Previous Issue
Volume 15, April-2
 
 

Nanomaterials, Volume 15, Issue 9 (May-1 2025) – 44 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
9 pages, 1596 KiB  
Article
Polarization-Independent Broadband Infrared Selective Absorber Based on Multilayer Thin Film
by Shenglan Wu, Hao Huang, Xin Wang, Chunhui Tian, Zhenyong Huang, Zhiyong Zhong and Shuang Liu
Nanomaterials 2025, 15(9), 678; https://doi.org/10.3390/nano15090678 (registering DOI) - 29 Apr 2025
Abstract
Spectrally selective infrared absorbers play a pivotal role in enabling optoelectronic applications such as infrared detection, thermal imaging, and photothermal conversion. In this paper, a dual-band wide-spectrum infrared selective absorber based on a metal–dielectric multilayer structure is designed. Through optimized design, the absorptance [...] Read more.
Spectrally selective infrared absorbers play a pivotal role in enabling optoelectronic applications such as infrared detection, thermal imaging, and photothermal conversion. In this paper, a dual-band wide-spectrum infrared selective absorber based on a metal–dielectric multilayer structure is designed. Through optimized design, the absorptance of the absorber reaches the peak values of 0.87 and 1.0 in the target bands (3–5 μm and 8–14 μm), while maintaining a low absorptance of about 0.2 in the non-working bands of 5–8 μm, with excellent spectral selectivity. By analyzing the Poynting vector and loss distribution, the synergistic mechanism of the ultra-thin metal localized enhancement effect, impedance matching, and intrinsic absorption of the material is revealed. This structure exhibits good polarization-insensitive characteristics and angle robustness within a large incident angle range, showing strong adaptability to complex optical field environments. Moreover, the proposed planarized structure design is compatible with standard fabrication processes and has good scalability, which can be applied to other electromagnetic wave bands. This research provides new design ideas and technical solutions for advanced optoelectronic applications such as radiation cooling, infrared stealth, and thermal radiation regulation. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

12 pages, 6465 KiB  
Article
Graphene-Based Organic Semiconductor Film for Highly Selective Photocatalytic CO2 Reduction
by Yanghong Xu, Haopeng Tang, Yifei Wang, Xiaofeng Zhu and Long Yang
Nanomaterials 2025, 15(9), 677; https://doi.org/10.3390/nano15090677 (registering DOI) - 29 Apr 2025
Abstract
Mimicking artificial photosynthesis utilizing solar energy for the production of high-value chemicals is a sustainable strategy to tackle the fossil fuel-based energy crisis and mitigate the greenhouse effect. In this study, we developed a two-dimensional (2D) graphene oxide (GO)–diketopyrrolopyrrole (DPP) film photocatalyst. GO [...] Read more.
Mimicking artificial photosynthesis utilizing solar energy for the production of high-value chemicals is a sustainable strategy to tackle the fossil fuel-based energy crisis and mitigate the greenhouse effect. In this study, we developed a two-dimensional (2D) graphene oxide (GO)–diketopyrrolopyrrole (DPP) film photocatalyst. GO nanosheets facilitate the uniform dispersion of DPP nanoparticles (~5 nm) while simultaneously constructing an efficient charge transport network to mitigate carrier recombination. Under visible-light irradiation in an aqueous solution without sacrificial agents, the optimized GO–DPP50 film catalyst exhibited exceptional performance, achieving a CO production rate of 32.62 μmol·g⁻1·h⁻1 with nearly 100% selectivity. This represents 2.77-fold and 3.28-fold enhancements over pristine GO (8.65 μmol·g−1·h−1) and bare DPP (7.62 μmol·g−1·h−1), respectively. Mechanistic analysis reveals a synergistic mechanism. The 2D GO framework not only serves as a high-surface-area substrate for DPP anchoring, but also substantially suppresses charge recombination through rapid electron transport channels. Concurrently, the uniformly distributed DPP nanoparticles improve visible-light absorption efficiency and facilitate effective photogenerated carrier excitation. This work establishes a novel paradigm for the synergistic integration of 2D nanomaterials with organic semiconductors, providing critical design principles for developing high-performance film-based photocatalysts and selectivity control in CO2 reduction applications. Full article
Show Figures

Graphical abstract

15 pages, 4032 KiB  
Article
The Effect of Microstructural Changes Produced by Heat Treatment on the Electromagnetic Interference Shielding Properties of Ti-Based MXenes
by Xue Han, Jae Jeong Lee, Ji Soo Kyoung and Yun Sung Woo
Nanomaterials 2025, 15(9), 676; https://doi.org/10.3390/nano15090676 (registering DOI) - 29 Apr 2025
Abstract
Ti-based MXenes such as Ti3C2TX and Ti2CTX have attracted considerable attention because of their superior electromagnetic interference (EMI) shielding effectiveness compared to other EMI shielding materials, especially for high electromagnetic (EM) wave absorption. In this [...] Read more.
Ti-based MXenes such as Ti3C2TX and Ti2CTX have attracted considerable attention because of their superior electromagnetic interference (EMI) shielding effectiveness compared to other EMI shielding materials, especially for high electromagnetic (EM) wave absorption. In this study, we investigated the microstructural changes produced by heat treatment and their effect on the EMI shielding properties of Ti-based MXenes. Ti3C2TX and Ti2CTX films were prepared using vacuum filtration and annealed at temperatures up to 300 °C. The microstructures and chemical bonding properties of these heat-treated Ti3C2TX and Ti2CTX films were analyzed, and the EMI shielding effectiveness was measured in the X-band and THz frequency range. The porous Ti3C2TX film showed higher EM absorption than that calculated using the transfer matrix method. On the other hand, the Ti2CTX films had a more densely stacked structure and lower EM absorption. As the heat treatment temperature increased, Ti3C2TX developed a more porous structure without significant changes in its chemical bonding. Its EM absorption per unit of thickness increased up to 6 dB/μm, while the reflectance remained constant at less than 1 dB/μm after heat treatment. This suggested that the heat treatment of Ti-based MXenes can increase the porosity of the film by removing residual organics without changing the chemical bonds, thereby increasing electromagnetic shielding through absorption. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

