MoO3 Nanobelts Synthesized from Recycled Industrial Powder and Applied as Electrodes for Energy Storage Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of MoO3-Nanobelts
2.2. Electrode Preparation
2.3. Characterization Techniques
3. Results and Discussions
3.1. Morphological Characterization
3.2. Electrochemical Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CV | Cyclic Voltammetry |
GCD | Galvanostatic Charge Discharge |
EIS | Electrochemical Impedance Spectroscopy |
EES | Electrochemical Energy Storage |
TMOs | Transition Metal Oxides |
CRMs | Critical Raw Materials |
P-MOOX | Recycled Molybdenum Powder |
PVDF | Polyvinylidene Difluoride |
XRD | X-Ray Diffraction |
SEM | Scanning Electron Microscope |
ICDD | International Center Diffraction Data |
References
- Huang, J.; Yuan, K.; Chen, Y. Wide Voltage Aqueous Asymmetric Supercapacitors: Advances, Strategies, and Challenges. Adv. Funct. Mater. 2022, 32, 2108107. [Google Scholar] [CrossRef]
- Lukic, S.M.; Cao, J.; Bansal, R.C.; Rodriguez, F.; Emadi, A. Energy Storage Systems for Automotive Applications. IEEE Trans. Ind. Electron. 2008, 55, 2258–2267. [Google Scholar] [CrossRef]
- Peters, J.F.; Baumann, M.; Zimmermann, B.; Braun, J.; Weil, M. The environmental impact of Li-Ion batteries and the role of key parameters—A review. Renew. Sustain. Energy Rev. 2017, 67, 491–506. [Google Scholar] [CrossRef]
- Aiping, Y.; Chabot, V.; Zhang, J. Electrochemical Supercapacitors for Energy Storage and Delivery; Taylor & Francis: Abingdon, UK, 2013. [Google Scholar]
- Koohi-Fayegh, S.; Rosen, M.A. A review of energy storage types, applications and recent developments. J. Energy Storage 2020, 27, 101047. [Google Scholar] [CrossRef]
- Mohanty, R.; Mohanty, U.A.; Parida, K. A Comprehensive Review of Ammonium Ion Hybrid Supercapacitors: Exploring Recent Breakthroughs and Future Horizons. Energy Fuels 2024, 38, 13585–13611. [Google Scholar] [CrossRef]
- Shuja, A.; Khan, H.R.; Murtaza, I.; Ashraf, S.; Abid, Y.; Farid, F.; Sajid, F. Supercapacitors for energy storage applications: Materials, devices and future directions: A comprehensive review. J. Alloys Compd. 2024, 1009, 176924. [Google Scholar] [CrossRef]
- George, N.S.; Jose, L.M.; Aravind, A. Review on Transition Metal Oxides and Their Composites for Energy Storage Application. In Updates on Supercapacitors; IntechOpen: Rijeka, Croatia, 2023. [Google Scholar] [CrossRef]
- Delbari, S.A.; Ghadimi, L.S.; Hadi, R.; Farhoudian, S.; Nedaei, M.; Babapoor, A.; Namini, A.S.; Van Le, Q.; Shokouhimehr, M.; Asl, M.S.; et al. Transition metal oxide-based electrode materials for flexible supercapacitors: A review. J. Alloys Compd. 2021, 857, 158281. [Google Scholar] [CrossRef]
- Filho, W.L.L.; Kotter, R.; Özuyar, P.G.; Abubakar, I.R.; Eustachio, J.H.P.P.; Matandirotya, N.R. Understanding Rare Earth Elements as Critical Raw Materials. Sustainability 2023, 15, 1919. [Google Scholar] [CrossRef]
- Ali, H.H.; Arif, M.; Habiba, U.; Khurshid, A.; Azhar, U.; Sagir, M.; Mushtaq, M.A.; Ullah, S.; Assiri, M.A.; Talib, U.; et al. Rationally designed Mo-based advanced nanostructured materials for energy storage technologies: Advances and prospects. Sustain. Mater. Technol. 2023, 38, e00738. [Google Scholar] [CrossRef]
- Jia, Y.; Ma, Y. Advances in MoO3-based supercapacitors for electrochemical energy storage. J. Energy Storage 2024, 85, 111103. [Google Scholar] [CrossRef]
