synchronous and conformal Newtonian gauges. Astrophys. J. 1995, 455, 7. [Google Scholar] [CrossRef]
- Malik, K.A.; Wands, D. Cosmological perturbations. Phys. Rep. 2009, 475, 1–51. [Google Scholar] [CrossRef]
- Bolotin, Y.L.; Cherkaskiy, V.A.; Ivashtenko, O.Y.; Konchatnyi, M.I.; Zazunov, L.G. Applied Cosmography: A Pedagogical Review. arXiv 2018, arXiv:1812.02394. [Google Scholar]
- Shaily; Singh, A.; Singh, J.K.; Ray, S. Late time phantom characteristic of the model in f (R, T) gravity with quadratic curvature term. arXiv arXiv:2402.01780.
- Singh, J.K.; Shaily; Balhara, H.; Bamba, K.; Jena, J. Cosmic analysis of a model in higher-order gravity theory. Astron. Comput. 2024, 46, 100790. [Google Scholar] [CrossRef]
- Singh, J.K.; Balhara, H.; Shaily; Singh, P. The constrained accelerating universe in f (R, T) gravity. Astron. Comput. 2024, 46, 100795. [Google Scholar]
- Balhara, H.; Singh, J.K.; Saridakis, E.N. Observational constraints and cosmographic analysis of f (T, TG) gravity and cosmology. arXiv 2024, arXiv:2312.17277. [Google Scholar]
- Riess, A.G.; Kirshner, R.P.; Schmidt, B.P.; Jha, S.; Challis, P.; Garnavich, P.M.; Esin, A.A.; Carpenter, C.; Grashius, R.; Schild, R.E.; et al. BV RI light curves for 22 type Ia supernovae. Astron. J. 1999, 117, 707–724. [Google Scholar] [CrossRef]
- Shaily; Zeyauddin, M.; Singh, J.K.; Santos, J.R.L. Dynamics of a hyperbolic solution in Scale-covariant theory. arXiv 2022, arXiv:2207.05076. [Google Scholar]
- Scolnic, D.M.; Jones, D.O.; Rest, A.; Pan, Y.C.; Chornock, R.; Foley, R.J.; Huber, M.E.; Kessler, R.; Narayan, G.; Riess, A.G.; et al. [Pan-STARRS1]. The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample. Astrophys. J. 2018, 859, 101. [Google Scholar] [CrossRef]
- Gelman, A.; Rubin, D.B. Inference from Iterative Simulation Using Multiple Sequences. Stat. Sci. 1992, 7, 457–472. [Google Scholar] [CrossRef]
- Brooks, P.S.; Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 1998, 7, 434–455. [Google Scholar] [CrossRef]
- Sami, M.; Shahalam, M.; Skugoreva, M.; Toporensky, A. Cosmological dynamics of a nonminimally coupled scalar field system and its late time cosmic relevance. Phys. Rev. D 2012, 86, 103532. [Google Scholar] [CrossRef]
- Myrzakulov, R.; Shahalam, M. Statefinder hierarchy of bimetric and galileon models for concordance cosmology. J. Cosmol. Astropart. Phys. 2013, 2013, 047. [Google Scholar] [CrossRef]
- Rani, S.; Altaibayeva, A.; Shahalam, M.; Singh, J.K.; Myrzakulov, R. Constraints on cosmological parameters in power-law cosmology. J. Cosmol. Astropart. Phys. 2015, 2015, 031. [Google Scholar] [CrossRef]
- Sahni, V.; Saini, T.D.; Starobinsky, A.A.; Alam, U. JStatefinder—A new geometrical diagnostic of dark energy. J. Exp. Theor. Phys. Lett. 2003, 77, 201–206. [Google Scholar] [CrossRef]
- Alam, U.; Sahni, V.; Saini, T.D.; Starobinsky, A.A. Exploring the expanding universe and dark energy using the statefinder diagnostic. Mon. Not. R. Astron. Soc. 2003, 344, 1057–1074. [Google Scholar] [CrossRef]
- Farooq, O.; Madiyar, F.R.; Crandall, S.; Ratra, B. Hubble parameter measurement constraints on the redshift of the deceleration–acceleration transition, dynamical dark energy, and space curvature. Astrophys. J. 2017, 835, 26. [Google Scholar] [CrossRef]