16 pages, 3205 KiB  
Article
Nonlinear Magnetic Response Measurements in Study of Magnetic Nanoparticles Uptake by Mesenchymal Stem Cells
by Vyacheslav Ryzhov, Yaroslav Marchenko, Vladimir Deriglazov, Natalia Yudintceva, Oleg Smirnov, Alexandr Arutyunyan, Tatiana Shtam, Evgenii Ivanov, Stephanie E. Combs and Maxim Shevtsov
Nanomaterials 2025, 15(9), 675; https://doi.org/10.3390/nano15090675 (registering DOI) - 29 Apr 2025
Abstract
Stem cells therapies offer a promising approach in translational oncology, as well as in regenerative medicine due to the tropism of these cells to the damage site. To track the distribution of stem cells, the latter could be labeled by MRI-sensitive superparamagnetic (SPM) [...] Read more.
Stem cells therapies offer a promising approach in translational oncology, as well as in regenerative medicine due to the tropism of these cells to the damage site. To track the distribution of stem cells, the latter could be labeled by MRI-sensitive superparamagnetic (SPM) iron oxide nanoparticles. In the current study, magnetic properties of the magnetic nanoparticles (MNPs) incorporated into the bone marrow-derived fetal mesenchymal stem cells (FetMSCs) were evaluated employing nonlinear magnetic response measurements. Synthesized dextran-coated iron oxide nanoparticles were additionally characterized by X-ray diffraction, transmission electron microscopy, and dynamic light scattering. The MNP uptake by the FetMSCs 24 h following coincubation was studied by longitudinal nonlinear response to weak alternating magnetic field with registration of the second harmonic of magnetization. Subsequent data processing using a formalism based on the numerical solution of the Fokker–Planck kinetic equation allowed us to determine magnetic and dynamic parameters and the state of MNPs in the cells, as well as in the culture medium. It was found that MNPs formed aggregates in the culture medium; they were absorbed by the cells during coincubation. The aggregates exhibited SPM regime in the medium, and the parameters of the MNP aggregates remained virtually unchanged in the cells, indicating the preservation of the aggregation state of MNPs inside the cells. This implies also the preservation of the organic shell of the nanoparticles inside FetMSCs. The accumulation of MNPs by mesenchymal stem cells gradually increased with the concentration of MNPs. Thus, the study confirmed that the labeling of MSCs with MNPs is an effective method for subsequent cell tracking as incorporated nanoparticles retain their magnetic properties. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

13 pages, 3766 KiB  
Article
ZrBr4-Mediated Phase Engineering in CsPbBr3 for Enhanced Operational Stability of White-Light-Emitting Diodes
by Muhammad Amin Padhiar, Yongqiang Ji, Jing Wang, Noor Zamin Khan, Mengji Xiong and Shuxin Wang
Nanomaterials 2025, 15(9), 674; https://doi.org/10.3390/nano15090674 (registering DOI) - 28 Apr 2025
Abstract
The persistent operational instability of all-inorganic cesium lead halide (CsPbX3) perovskite nanocrystals (NCs) has hindered their integration into white-light-emitting diodes (WLEDs). This study introduces a transformative approach by engineering a phase transition from CsPbBr3 NCs to zirconium bromide (ZrBr4 [...] Read more.
The persistent operational instability of all-inorganic cesium lead halide (CsPbX3) perovskite nanocrystals (NCs) has hindered their integration into white-light-emitting diodes (WLEDs). This study introduces a transformative approach by engineering a phase transition from CsPbBr3 NCs to zirconium bromide (ZrBr4)-stabilized hexagonal nanocomposites (HNs) through a modified hot-injection synthesis. Structural analyses revealed that the ZrBr4-mediated phase transformation induced a structurally ordered lattice with minimized defects, significantly enhancing charge carrier confinement and radiative recombination efficiency. The resulting HNs achieved an exceptional photoluminescence quantum yield (PLQY) of 92%, prolonged emission lifetimes, and suppressed nonradiative decay, attributed to effective surface passivation. The WLEDs with HNs enabled a breakthrough luminous efficiency of 158 lm/W and a record color rendering index (CRI) of 98, outperforming conventional CsPbX3-based devices. The WLEDs exhibited robust thermal stability, retaining over 80% of initial emission intensity at 100 °C, and demonstrated exceptional operational stability with negligible PL degradation during 50 h of continuous operation at 100 mA. Commission Internationale de l’Éclairage (CIE) coordinates of (0.35, 0.32) validated pure white-light emission with high chromatic fidelity. This work establishes ZrBr4-mediated HNs as a paradigm-shifting material platform, addressing critical stability and efficiency challenges in perovskite optoelectronics and paving the way for next-generation, high-performance lighting solutions. Full article
(This article belongs to the Special Issue Recent Advances in Halide Perovskite Nanomaterials)
24 pages, 5526 KiB  
Review
Advancements in Ti3C2 MXene-Integrated Various Metal Hydrides for Hydrogen Energy Storage: A Review
by Adem Sreedhar and Jin-Seo Noh
Nanomaterials 2025, 15(9), 673; https://doi.org/10.3390/nano15090673 (registering DOI) - 28 Apr 2025
Abstract
The current world is increasingly focusing on renewable energy sources with strong emphasis on the economically viable use of renewable energy to reduce carbon emissions and safeguard human health. Solid-state hydrogen (H2) storage materials offer a higher density compared to traditional [...] Read more.
The current world is increasingly focusing on renewable energy sources with strong emphasis on the economically viable use of renewable energy to reduce carbon emissions and safeguard human health. Solid-state hydrogen (H2) storage materials offer a higher density compared to traditional gaseous and liquid storage methods. In this context, this review evaluates recent advancements in binary, ternary, and complex metal hydrides integrated with 2D Ti3C2 MXene for enhancing H2 storage performance. This perspective highlights the progress made in H2 storage through the development of active sites, created by interactions between multilayers, few-layers, and internal edge sites of Ti3C2 MXene with metal hydrides. Specifically, the selective incorporation of Ti3C2 MXene content has significantly contributed to improvements in the H2 storage performance of various metal hydrides. Key benefits include low operating temperatures and enhanced H2 storage capacity observed in Ti3C2 MXene/metal hydride composites. The versatility of titanium multiple valence states (Ti0, Ti2+, Ti3+, and Ti4+) and Ti-C bonding in Ti3C2 plays a crucial role in optimizing the H2 absorption and desorption processes. Based on these promising developments, we emphasize the potential of solid-state Ti3C2 MXene interfaces with various metal hydrides for fuel cell applications. Overall, 2D Ti3C2 MXenes represent a significant advancement in realizing efficient H2 storage. Finally, we discuss the challenges and future directions for advancing 2D Ti3C2 MXenes toward commercial-scale H2 storage solutions. Full article
Show Figures

Graphical abstract

13 pages, 2977 KiB  
Article
Evaluating the Output Performance of the Semiconductor Bridge Through Principal Component Analysis
by Limei Zhang, Yongqi Da, Wei Zhang, Fuwei Li, Jianbing Xu, Li Jing, Qun Liu, Yinghua Ye and Ruiqi Shen
Nanomaterials 2025, 15(9), 672; https://doi.org/10.3390/nano15090672 (registering DOI) - 28 Apr 2025
Viewed by 27
Abstract
The complex burst characteristic parameters of SCB were subjected to dimensionality reduction using principal component analysis (PCA), enabling accurate evaluation of the output performance of SCB. The accuracy and reliability of the PCA method were also validated. A 100 μF tantalum capacitor was [...] Read more.
The complex burst characteristic parameters of SCB were subjected to dimensionality reduction using principal component analysis (PCA), enabling accurate evaluation of the output performance of SCB. The accuracy and reliability of the PCA method were also validated. A 100 μF tantalum capacitor was utilized to excite the SCB, while a digital oscilloscope recorded the characteristic parameters of the SCB explosion. The experimental results demonstrate that the critical burst time of SCB decreases with the rising voltage, and the critical burst energy decreases first and then increases with the rising voltage. The total burst time and total burst energy of SCB all decrease first and then increase with the rise of voltage. The PCA results indicate that as the voltage increases, the score of SCB output capacity initially decreases and then increases, reaching its lowest point at 17 V. The SCB was utilized to ignite lead styphnate (LTNR) under varying circuit conditions; the characteristic parameters obtained were analyzed using PCA to derive comprehensive scores. The same dataset was then input into the PCA model for pure SCB to calculate corresponding comprehensive scores. The consistency between the two sets of scores validated the accuracy and reliability of PCA in assessing SCB output capability. Full article
Show Figures