- Junior, A.B.B.; Martins, F.P.; Cezarino, L.O.; Liboni, L.B.; Tenório, J.A.S.; Espinosa, D.C.R. The sustainable development goals, urban mining, and the circular economy. Extr. Ind. Soc. 2023, 16, 101367. [Google Scholar] [CrossRef]
- Kim, K.; Candeago, R.; Rim, G.; Raymond, D.; Park, A.-H.A.; Su, X. Electrochemical approaches for selective recovery of critical elements in hydrometallurgical processes of complex feedstocks. iScience 2021, 24, 102374. [Google Scholar] [CrossRef]
- Aloraini, D.A.; Saeed, A. Recycling lead-acid batteries in polymeric materials to enhance their efficiency as gamma ray shielding materials. J. Alloys Compd. 2025, 1024, 180227. [Google Scholar] [CrossRef]
- Xavier, L.H.; Ottoni, M.; Abreu, L.P.P. A comprehensive review of urban mining and the value recovery from e-waste materials. Resour. Conserv. Recycl. 2023, 190, 106840. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Tong, K.-Y.; Chuang, S.-P.; Yılmaz, M.; Chiang, C.-Y.; Deng, M.-J. 3.3V customizable, recyclable, and remanufacturable flexible symmetric supercapacitors. J. Alloys Compd. 2025, 1016, 179025. [Google Scholar] [CrossRef]
- Duraisamy, S.; Ganguly, A.; Sharma, P.K.; Benson, J.; Davis, J.; Papakonstantinou, P. One-Step Hydrothermal Synthesis of Phase-Engineered MoS 2 /MoO3 Electrocatalysts for Hydrogen Evolution Reaction. ACS Appl. Nano Mater. 2021, 4, 2642–2656. [Google Scholar] [CrossRef]
- Xie, J.; Yin, J.; Xu, L.; Ahmed, A. Nanostructured anode materials for high-performance lithium-ion batteries. J. Alloys Compd. 2024, 1008, 176620. [Google Scholar] [CrossRef]
- Mineo, G.; Bruno, E.; Mirabella, S. Advances in WO3-Based Supercapacitors: State-of-the-Art Research and Future Perspectives. Nanomaterials 2023, 13, 1418. [Google Scholar] [CrossRef]
- Liang, N.; Zhao, Y. A review on thermal stability of nanostructured materials. J. Alloys Compd. 2023, 938, 168528. [Google Scholar] [CrossRef]
- Lu, X.; Wang, R.; Hao, L.; Yang, F.; Jiao, W.; Zhang, J.; Peng, P.; Liu, W. Preparation of quantum dots from MoO3 nanosheets by UV irradiation and insight into morphology changes. J. Mater. Chem. C Mater. 2016, 4, 11449–11456. [Google Scholar] [CrossRef]
- Meduri, P.; Clark, E.; Kim, J.H.; Dayalan, E.; Sumanasekera, G.U.; Sunkara, M.K. MoO3-x Nanowire Arrays As Stable and High-Capacity Anodes for Lithium Ion Batteries. Nano Lett. 2012, 12, 1784–1788. [Google Scholar] [CrossRef]
- Zheng, L.; Xu, Y.; Jin, D.; Xie, Y. Novel Metastable Hexagonal MoO3 Nanobelts: Synthesis, Photochromic, and Electrochromic Properties. Chem. Mater. 2009, 21, 5681–5690. [Google Scholar] [CrossRef]
- Zhu, Y.; Yao, Y.; Luo, Z.; Pan, C.; Yang, J.; Fang, Y.; Deng, H.; Liu, C.; Tan, Q.; Liu, F.; et al. Nanostructured MoO3 for Efficient Energy and Environmental Catalysis. Molecules 2019, 25, 18. [Google Scholar] [CrossRef] [PubMed]
- da Silva Júnior, M.G.; Arzuza, L.C.C.; Sales, H.B.; Farias, R.M.d.C.; Neves, G.d.A.; Lira, H.d.L.; Menezes, R.R. A Brief Review of MoO3 and MoO3-Based Materials and Recent Technological Applications in Gas Sensors, Lithium-Ion Batteries, Adsorption, and Photocatalysis. Materials 2023, 16, 7657. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, J.; Peng, S.; Qian, D.; Luo, D.; Wang, Q.; Tian, Z.; Liu, Y. Facile synthesis of α-MoO3 nanobelts and their pseudocapacitive behavior in an aqueous Li2SO4 solution. J. Mater. Chem. A Mater. 2013, 1, 2588. [Google Scholar] [CrossRef]