- Zhang, M.-J.; Xia, J.-Q. Test of the cosmic evolution using Gaussian processes. J. Cosmol. Astropart. Phys. 2016, 2016, 005. [Google Scholar] [CrossRef]
- Simon, J.; Verde, L.; Jimenez, R. Constraints on the redshift dependence of the dark energy potential. Phys. Rev. D 2005, 71, 123001. [Google Scholar] [CrossRef]
- Moresco, M.; Cimatti, A.; Jimenez, R.; Pozzetti, L.; Zamorani, G.; Bolzonella, M.; Dunlop, J.; Lamareille, F.; Mignoli, M.; Welikala, N.; et al. Improved constraints on the expansion rate of the Universe up to z~1.1 from the spectroscopic evolution of cosmic chronometers. J. Cosmol. Astropart. Phys. 2012, 2012, 006. [Google Scholar] [CrossRef]
- Gaztanaga, E.; Cabre, A.; Hui, L. Clustering of luminous red galaxies—IV. Baryon acoustic peak in the line-of-sight direction and a direct measurement of H(z). Mon. Not. R. Astron. Soc. 2009, 399, 1663–1680. [Google Scholar] [CrossRef]
- Alam, S.; Ata, M.; Bailey, S.; Beutler, F.; Bizyaev, D.; Blazek, J.A.; Bolton, A.S.; Brownstein, J.R.; Burden, A.; Zhao, G.B.; et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological analysis of the DR12 galaxy sample. Mon. Not. R. Astron. Soc. 2017, 470, 2617–2652. [Google Scholar] [CrossRef]
- Moresco, M.; Pozzetti, L.; Cimatti, A.; Jimenez, R.; Maraston, C.; Verde, L.; Thomas, D.; Citro, A.; Tojeiro, R.; Wilkinson, D. A 6% measurement of the Hubble parameter at z~0.45: Direct evidence of the epoch of cosmic re-acceleration. J. Cosmol. Astropart. Phys. 2016, 2016, 014. [Google Scholar] [CrossRef]
- Blake, C.; Brough, S.; Colless, M.; Contreras, C.; Couch, W.; Croom, S.; Croton, D.; Davis, T.M.; Drinkwater, M.J.; Yee, H.K.; et al. Energy Survey: Joint measurements of the expansion and growth history at z < 1. Mon. Not. R. Astron. Soc. 2012, 425, 405–414. [Google Scholar]
- Ratsimbazafy, A.L.; Loubser, S.I.; Crawford, S.M.; Cress, C.M.; Bassett, B.A.; Nichol, R.C.; Väisänen, P. Age-dating luminous red galaxies observed with the Southern African Large Telescope. Mon. Not. R. Astron. Soc. 2017, 467, 3239–3254. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, G.B.; Chuang, C.H.; Ross, A.J.; Percival, W.J.; Gil-Marín, H.; Cuesta, A.J.; Kitaura, F.S.; Rodriguez-Torres, S.; Zhu, F.; et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Tomographic BAO analysis of DR12 combined sample in configuration space. Mon. Not. R. Astron. Soc. 2017, 469, 3762–3774. [Google Scholar] [CrossRef]
- Stern, D.; Jimenez, R.; Verde, L.; Kamionkowski, M.; Stanford, S.A. Cosmic chronometers: Constraining the equation of state of dark energy. I: H(z) measurements. J. Cosmol. Astropart. Phys. 2010, 2010, 008. [Google Scholar] [CrossRef]
- Moresco, M. Raising the bar: New constraints on the Hubble parameter with cosmic chronometers at z~2. Mon. Not. R. Astron. Soc. Lett. 2015, 450, L16–L20. [Google Scholar] [CrossRef]
- Delubac, T.; Bautista, J.E.; Rich, J.; Kirkby, D.; Bailey, S.; Font-Ribera, A.; Slosar, A.; Lee, K.; Pieri, M.M.; York, D.G.; et al. Baryon acoustic oscillations in the Lyα forest of BOSS DR11 quasars. Astron. Astrophys. 2015, 574, A59. [Google Scholar] [CrossRef]
- Font-Ribera, A.; Kirkby, D.; Miralda-Escudé, J.; Ross, N.P.; Slosar, A.; Rich, J.; Aubourg, É.; Bailey, S.; Bhardwaj, V.; York, D.G.; et al. Quasar-Lyman α forest cross-correlation from BOSS DR11: Baryon Acoustic Oscillations. J. Cosmol. Astropart. Phys. 2014, 2014, 027. [Google Scholar] [CrossRef]