Figure 1

11 pages, 747 KiB  
Perspective
Will Quantum Topology Redesign Semiconductor Technology?
by Giuseppina Simone
Nanomaterials 2025, 15(9), 671; https://doi.org/10.3390/nano15090671 (registering DOI) - 28 Apr 2025
Viewed by 41
Abstract
Semiconductors underpin modern technology, enabling applications from power electronics and photovoltaics to communications and medical diagnostics. However, the industry faces pressing challenges, including shortages of critical raw materials and the unsustainable nature of conventional fabrication processes. Recent developments in quantum computing and topological [...] Read more.
Semiconductors underpin modern technology, enabling applications from power electronics and photovoltaics to communications and medical diagnostics. However, the industry faces pressing challenges, including shortages of critical raw materials and the unsustainable nature of conventional fabrication processes. Recent developments in quantum computing and topological quantum materials offer a transformative path forward. In particular, materials exhibiting non-Hermitian physics and topological protection, such as topological insulators and superconductors, enable robust, energy-efficient electronic states. These states are resilient to disorder and local perturbations, positioning them as ideal candidates for next-generation quantum devices. Non-Hermitian systems, which break traditional Hermitian constraints, have revealed phenomena like the skin effect, wherein eigenstates accumulate at boundaries, violating bulk-boundary correspondence. This effect has recently been observed in semiconductor-based quantum Hall devices, marking a significant milestone in condensed matter physics. By integrating these non-Hermitian topological principles into semiconductor technology, researchers can unlock new functionalities for fault-tolerant quantum computing, low-power electronics, and ultra-sensitive sensing platforms. This convergence of topology, quantum physics, and semiconductor engineering may redefine the future of electronic and photonic devices. Full article
Show Figures

Figure 1

21 pages, 5851 KiB  
Article
A Janus Amyloid-like Nanofilm Inhibits Colorectal Cancer Postoperative Recurrence and Abdominal Adhesion via Synergistic Enzyme Cascade
by Man Zhang, Junhao Kou, Zhenyi Song, Ling Qiu, Chunzhao Yang and Qi Xue
Nanomaterials 2025, 15(9), 670; https://doi.org/10.3390/nano15090670 (registering DOI) - 28 Apr 2025
Viewed by 30
Abstract
Postoperative peritoneal adhesion and high recurrence rates are critical challenges in the clinical treatment of colorectal cancer. In this study, based on amyloid-like protein self-assembly technology, a novel Janus protein film was developed. The protein film encapsulates glucose oxidase (GOx) and catalase (CAT), [...] Read more.
Postoperative peritoneal adhesion and high recurrence rates are critical challenges in the clinical treatment of colorectal cancer. In this study, based on amyloid-like protein self-assembly technology, a novel Janus protein film was developed. The protein film encapsulates glucose oxidase (GOx) and catalase (CAT), which is named PTL@GC. Through a one-step method involving cysteine-reduced lysozyme-induced amyloid-like self-assembly, the film was co-loaded with GOx and CAT to achieve synergistic anti-adhesion and anti-tumor recurrence effects. The Janus film features a hydrophobic side that stably adheres to the intestinal surface without exogenous chemical modification and a hydrophilic side that prevents adhesion. The loaded GOx selectively induces disulfidptosis in SLC7A11-overexpressing tumor cells, while CAT degrades H2O2 to alleviate hypoxia and inhibit oxidative stress, significantly reducing adhesion-related fibrosis. The experimental results demonstrate that PTL@GC exhibited excellent mechanical properties, high enzyme activity retention (>90%), and controllable degradability (complete metabolism within 50 days). In animal models, PTL@GC reduced postoperative adhesion area by 22.77%, decreased local tumor burden to 28.42% of the control group, and achieved an inhibition rate of 58.49%, without inducing systemic toxicity. This study presents a biologically safe and functionally synergistic approach to addressing dual complications following colorectal cancer surgery, offering potential insights for future research on multifunctional Janus materials. Full article
(This article belongs to the Special Issue Design and Applications of Protein/Peptide Nanomaterials)
Show Figures

Figure 1

18 pages, 8764 KiB  
Article
Synergistic Removal of Cr(VI) Utilizing Oxalated-Modified Zero-Valent Iron: Enhanced Electron Selectivity and Dynamic Fe(II) Regeneration
by Song Hou, Jiangkun Du, Haibo Ling, Sen Quan, Jianguo Bao and Chuan Yi
Nanomaterials 2025, 15(9), 669; https://doi.org/10.3390/nano15090669 (registering DOI) - 28 Apr 2025
Viewed by 39
Abstract
To address the challenges of environmental adaptability and passivation in nanoscale zero-valent iron (nFe0) systems, we developed oxalate-modified nFe0 (nFeoxa) through a coordination-driven synthesis strategy, aiming to achieve high-efficiency Cr(VI) removal with improved stability and reusability. Structural characterization [...] Read more.
To address the challenges of environmental adaptability and passivation in nanoscale zero-valent iron (nFe0) systems, we developed oxalate-modified nFe0 (nFeoxa) through a coordination-driven synthesis strategy, aiming to achieve high-efficiency Cr(VI) removal with improved stability and reusability. Structural characterization (STEM and FT-IR) confirmed the formation of a FeC2O4/nFe0 heterostructure, where oxalate coordinated with Fe(II) to construct a semiconductor interface that effectively inhibits anoxic passivation while enabling continuous electron supply, achieving 100% Cr(VI) removal efficiency within 20 min at an optimal oxalate/Fe molar ratio of 1/29. Mechanistic studies revealed that the oxalate ligand accelerates electron transfer from the Fe0 core to the surface via the FeC2O4-mediated pathway, as evidenced by EIS and LSV test analyses. This process dynamically regenerates surface Fe(II) active sites rather than relying on static-free Fe(II) adsorption. XPS and STEM further demonstrated that Cr(VI) was reduced to Cr(III) and uniformly co-precipitated with Fe(II/III)-oxalate complexes, effectively immobilizing chromium. The synergy between the protective semiconductor layer and the ligand-enhanced electron transfer endows nFeoxa with superior reactivity. This work provides a ligand-engineering strategy to design robust nFe0-based materials for sustainable remediation of metal oxyanion-contaminated water. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

35 pages, 6358 KiB  
Article
Development of Diopside-Modified Marl-Based Dielectric Composite for Microelectronics Applications
by Nassima Riouchi, Oussama Riouchi, Othmane Lamrani, El Hassan Yahakoub, Mohammed Mansori, Boštjan Genorio, Mitja Kolar, Petranka Petrova, Soufian El Barkany, Mohamed Abou-Salama and Mohamed Loutou
Nanomaterials 2025, 15(9), 668; https://doi.org/10.3390/nano15090668 (registering DOI) - 27 Apr 2025
Viewed by 73
Abstract
This research explores the modification of marl by the incorporation of diopside (CaMgSi2O6) to develop a composite material with improved dielectric properties, while addressing environmental and economic challenges through the use of abundant natural resources. X-ray fluorescence (XRF) analysis [...] Read more.
This research explores the modification of marl by the incorporation of diopside (CaMgSi2O6) to develop a composite material with improved dielectric properties, while addressing environmental and economic challenges through the use of abundant natural resources. X-ray fluorescence (XRF) analysis reveals a high silicate content in the raw marl, mainly SiO2 (68.12%) and Al2O3 (12.54%), while laser particle size analysis indicates a homogeneous grain size distribution centered around 100 µm. The composite was synthesized by the solid-state reaction method, achieving good phase homogeneity. X-ray diffraction (XRD) and infrared spectroscopy confirm the incorporation of diopside, while SEM analysis shows a porous morphology with granular aggregates. The modified material has an average particle size of 11.653 µm, optimizing the electrical properties. Impedance spectroscopy demonstrates improved dielectric performance, with accumulated permittivity and reduced losses, which improves energy storage and dissipation. Tests showed the remarkable stability of dielectric properties over a wide frequency range (10 Hz to 10 MHz) and low-temperature dependence. The performance was demonstrated on a single sample with a thickness of 0.63 mm, demonstrating consistent efficiency. These results position the diopside-modified marl as a promising candidate for electrochemical and microelectronic applications. Full article
Show Figures