- Sui, L.; Xu, Y.-M.; Zhang, X.-F.; Cheng, X.-L.; Gao, S.; Zhao, H.; Cai, Z.; Huo, L.-H. Construction of three-dimensional flower-like α-MoO3 with hierarchical structure for highly selective triethylamine sensor. Sens. Actuators B Chem. 2015, 208, 406–414. [Google Scholar] [CrossRef]
- Du, K.; Fu, W.; Wei, R.; Yang, H.; Xu, J.; Chang, L.; Yu, Q.; Zou, G. Ultrasonic-assisted synthesis of highly dispersed MoO3 nanospheres using 3-mercaptopropyltrimethoxysilane. Ultrason. Sonochem. 2008, 15, 233–238. [Google Scholar] [CrossRef]
- Ghosh, K.; Yue, C.Y. Development of 3D MoO3/graphene aerogel and sandwich-type polyaniline decorated porous MnO2−graphene hybrid film based high performance all-solid-state asymmetric supercapacitors. Electrochim. Acta 2018, 276, 47–63. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, L.; Guo, X. Ultrathin mesoporous NiMoO4-modified MoO3 core/shell nanostructures: Enhanced capacitive storage and cycling performance for supercapacitors. Chem. Eng. J. 2018, 353, 615–625. [Google Scholar] [CrossRef]
- Wang, R.; Feng, L.; Yang, W.; Zhang, Y.; Zhang, Y.; Bai, W.; Liu, B.; Zhang, W.; Chuan, Y.; Zheng, Z.; et al. Effect of Different Binders on the Electrochemical Performance of Metal Oxide Anode for Lithium-Ion Batteries. Nanoscale Res. Lett. 2017, 12, 575. [Google Scholar] [CrossRef]
- Bragg, W.H.; Bragg, W.L. The reflection of X-rays by crystals. Proc. R. Soc. Lond. A 1913, 88, 428–438. [Google Scholar] [CrossRef]
- Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46. [Google Scholar] [CrossRef]
- Zanatta, A.R. Revisiting the optical bandgap of semiconductors and the proposal of a unified methodology to its determination. Sci. Rep. 2019, 9, 11225. [Google Scholar] [CrossRef] [PubMed]
- González, A.; Goikolea, E.; Barrena, J.A.; Mysyk, R. Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev. 2016, 58, 1189–1206. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Y.; Song, Y.; Gu, Y.; Pang, H.; Zhu, R. Successful In Situ Growth of Conductive MOFs on 2D Cobalt-Based Compounds and Their Electrochemical Performance. Inorg. Chem. 2024, 63, 10324–10334. [Google Scholar] [CrossRef] [PubMed]
- Tsyganov, A.; Vikulova, M.; Zotov, I.; Korotaev, E.V.; Plugin, I.; Sysoev, V.; Kirilenko, D.; Rabchinskii, M.K.; Asoyan, A.; Gorokhovsky, A.V.; et al. Application of W1.33 CTz MXenes obtained by hydrothermal etching as an additive to enhance the electrochemical energy storage properties of binder-free Ti3C2Tx MXene films. Dalton Trans. 2025, 54, 8547–8558. [Google Scholar] [CrossRef]
- Ali, A.; Ammar, M.; Ali, M.; Yahya, Z.; Javaid, M.Y.; Hassan, S.U.; Ahmed, T. Mo-doped ZnO nanoflakes on Ni-foam for asymmetric supercapacitor applications. RSC Adv. 2019, 9, 27432–27438. [Google Scholar] [CrossRef]
- Zhang, W. Nanoparticle Aggregation: Principles and Modeling; Springer: Dordrecht, The Netherlands, 2014; pp. 19–43. [Google Scholar] [CrossRef]
- Ursino, F.; Mineo, G.; Scandurra, A.; Scuderi, M.; Forestan, A.; Alba, C.; Reitano, R.; Terrasi, A.; Mirabella, S. Processing of molybdenum industrial waste into sustainable and efficient nanocatalysts for water electrolysis reactions. Nano Res. 2024, 17, 9585–9593. [Google Scholar] [CrossRef]