- Padmanabhan, N.; Xu, X.; Eisenstein, D.J.; Scalzo, R.; Cuesta, A.J.; Mehta, K.T.; Kazin, E. A 2 per cent distance to z = 0.35 by reconstructing baryon acoustic oscillations—I. Methods and application to the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 2012, 427, 2132–2145. [Google Scholar] [CrossRef]
- Beutler, F.; Blake, C.; Colless, M.; Jones, D.H.; Staveley-Smith, L.; Campbell, L.; Parker, Q.; Saunders, W.; Watson, F. The 6dF Galaxy Survey: Baryon acoustic oscillations and the local Hubble constant. Mon. Not. R. Astron. Soc. 2011, 416, 3017–3032. [Google Scholar] [CrossRef]
- Anderson, L.; Aubourg, E.; Bailey, S.; Beutler, F.; Bhardwaj, V.; Blanton, M.; Zhao, G.-B.; BOSS Collaboration. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples. Mon. Not. R. Astron. Soc. 2014, 441, 24–62. [Google Scholar] [CrossRef]
- Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Zonca, A. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 2016, 594, A13. [Google Scholar]
- dos Santos, M.V.; Reis, R.R.; Waga, I. Constraining the cosmic deceleration-acceleration transition with type Ia supernova, BAO/CMB and H(z) data. J. Cosmol. Astropart. Phys. 2016, 2016, 066. [Google Scholar] [CrossRef]
- Eisenstein, D.J.; Zehavi, I.; Hogg, D.W.; Scoccimarro, R.; Blanton, M.R.; Nichol, R.C.; Scranton, R.; Seo, H.; Tegmark, M.; York, D.G. Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 2005, 633, 560. [Google Scholar] [CrossRef]
- Giostri, R.; dos Santos, M.V.; Waga, I.; Reis, R.R.R.; Calvao, M.O.; Lago, B.L. From cosmic deceleration to acceleration: New constraints from SN Ia and BAO/CMB. J. Cosmol. Astropart. Phys. 2012, 2012, 027. [Google Scholar] [CrossRef]
- Hinshaw, G.; Larson, D.; Komatsu, E.; Spergel, D.N.; Bennett, C.; Dunkley, J.; Nolta, M.R.; Halpern, M.; Hill, R.S.; Wright, E.L.; et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological parameter results. Astrophys. J. Suppl. Ser. 2013, 208, 19. [Google Scholar] [CrossRef]
Dataset | (km/s/Mpc) | |||
---|---|---|---|---|
(77 points data) | ||||
+ + |
Dataset | |||
---|---|---|---|
(77 points data) | ≃0.7804 | ||
≃0.7811 | |||
≃0.7759 | |||
+ + | ≃0.7804 |
Dataset | j | s | l | m | r | |
---|---|---|---|---|---|---|
(77 points data) | ||||||
+ + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, J.K.; Singh, P.; Saridakis, E.N.; Myrzakul, S.; Balhara, H. New Parametrization of the Dark-Energy Equation of State with a Single Parameter. Universe 2024, 10, 246. https://doi.org/10.3390/universe10060246
Singh JK, Singh P, Saridakis EN, Myrzakul S, Balhara H. New Parametrization of the Dark-Energy Equation of State with a Single Parameter. Universe. 2024; 10(6):246. https://doi.org/10.3390/universe10060246
Chicago/Turabian StyleSingh, Jainendra Kumar, Preeti Singh, Emmanuel N. Saridakis, Shynaray Myrzakul, and Harshna Balhara. 2024. "New Parametrization of the Dark-Energy Equation of State with a Single Parameter" Universe 10, no. 6: 246. https://doi.org/10.3390/universe10060246
APA StyleSingh, J. K., Singh, P., Saridakis, E. N., Myrzakul, S., & Balhara, H. (2024). New Parametrization of the Dark-Energy Equation of State with a Single Parameter. Universe, 10(6), 246. https://doi.org/10.3390/universe10060246