Figure 1

19 pages, 8907 KiB  
Article
Preparation of Polylactide/Halloysite-Nanoclay/Polytetrafluoro-Ethylene Composite Foam and Study of Properties and Morphology
by Silla George Raju, Hanieh Kargarzadeh and Andrzej Galeski
Nanomaterials 2025, 15(9), 667; https://doi.org/10.3390/nano15090667 (registering DOI) - 27 Apr 2025
Viewed by 171
Abstract
Halloysite nanoclay (HNC) and as-polymerized polytetrafluoroethylene powder (PTFE) were introduced into biodegradable polylactic acid (PLA) via a melt mixing technique to enhance its mechanical, rheological properties and foaming ability. The synergetic effects of these fillers on the morphological, mechanical, thermal, and foaming properties [...] Read more.
Halloysite nanoclay (HNC) and as-polymerized polytetrafluoroethylene powder (PTFE) were introduced into biodegradable polylactic acid (PLA) via a melt mixing technique to enhance its mechanical, rheological properties and foaming ability. The synergetic effects of these fillers on the morphological, mechanical, thermal, and foaming properties of PLA were investigated. Results indicated that the tensile properties were improved in comparison to neat PLA. Differential Scanning Calorimetry (DSC) revealed a decrease in PLA crystallization time with increasing filler concentration, indicating a strong nucleating effect on PLA crystallization. Extensional flow tests showed that strain hardening in PLA composites is influenced by fillers, with PTFE particularly exhibiting a more pronounced effect, attributed to nanofibrillation and entanglement during melt processing. The addition of a dual-filler system improved the melt strength and viscosity of PLA, resulting in foams with decreased cell size and increased cell density. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

11 pages, 2231 KiB  
Article
Investigating Floating-Gate Topology Influence on van der Waals Memory Performance
by Hao Zheng, Yusang Qin, Caifang Gao, Junyi Fang, Yifeng Zou, Mengjiao Li and Jianhua Zhang
Nanomaterials 2025, 15(9), 666; https://doi.org/10.3390/nano15090666 (registering DOI) - 27 Apr 2025
Viewed by 117
Abstract
As a critical storage technology, the material selection and structural design of flash memory devices are pivotal to their storage density and operational characteristics. Although van der Waals materials can potentially take over the scaling roadmap of silicon-based technologies, the scaling mechanisms and [...] Read more.
As a critical storage technology, the material selection and structural design of flash memory devices are pivotal to their storage density and operational characteristics. Although van der Waals materials can potentially take over the scaling roadmap of silicon-based technologies, the scaling mechanisms and optimization principles at low-dimensional scales remain to be systematically unveiled. In this study, we experimentally demonstrated that the floating-gate length can significantly affect the memory window characteristics of memory devices. Experiments involving various floating-gate and tunneling-layer configurations, combined with TCAD simulations, were conducted to reveal the electrostatic coupling behaviors between floating gate and source/drain electrodes during shaping of the charge storage capabilities. Fundamental performance characteristics of the designed memory devices, including a large memory ratio (82.25%), good retention (>50,000 s, 8 states), and considerable endurance characteristics (>2000 cycles), further validate the role of floating-gate topological structures in manipulating low-dimensional memory devices, offering valuable insights to drive the development of next-generation memory technologies. Full article
(This article belongs to the Special Issue Applications of 2D Materials in Nanoelectronics)
Show Figures

Graphical abstract

14 pages, 4885 KiB  
Article
Monodisperse SiO2 Spheres: Efficient Synthesis and Applications in Chemical Mechanical Polishing
by Jinlong Ge, Yu Cao, Hui Han, Xiaoqi Jin, Jing Liu, Yuhong Jiao, Qiuqin Wang and Yan Gao
Nanomaterials 2025, 15(9), 665; https://doi.org/10.3390/nano15090665 (registering DOI) - 27 Apr 2025
Viewed by 132
Abstract
The atomic level polishing of a material surface affects the accuracy of devices and the application of materials. Silica slurries play an important role in chemical mechanical polishing (CMP) by polishing the material surface. In this study, an efficient and controllable Stöber approach [...] Read more.
The atomic level polishing of a material surface affects the accuracy of devices and the application of materials. Silica slurries play an important role in chemical mechanical polishing (CMP) by polishing the material surface. In this study, an efficient and controllable Stöber approach was developed to synthesize uniform monodisperse silica spheres with different cationic surfactants. The obtained silica spheres exhibited a regular shape with a particle size of 50–150 nm and were distributed evenly and narrowly. The highest surface specific area of the silica spheres was approximately 1155.9 m2/g, which was conducive to the polish process. The monodisperse SiO2 spheres were applied as abrasives in chemical mechanical polishing. The surface micrographs of silicon wafers during the CMP process were studied using atomic force microscopy (AFM). The results demonstrated that the surface roughness Ra values reduced from 1.07 nm to 0.979 nm and from 1.05 nm to 0.933 nm when using a CTAB-SiO2 microsphere as an abrasive. These results demonstrate the advantages of monodisperse SiO2 spheres as abrasive materials in chemical mechanical planarization processes. Full article
(This article belongs to the Topic Surface Science of Materials)
Show Figures

Figure 1

15 pages, 3210 KiB  
Article
Electrocatalyst of PdNi Particles on Carbon Black for Hydrogen Oxidation Reaction in Alkaline Membrane Fuel Cell
by Carolina Silva-Carrillo, Edgar Alonso Reynoso-Soto, Ivan Cruz-Reyes, Moisés Israel Salazar-Gastélum, Balter Trujillo-Navarrete, Sergio Pérez-Sicairos, José Roberto Flores-Hernández, Tatiana Romero-Castañón, Francisco Paraguay-Delgado and Rosa María Félix-Navarro
Nanomaterials 2025, 15(9), 664; https://doi.org/10.3390/nano15090664 (registering DOI) - 27 Apr 2025
Viewed by 106
Abstract
This work reports the synthesis of PdNi bimetallic particles and Pd on Carbon black (Vulcan XC-72) by reverse microemulsion and the chemical reduction of metallic complexes. The physicochemical characterization techniques used for the bimetallic and metallic materials were TGA, STEM, ICP-OES, and XRD. [...] Read more.
This work reports the synthesis of PdNi bimetallic particles and Pd on Carbon black (Vulcan XC-72) by reverse microemulsion and the chemical reduction of metallic complexes. The physicochemical characterization techniques used for the bimetallic and metallic materials were TGA, STEM, ICP-OES, and XRD. Also, the electrocatalysts were studied by electrochemical techniques such as anodic CO stripping and β-NiOOH reduction to elucidate the Pd and Ni surface sites participation in the reactions. The electrocatalysts were evaluated in the anodic reaction in anion-exchange membrane fuel cells (AEMFC) and the hydrogen oxidation reaction (HOR) in alkaline media. The results indicate that PdNi/C electrocatalysts exhibited higher electrocatalytic activity than Pd/C electrocatalysts in both the half-cell test and in the AEMFC, even with the same Pd loading, which is attributed to the bifunctional mechanism that provides OH- groups in oxophilic sites associated to Ni, that can facilitate the desorption of Hads in the Pd sites for the bimetallic material. Full article
Show Figures