- Lupan, O.; Cretu, V.; Deng, M.; Gedamu, D.; Paulowicz, I.; Kaps, S.; Mishra, Y.K.; Polonskyi, O.; Zamponi, C.; Kienle, L.; et al. Versatile Growth of Freestanding Orthorhombic α-Molybdenum Trioxide Nano- and Microstructures by Rapid Thermal Processing for Gas Nanosensors. J. Phys. Chem. C 2014, 118, 15068–15078. [Google Scholar] [CrossRef]
- Chiang, T.H.; Yeh, H.C. A novel synthesis of α-MoO3 nanobelts and the characterization. J. Alloys Compd. 2014, 585, 535–541. [Google Scholar] [CrossRef]
- Siciliano, T.; Tepore, A.; Filippo, E.; Micocci, G.; Tepore, M. Characteristics of molybdenum trioxide nanobelts prepared by thermal evaporation technique. Mater. Chem. Phys. 2009, 114, 687–691. [Google Scholar] [CrossRef]
- Wen, P.; Guo, J.; Ren, L.; Wang, C.; Lan, Y.; Jiang, X. One-Step Hydrothermal Preparation of 1D α-MoO3 Nanobelt Electrode Material for Supercapacitor. Nano 2019, 14, 1950085. [Google Scholar] [CrossRef]
- Nadimicherla, R.; Chen, W.; Guo, X. Synthesis and characterization of α-MoO3 nanobelt composite positive electrode materials for lithium battery application. Mater. Res. Bull. 2015, 66, 140–146. [Google Scholar] [CrossRef]
- Lei, W.W.; Hao, J.; Liu, D.D.; Liu, B.B.; Wang, X.; Chen, X.H.; Cui, Q.L.; Zou, G.T.; Liu, J.; Jiang, S. High-pressure Raman scattering and x-ray diffraction of phase transitions in MoO3. J. Appl. Phys. 2009, 105, 023513. [Google Scholar] [CrossRef]
- Wei, G.; Qin, W.; Zhang, D.; Wang, G.; Kim, R.; Zheng, K.; Wang, L. Synthesis and field emission of MoO3 nanoflowers by a microwave hydrothermal route. J. Alloys Compd. 2009, 481, 417–421. [Google Scholar] [CrossRef]
- Hu, X.K.; Qian, Y.T.; Song, Z.T.; Huang, J.R.; Cao, R.; Xiao, J.Q. Comparative Study on MoO3 and HxMoO3 Nanobelts: Structure and Electric Transport. Chem. Mater. 2008, 20, 1527–1533. [Google Scholar] [CrossRef]
- Kodan, N.; Singh, A.P.; Vandichel, M.; Wickman, B.; Mehta, B.R. Favourable band edge alignment and increased visible light absorption in β-MoO3/α-MoO3 oxide heterojunction for enhanced photoelectrochemical performance. Int. J. Hydrogen Energy 2018, 43, 15773–15783. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, J.; Zhou, Y.; Zhang, Z.; Xu, Y.; Naramoto, H.; Yamamoto, S. Preparation of MoO3 nanostructures and their optical properties. J. Phys. Condens. Matter 2003, 15, L547–L552. [Google Scholar] [CrossRef]
- Scanlon, D.O.; Watson, G.W.; Payne, D.J.; Atkinson, G.R.; Egdell, R.G.; Law, D.S.L. Theoretical and Experimental Study of the Electronic Structures of MoO3 and MoO2. J. Phys. Chem. C 2010, 114, 4636–4645. [Google Scholar] [CrossRef]
- Sinaim, H.; Ham, D.J.; Lee, J.S.; Phuruangrat, A.; Thongtem, S.; Thongtem, T. Free-polymer controlling morphology of α-MoO3 nanobelts by a facile hydrothermal synthesis, their electrochemistry for hydrogen evolution reactions and optical properties. J. Alloys Compd. 2012, 516, 172–178. [Google Scholar] [CrossRef]
- Kansomket, C.; Laokhen, P.; Yingnakorn, T.; Patcharawit, T.; Khumkoa, S. Extraction of molybdenum from a spent HDS catalyst using alkali leaching reagent. J. Met. Mater. Miner. 2022, 32, 88–94. [Google Scholar] [CrossRef]
- Dai, J.; Qi, X.; Xia, L.; Xue, Q.; Luo, L.; Wang, X.; Yang, C.; Li, D.; Xie, H.; Cabot, A.; et al. Aqueous Ammonium-Ion Supercapacitors with Unprecedented Energy Density and Stability Enabled by Oxygen Vacancy-Enriched MoO3 @C. Adv. Funct. Mater. 2023, 33, 2212440. [Google Scholar] [CrossRef]