Graphical abstract

17 pages, 1133 KiB  
Article
Near-Infrared to T-Ray Frequency Conversion Using Kagome Photonic Crystal Resonators
by Deepika Tyagi, Vijay Laxmi, Ahsan Irshad, Abida Parveen, Mehboob Alam, Yibin Tian and Zhengbiao Ouyang
Nanomaterials 2025, 15(9), 663; https://doi.org/10.3390/nano15090663 (registering DOI) - 27 Apr 2025
Viewed by 128
Abstract
Kagome lattices have attracted significant research interest due to their unique interplay of geometry, topology, and material properties. They provide deep insights into strongly correlated electron systems, novel quantum phases, and advanced material designs, making them fundamental in condensed matter physics and material [...] Read more.
Kagome lattices have attracted significant research interest due to their unique interplay of geometry, topology, and material properties. They provide deep insights into strongly correlated electron systems, novel quantum phases, and advanced material designs, making them fundamental in condensed matter physics and material engineering. This work presents an efficient method for terahertz (THz) wave generation across the entire THz spectrum, leveraging high-quality-factor Kagome-shaped silicon photonic crystal resonators. In the proposed simulation-based approach, an infrared (IR) single-frequency wave interacts with an induced resonance mode within the resonator, producing a THz beat frequency. This beat note is then converted into a standalone THz radiation (T-ray) wave using an amplitude demodulator. Simulations confirm the feasibility of our method, demonstrating that a conventional single-frequency wave can induce resonance and generate a stable beat frequency. The proposed technique is highly versatile, extending beyond THz generation to frequency conversion in electronics, optics, and acoustics, among other domains. Its high efficiency, compact design, and broad applicability offer a promising solution to challenges in THz technology. Furthermore, our findings establish a foundation for precise frequency manipulation, unlocking new possibilities in signal processing, sensing, detection, and communication systems. Full article
(This article belongs to the Special Issue 2D Materials and Metamaterials in Photonics and Optoelectronics)
Show Figures

Graphical abstract

15 pages, 10381 KiB  
Article
Photocatalytic Response of Flash-Lamp-Annealed Titanium Oxide Films Produced by Oblique-Angle Deposition
by Raúl Gago, Slawomir Prucnal, Francisco Javier Palomares, Leopoldo Álvarez-Fraga, Ana Castellanos-Aliaga and David G. Calatayud
Nanomaterials 2025, 15(9), 662; https://doi.org/10.3390/nano15090662 (registering DOI) - 26 Apr 2025
Viewed by 85
Abstract
We report the photocatalytic (PC) response of titanium oxide (TiOx) films grown by reactive DC magnetron sputtering under oblique-angle-deposition (OAD) and subjected to post-deposition flash-lamp-annealing (FLA). Under ballistic growth conditions, OAD yields TiOx films with either compact or inclined columnar [...] Read more.
We report the photocatalytic (PC) response of titanium oxide (TiOx) films grown by reactive DC magnetron sputtering under oblique-angle-deposition (OAD) and subjected to post-deposition flash-lamp-annealing (FLA). Under ballistic growth conditions, OAD yields TiOx films with either compact or inclined columnar structure as the deposition incidence angle (α) with respect to the substrate normal varies from zero to grazing. On the one hand, films produced for α ≤ 45° display a compact and opaque structure comprising the formation of nanocrystalline cubic titanium monoxide (c-TiO) phase. On the other hand, films grown at larger α (≥60°) display tilted columns with amorphous structure, yielding highly porous films and an increased transparency for α > 75°. For TiOx films grown at large α, FLA induces phase transformation to nanocrystalline anatase from the amorphous state. In contrast to as-grown samples, FLA samples display PC activity as assessed by bleaching of methyl orange dye. The best PC performance is attained for an intermediate situation (α = 60–75°) between compact and columnar structures. The obtained photoactivity is discussed in terms of the different microstructures obtained by OAD and posterior phase formation upon FLA. Full article
Show Figures

Graphical abstract

13 pages, 5903 KiB  
Article
Assembled Carbon Nanostructure Prepared by Spray Freeze Drying for Si-Based Anodes
by Wanxiong Zhu, Liewen Guo, Kairan Li, Mengxue Shen, Chang Lu, Zipeng Jiang, Huaihe Song and Ang Li
Nanomaterials 2025, 15(9), 661; https://doi.org/10.3390/nano15090661 (registering DOI) - 26 Apr 2025
Viewed by 111
Abstract
Silicon-based materials provide a new pathway to break through the energy storage limits of battery systems but their industrialization process is still constrained by inherent diffusion hysteresis and unstable electrode structures. In this work, we propose a novel structural design strategy employing a [...] Read more.
Silicon-based materials provide a new pathway to break through the energy storage limits of battery systems but their industrialization process is still constrained by inherent diffusion hysteresis and unstable electrode structures. In this work, we propose a novel structural design strategy employing a modified spray freeze drying technique to construct multidimensional carbon nanostructures. The continuous morphological transition from carbon nanowires to carbon nanosheets was facilitated by the inducement of ultralow-temperature phase separation and the effect of polymer self-assembly. The unique wrinkled carbon nanosheet encapsulation effectively mitigated the stress concentration induced by the aggregation of silicon nanoparticles, while the open two-dimensional structure buffered the volume changes of silicon. As expected, the SSC-5M composite retained a reversible capacity of 1279 mAh g−1 after 100 cycles at 0.2 C (1 C = 1700 mAh g−1) and exhibited a capacity retention of 677.1 mAh g−1 after 400 cycles at 1 C, demonstrating excellent cycling stability. This study offers a new strategy for the development of silicon-based energy storage devices. Full article
(This article belongs to the Special Issue Nanoscale Carbon Materials for Advanced Energy-Related Applications)
Show Figures

Figure 1

24 pages, 7274 KiB  
Article
Segmental Mobility, Interfacial Polymer, Crystallization and Conductivity Study in Polylactides Filled with Hybrid Lignin-CNT Particles
by Panagiotis A. Klonos, Rafail O. Ioannidis, Andreas Pitsavas, Nikolaos D. Bikiaris, Sofia P. Makri, Stefania Koutsourea, Alexios Grigoropoulos, Ioanna Deligkiozi, Alexandros Zoikis-Karathanasis, Apostolos Kyritsis and Dimitrios N. Bikiaris
Nanomaterials 2025, 15(9), 660; https://doi.org/10.3390/nano15090660 (registering DOI) - 26 Apr 2025
Viewed by 86
Abstract
A newly developed series of polylactide (PLA)-based composites filled with hybrid lignin–carbon nanotube (CNTs) particles were studied using thermal and dielectric techniques. The low CNT content (up to 3 wt%) aimed to create conductive networks while enhancing particle–polymer adhesion. For comparison, PLA composites [...] Read more.
A newly developed series of polylactide (PLA)-based composites filled with hybrid lignin–carbon nanotube (CNTs) particles were studied using thermal and dielectric techniques. The low CNT content (up to 3 wt%) aimed to create conductive networks while enhancing particle–polymer adhesion. For comparison, PLA composites based on lignin and CNTs were also examined. Although infrared spectroscopy showed no significant interactions, calorimetry and dielectric spectroscopy revealed a rigid interfacial PLA layer exhibiting restricted mobility. The interfacial polymer amount was found to increase monotonically with the particle content. The hybrid-filled PLA composites exhibited electrical conductivity, whereas PLA/Lignin and PLA/CNTs remained insulators. The result was indicative of a synergistic effect between lignin and CNTs, leading to lowering of the percolation threshold to 3 wt%, being almost ideal for sustainable conductive printing inks. Despite the addition of lignin and CNTs at different loadings, the glass transition temperature of PLA (60 °C) decreased slightly (softer composites) by 1–2 K in the composites, while the melting temperature remained stable at ~175 °C, favoring efficient processing. Regarding crystallization, which is typically slow in PLA, the hybrid lignin/CNT particles promoted crystal nucleation without increasing the total crystallizable fraction. Overall, these findings highlight the potential of eco-friendly conductive PLA composites for new-generation applications, such as printed electronics. Full article
Show Figures

Graphical abstract

14 pages, 3714 KiB  
Article
Scindapsus Aureus Resistive Random-Access Memory with Synaptic Plasticity and Sound Localization Function
by Lu Wang, Jiachu Xie, Wantao Su, Zhenjie Du and Mingzhu Zhang
Nanomaterials 2025, 15(9), 659; https://doi.org/10.3390/nano15090659 (registering DOI) - 26 Apr 2025
Viewed by 131
Abstract
This work presents a memristive device based on a composite of Scindapsus aureus (SA) and gold nanoparticles (Au NPs), which exhibits excellent resistive switching characteristics and supports multiple forms of synaptic plasticity such as paired-pulse facilitation (PPF), spike-rate-dependent plasticity (SRDP), and spike-timing-dependent plasticity [...] Read more.
This work presents a memristive device based on a composite of Scindapsus aureus (SA) and gold nanoparticles (Au NPs), which exhibits excellent resistive switching characteristics and supports multiple forms of synaptic plasticity such as paired-pulse facilitation (PPF), spike-rate-dependent plasticity (SRDP), and spike-timing-dependent plasticity (STDP). The device demonstrates reliable retention, reproducibility, and switching stability. The SA:Au NP composite originates from a natural plant source and possesses green, biodegradable, and biocompatible features, highlighting its potential as a sustainable bio-memristive material for neuromorphic systems. Furthermore, the device exhibits sensitivity to the time interval between paired input pulses, simulating the neural response to interaural time differences (ITDs) in the auditory system. Although not a conventional acoustic sensor, its Δt-responsiveness based on synaptic behavior reveals promising potential in neuromorphic auditory perception and perceptual computing applications. This study provides a foundational synaptic unit for future artificial hearing systems capable of spatial sound localization. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

12 pages, 2284 KiB  
Article
Activated Carbon from Spartina alterniflora and Its N-Doped Material for Li-Ion Battery Anode
by Hong Shang, Xinmeng Hao, Yougui Zhou, Jia Peng, Lihua Guo, Huipeng Li and Bing Sun
Nanomaterials 2025, 15(9), 658; https://doi.org/10.3390/nano15090658 (registering DOI) - 26 Apr 2025
Viewed by 178
Abstract
The rampant growth of Spartina alterniflora has been wreaking havoc on the coastal ecosystems, leading to a serious environmental challenge in recent years. One potential solution to this issue involves converting Spartina alterniflora into activated carbon, offering a potential remedy for pollution while [...] Read more.
The rampant growth of Spartina alterniflora has been wreaking havoc on the coastal ecosystems, leading to a serious environmental challenge in recent years. One potential solution to this issue involves converting Spartina alterniflora into activated carbon, offering a potential remedy for pollution while creating value in energy storage applications. Herein, through a facile carbonization process with sodium hydroxide activation, we successfully transformed obsolete Spartina alterniflora into a porous carbon material (called SAC) and its nitrogen-doped derivative (denoted as SANC) by using melamine as the nitrogen source in a similar procedure. The amorphous structure of these materials was confirmed to enhance lithium-ion storage and electrolyte permeation, making them ideal for use as anodes in lithium-ion batteries. As a result, both SAC and SANC, derived from Spartina alterniflora, exhibited outstanding electrochemical performance including high capacity (456.7 and 780.8 mA h g−1 for SAC and SANC, respectively, at the current density of 6 mA g−1), excellent rate performance (from 6 to 600 mA g−1) and long-term cycling stability. Notably, compared to SAC, its N-doped derivative SANC showed superior properties in the battery (retaining a reversible capacity of 412.9 mA h g−1 at the current density of 6 mA g−1 even after 600 repeated charge–discharge cycles), demonstrating the significantly positive impact of heteroatom doping. This work not only offers a strategy to mitigate environmental challenges but also demonstrates the potential for converting waste biomass into a valuable resource for energy storage applications. Full article
Show Figures

Figure 1

12 pages, 2468 KiB  
Article
Tailoring Co Distribution in PtCo Alloys for Enhanced Oxygen Reduction Reaction Activity and Durability in Fuel Cells
by Jinhee Lee, Miso Kim, Bongho Lee, Jeonghee Jang, Suhwan Lee, Dae Jong You, Juseok Song and Namgee Jung
Nanomaterials 2025, 15(9), 657; https://doi.org/10.3390/nano15090657 (registering DOI) - 26 Apr 2025
Viewed by 147
Abstract
In polymer electrolyte membrane fuel cells (PEMFCs), substantial efforts have been made to focus on Pt and Pt alloy catalysts to enhance their catalytic performance. However, these catalysts still fail to meet practical requirements and existing PtCo catalysts face durability issues due to [...] Read more.
In polymer electrolyte membrane fuel cells (PEMFCs), substantial efforts have been made to focus on Pt and Pt alloy catalysts to enhance their catalytic performance. However, these catalysts still fail to meet practical requirements and existing PtCo catalysts face durability issues due to structural limitations. In this study, carbon-supported hybrid PtCo alloy catalysts (H-PtCo) with improved activity and durability are synthesized by reducing Co precursors onto pre-formed colloidal Pt nanoparticles. Elemental mapping via transmission electron microscopy reveals that the H-PtCo catalysts exhibit a high concentration of Co atoms near the sub-surface. This Co enrichment results from the conformal deposition of Co atoms onto Pt nanoparticles, followed by high-temperature treatment. Electrochemical characterizations, including linear sweep voltammetry (LSV) and accelerated durability test (ADT), demonstrate that the H-PtCo catalysts outperform conventional PtCo alloys (C-PtCo), synthesized via the co-reduction method of Pt and Co, in terms of oxygen reduction reaction (ORR) activity and stability. Furthermore, single-cell tests reveal that the H-PtCo catalysts significantly enhance both performance and durability compared to C-PtCo and Pt catalysts. These findings emphasize the critical role of Co atom distribution within PtCo nanoparticles in improving catalytic efficiency and long-term stability. Full article
Show Figures