- Niu, Y.; Su, H.; Li, X.; Li, J.; Qi, Y. Synthesis of porous α-MoO3 microspheres as electrode materials for supercapacitors. J. Alloys Compd. 2022, 898, 162863. [Google Scholar] [CrossRef]
- Lian, Z.; Mao, X.; Song, Y.; Yao, K.; Zhang, R.; Yan, X.; Li, M. The Preparation of High-Performance MoO3 Nanorods for 2.1 V Aqueous Asymmetric Supercapacitor. Nanomaterials 2024, 14, 2029. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhang, H.; Hu, H.; He, Z. Large-Scale Production and Integrated Application of Micro-Supercapacitors. Chem.—A Eur. J. 2024, 30, e202304160. [Google Scholar] [CrossRef] [PubMed]
- Lazanas, A.C.; Prodromidis, M.I. Electrochemical Impedance Spectroscopy—A Tutorial. ACS Meas. Sci. Au 2023, 3, 162–193. [Google Scholar] [CrossRef] [PubMed]
- Anantharaj, S.; Ede, S.R.; Karthick, K.; Sankar, S.S.; Sangeetha, K.; Karthik, P.E.; Kundu, S. Precision and correctness in the evaluation of electrocatalytic water splitting: Revisiting activity parameters with a critical assessment. Energy Environ. Sci. 2018, 11, 744–771. [Google Scholar] [CrossRef]
- Kundu, M.; Mondal, D.; Mondal, I.; Baral, A.; Halder, P.; Biswas, S.; Paul, B.; Bose, N.; Basu, R.; Das, S. A rational preparation strategy of phase tuned MoO3 nanostructures for high-performance all-solid asymmetric supercapacitor. J. Energy Chem. 2023, 87, 192–206. [Google Scholar] [CrossRef]
- Lufrano, F.; Staiti, P.; Minutoli, M. Evaluation of nafion based double layer capacitors by electrochemical impedance spectroscopy. J. Power Sources 2003, 124, 314–320. [Google Scholar] [CrossRef]
- Shakir, I.; Sarfraz, M. Evaluation of Electrochemical Charge Storage Mechanism and Structural Changes in Intertwined MoO3–MWCNTs Composites for Supercapacitor Applications. Electrochim. Acta 2014, 147, 380–384. [Google Scholar] [CrossRef]
Electrode Material | Electrolyte | Voltage Window [V] | Specific Capacitance [Fg−1] | Reference |
---|---|---|---|---|
α-MoO3 nanobelts | 6 M KOH | 0 to 1 | 136 | [30] |
α-MoO3 nanobelts | 3 M KOH | 0 to 0.65 | 206 | [31] |
MoO3-MWCNTs | 1 M NaOH | −0.75 to 0.3 | 98 | [63] |
α-MoO3 nanobelts | 1 M KOH | −0.6 to 0.1 | 290 | This work |
α-MoO3 nanobelts | 1 M NH4OH | −0.6 to 0.1 | 100 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Mauro, A.; Ursino, F.; Mineo, G.; Terrasi, A.; Mirabella, S. MoO3 Nanobelts Synthesized from Recycled Industrial Powder and Applied as Electrodes for Energy Storage Applications. Nanomaterials 2025, 15, 1380. https://doi.org/10.3390/nano15171380
Di Mauro A, Ursino F, Mineo G, Terrasi A, Mirabella S. MoO3 Nanobelts Synthesized from Recycled Industrial Powder and Applied as Electrodes for Energy Storage Applications. Nanomaterials. 2025; 15(17):1380. https://doi.org/10.3390/nano15171380
Chicago/Turabian StyleDi Mauro, Angelo, Federico Ursino, Giacometta Mineo, Antonio Terrasi, and Salvo Mirabella. 2025. "MoO3 Nanobelts Synthesized from Recycled Industrial Powder and Applied as Electrodes for Energy Storage Applications" Nanomaterials 15, no. 17: 1380. https://doi.org/10.3390/nano15171380
APA StyleDi Mauro, A., Ursino, F., Mineo, G., Terrasi, A., & Mirabella, S. (2025). MoO3 Nanobelts Synthesized from Recycled Industrial Powder and Applied as Electrodes for Energy Storage Applications. Nanomaterials, 15(17), 1380. https://doi.org/10.3390/nano15171380