Graphical abstract

9 pages, 1300 KiB  
Perspective
Revealing the Role of Interfacial Charge Transfer in Mechanoluminescence
by Xinyi Huo, Shaoxin Li, Bing Sun, Zhonglin Wang and Di Wei
Nanomaterials 2025, 15(9), 656; https://doi.org/10.3390/nano15090656 (registering DOI) - 26 Apr 2025
Viewed by 153
Abstract
Mechanoluminescence (ML) involves light emission induced by mechanical stress, categorized into triboluminescence (TL), piezoluminescence (PL), sonoluminescence (SL), and triboelectrification-induced electroluminescence (TIEL). The most common is TL, in which crystal fracture generates opposing charges that excite surrounding molecules. In PL, applied pressure induces light [...] Read more.
Mechanoluminescence (ML) involves light emission induced by mechanical stress, categorized into triboluminescence (TL), piezoluminescence (PL), sonoluminescence (SL), and triboelectrification-induced electroluminescence (TIEL). The most common is TL, in which crystal fracture generates opposing charges that excite surrounding molecules. In PL, applied pressure induces light emission via charge recombination. SL occurs in gas-saturated liquids under sudden pressure changes. TIEL has gained increasing attention as it operates without the need for asymmetric crystal structures or strain fields. However, conventional ML faces practical limitations due to its dependence on complex structures or strain fields. In contrast, contact-electro-luminescence (CEL) has emerged as a promising alternative, enabling luminol luminescence via charge transfer and reactive oxygen species generation through contact electrification (CE) between inert dielectrics and water. CEL provides a simpler and more versatile approach than traditional ML techniques, underscoring the pivotal role of charge-transfer processes. This perspective highlights the potential of CEL in expanding ML applications across sensing, energy conversion, and environmental monitoring. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

12 pages, 1774 KiB  
Article
Rapid and Ultrasensitive Short-Chain PFAS (GenX) Detection in Water via Surface-Enhanced Raman Spectroscopy with a Hierarchical Nanofibrous Substrate
by Ali K. Ismail, Shobha Mantripragada, Renzun Zhao, Sherine O. Obare and Lifeng Zhang
Nanomaterials 2025, 15(9), 655; https://doi.org/10.3390/nano15090655 (registering DOI) - 25 Apr 2025
Viewed by 85
Abstract
GenX, the trade name of hexafluoropropylene oxide dimer acid (HFPO-DA) and its ammonium salt, is a short-chain PFAS that has emerged as a substitute for the legacy PFAS perfluorooctanoic acid (PFOA). However, GenX has turned out to be more toxic than people originally [...] Read more.
GenX, the trade name of hexafluoropropylene oxide dimer acid (HFPO-DA) and its ammonium salt, is a short-chain PFAS that has emerged as a substitute for the legacy PFAS perfluorooctanoic acid (PFOA). However, GenX has turned out to be more toxic than people originally thought. In order to monitor and regulate water quality according to recently issued drinking water standards for GenX, rapid and ultrasensitive detection of GenX is urgently needed. For the first time, this study reports ultrasensitive (as low as 1 part per billion (ppb)) and fast detection (in minutes) of GenX in water via surface-enhanced Raman spectroscopy (SERS) using a hierarchical nanofibrous SERS substrate, which was prepared by assembling ~60 nm Ag nanoparticles on electrospun nylon-6 nanofibers through a “hot start” method. The findings in this research highlight the potential of the engineered hierarchical nanofibrous SERS substrate for enhanced detection of short-chain PFASs in water, contributing to the improvement of environmental monitoring and management strategies for PFASs. Full article
(This article belongs to the Special Issue Nanoscale Materials for Detection and Remediation of Water Pollutants)
Show Figures

Graphical abstract

30 pages, 10292 KiB  
Review
Boron Phosphide: A Comprehensive Overview of Structures, Properties, Synthesis, and Functional Applications
by Qilong Wu, Jiamin Wu, Maoping Xu, Yi Liu, Qian Tian, Chuang Hou and Guoan Tai
Nanomaterials 2025, 15(9), 654; https://doi.org/10.3390/nano15090654 - 25 Apr 2025
Viewed by 70
Abstract
Boron phosphide (BP), an emerging III–V semiconductor, has garnered significant interest because of its exceptional structural stability, wide bandgap, high thermal conductivity, and tunable electronic properties. This review provides a comprehensive analysis of BP, commencing with its distinctive structural characteristics and proceeding with [...] Read more.
Boron phosphide (BP), an emerging III–V semiconductor, has garnered significant interest because of its exceptional structural stability, wide bandgap, high thermal conductivity, and tunable electronic properties. This review provides a comprehensive analysis of BP, commencing with its distinctive structural characteristics and proceeding with a detailed examination of its exceptional physicochemical properties. Recent progress in BP synthesis is critically examined, with a focus on key fabrication strategies such as chemical vapor deposition, high-pressure co-crystal melting, and molten salt methods. These approaches have enabled the controlled growth of high-quality BP nanostructures, including bulk crystals, nanoparticles, nanowires, and thin films. Furthermore, the review highlights the broad application spectrum of BP, spanning photodetectors, sensors, thermal management, energy conversion, and storage. Despite these advances, precise control over the growth, morphology, and phase purity of BP’s low-dimensional structures remains a critical challenge. Addressing these limitations requires innovative strategies in defect engineering, heterostructure design, and scalable manufacturing techniques. This review concludes by outlining future research directions that are essential for unlocking BP’s potential in next-generation electronics, sustainable energy technologies, and multifunctional materials. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

21 pages, 4573 KiB  
Article
Comparative Property Analysis of One-by-One Rib Lingerie Fabrics Fabricated from Modal Fibers and Microfibers
by Antoneta Tomljenović and Juro Živičnjak
Nanomaterials 2025, 15(9), 653; https://doi.org/10.3390/nano15090653 - 25 Apr 2025
Viewed by 55
Abstract
Although the applicability of modal fibers and microfibers for the production of lingerie knitwear is confirmed by commercial use, their share in the total consumption of man-made cellulosic fibers is very low. Their applicability in the fabrication of one-by-one rib weft-knitted fabrics, as [...] Read more.
Although the applicability of modal fibers and microfibers for the production of lingerie knitwear is confirmed by commercial use, their share in the total consumption of man-made cellulosic fibers is very low. Their applicability in the fabrication of one-by-one rib weft-knitted fabrics, as well as comparative analyses of the influence of differently spun modal and modal-micro yarns on physical, usage, esthetic and wearing comfort properties have not been sufficiently investigated. In this study, a comparative analysis of innovative rib knitted fabrics made of regular–fine modal fibers (1.3 dtex) and 1.0 dtex microfibers is therefore carried out to determine their properties at different relaxation stages. For this purpose, two lines of one-by-one rib fabrics were fabricated from ring-, air-jet- and open-end rotor-spun modal and modal-micro yarns in the same way. The results showed that rib lingerie fabrics fabricated from modal microfibers are lighter and thinner, have a higher voluminosity and moisture absorption capacity, and consequently have slightly lower porosity, breathability and abrasion resistance than fabrics made from modal regular–fine fibers, as well as comparable dimensional stability, tensile strength and pilling properties, but mainly after a wet relaxation treatment. Full article
Show Figures

Figure 1

16 pages, 16663 KiB  
Article
Mechanical Response of FeNiCrCoAl High-Entropy Alloys at the Nanoscale: Predictions from Molecular Dynamics
by Ernesto Amaro, Joaly Delgado-Alvarez, Jairo Andrés Martínez-Uribe and Sergio Mejía-Rosales
Nanomaterials 2025, 15(9), 652; https://doi.org/10.3390/nano15090652 - 25 Apr 2025
Viewed by 139
Abstract
The mechanical response of high-entropy alloys (HEAs), specifically the FeNiCrCoAl HEA, was studied at both bulk and nanoparticle scales using molecular dynamics simulations. These simulations were performed using the LAMMPS software with an Embedded Atom Method (EAM) potential. The results show that Bulk [...] Read more.
The mechanical response of high-entropy alloys (HEAs), specifically the FeNiCrCoAl HEA, was studied at both bulk and nanoparticle scales using molecular dynamics simulations. These simulations were performed using the LAMMPS software with an Embedded Atom Method (EAM) potential. The results show that Bulk HEAs exhibited enhanced hardening and plasticity, while in nanoparticles, distinct deformation patterns were observed, including nanotwin formation, V-shaped stacking fault planes, and intermittent dislocation activity due to free surface effects. The crystallographic orientation with respect to the compression significantly affected the deformation mechanisms, with the [100] direction favoring progressive hardening, while the [110] and [111] directions exhibited different stacking fault and dislocation dynamics. A detailed analysis using von Mises stress and dislocation analysis provided insights into the effects of scale on mechanical properties. Full article
(This article belongs to the Special Issue Modeling, Simulation and Optimization of Nanomaterials)
Show Figures

Graphical abstract

18 pages, 1255 KiB  
Systematic Review
Evaluation of Factors Influencing Fluoride Release from Dental Nanocomposite Materials: A Systematic Review
by Alicja Morawska-Wilk, Julia Kensy, Sylwia Kiryk, Agnieszka Kotela, Jan Kiryk, Mateusz Michalak, Natalia Grychowska, Magdalena Fast, Jacek Matys and Maciej Dobrzyński
Nanomaterials 2025, 15(9), 651; https://doi.org/10.3390/nano15090651 - 25 Apr 2025
Viewed by 73
Abstract
This systematic review aims to evaluate factors influencing fluoride release from dental nanocomposite materials. A comprehensive database search was conducted in February 2025 using PubMed, Web of Science, and Scopus. The search terms “fluoride release AND nanocomposites” were applied following PRISMA guidelines. Out [...] Read more.
This systematic review aims to evaluate factors influencing fluoride release from dental nanocomposite materials. A comprehensive database search was conducted in February 2025 using PubMed, Web of Science, and Scopus. The search terms “fluoride release AND nanocomposites” were applied following PRISMA guidelines. Out of 336 initially identified articles, 17 studies met the inclusion criteria and were selected for analysis. Seventeen studies confirmed that fluoride-releasing nanocomposites are effective, with fluoride ion release influenced by material composition, nanofiller type, and storage conditions. Studies showed that acidic environments (pH 4–5.5) significantly enhanced fluoride release, particularly in materials containing nano-CaF2 or fluoridated hydroxyapatite, which responded to pH changes. Quantitative comparisons revealed that daily fluoride release values ranged from <0.1 μg/cm2/day in commercial composites to greater than 6500 μg/cm2/day in BT-based nanocomposites and up to 416,667 μg/cm2/day in modified GICs. Additionally, some composites exhibited fluoride recharging capabilities, with materials incorporating pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA) demonstrating prolonged fluoride and calcium ion release after recharge exposure, rather than the highest initial values. Despite releasing lower fluoride levels than conventional GIC and RMGI materials, fluoride-releasing nanocomposites demonstrate significant anti-caries potential and clinical applicability, with some formulations supporting periodontal regeneration and caries prevention around orthodontic brackets. However, the lack of consistency in study protocols—including differences in storage media, sample geometry, and measurement methods—limits direct comparison of outcomes. Therefore, the most critical direction for future research is the development of standardized testing protocols to ensure reliable, comparable results across material groups. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

18 pages, 2635 KiB  
Article
Rescaling Flow Curves of Protein-Stabilized Emulsions
by Santiago F. Velandia, Philippe Marchal, Véronique Sadtler, Cécile Lemaitre, Daniel Bonn and Thibault Roques-Carmes
Nanomaterials 2025, 15(9), 650; https://doi.org/10.3390/nano15090650 - 25 Apr 2025
Viewed by 67
Abstract
In this study, we investigate the flow behavior of oil-in-water Pickering emulsions stabilized with bovine serum albumin (BSA). Through the use of a phase transition analogy and scaling parameters previously applied to surfactant-stabilized emulsions, we successfully describe the flow behavior, suggesting remarkable similarity [...] Read more.
In this study, we investigate the flow behavior of oil-in-water Pickering emulsions stabilized with bovine serum albumin (BSA). Through the use of a phase transition analogy and scaling parameters previously applied to surfactant-stabilized emulsions, we successfully describe the flow behavior, suggesting remarkable similarity in the rheology of these emulsion categories. Additionally, we explore the possibility of extending this modeling framework to the oscillatory mode. Above the jamming fraction, the scaled data in the oscillatory regime present a similar trend as the rotational rheology curves. However, upon closer examination of the scaling conditions, it becomes evident that the rescaling does not accurately describe the behavior of G*. Despite this, our findings shed light on the universality of scaling parameters and provide valuable insights into the rheological behavior of these complex fluids. Full article
Show Figures

Figure 1

12 pages, 6788 KiB  
Article
NaOH as an Aqueous Electrolyte to Improve the Performance of Electric Double-Layer Capacitors—A Molecular Dynamics Study
by Lifeng Ni and Jin Yu
Nanomaterials 2025, 15(9), 649; https://doi.org/10.3390/nano15090649 (registering DOI) - 25 Apr 2025
Viewed by 88
Abstract
Aqueous electrolytes are widely used in supercapacitors (SCs) because of their high stability, wide voltage window, and safety features at elevated temperatures. Among alkaline electrolytes, KOH is most commonly used, and other electrolytes are less addressed. In this work, we meticulously investigated the [...] Read more.
Aqueous electrolytes are widely used in supercapacitors (SCs) because of their high stability, wide voltage window, and safety features at elevated temperatures. Among alkaline electrolytes, KOH is most commonly used, and other electrolytes are less addressed. In this work, we meticulously investigated the diffusion behavior of Na+ and K+ in aqueous electrolytes going through hierarchical porous activated carbon materials by employing molecular dynamic simulations. Our results show that the diffusion coefficient of NaOH is much larger than that of KOH under different concentrations, electric fields, and temperatures. We attributed this to the radical of ions going through the mesopores with layered structures. The advantage of high diffusion and low cost of NaOH electrolyte suggests that it could be a potential candidate to improve the performance of SCs. Full article
(This article belongs to the Special Issue Application of Nanoporous Carbon in Energy)
Show Figures

Graphical abstract

Previous Issue
Back to TopTop