Nano- and Microplastics in the Brain: An Emerging Threat to Neural Health
Abstract
1. Introduction
2. Types, Size, and Chemical Properties of Brain-Accumulated Plastics
2.1. Classification by Size
2.2. Types of Polymers and Additives
2.3. Surface Functionalization and Bioreactivity: Contribution to Toxin Transport
3. Presence of Microplastics in the Brain: Evidence and Detection
3.1. Detection Techniques
3.2. Human and Animal Studies Showing Evidence of Nano- and Microplastic Accumulation
3.3. Impact on Other Organs and Tissues
4. Mechanistic Relationships Between Plastic-Induced Neurotoxicity and Neurodegenerative Disease
4.1. Disruption of the Blood–Brain Barrier and Synergistic Neurotoxicity
4.2. Neuroinflammation and Microglial Activation
4.3. Oxidative Stress and Mitochondrial Dysfunction in Alzheimer’s and Parkinson’s Disease
4.4. Protein Misfolding and Aggregation in AD and PD
4.5. Disruption of Neurotransmission and Synaptic Dysfunction
5. Impact of Micro- and Nanoplastics on Neurological Rehabilitation and Recovery
Condition | Plastic Type | Model/Sample | Mechanisms Involved | Observed Effects | Reference |
---|---|---|---|---|---|
Global cerebral ischemia | PS-NPs (0.5 μm) Dose: 50 mg/kg for one week | In vivo (Male Sprague Dawley rats) | Neuroinflammation, oxidative stress, microglia activation | Aggravate motor and cognitive impairment after ischemia ↑ Neuronal death, pro-inflammatory factors, ↓ Dendritic spine and synaptic proteins | Kim et al., 2025 [117] |
Partial carotid ligation | NPs (50 nm) Dose: 25 mg/kg, 1 time/daily | In vivo, C57/BL6 mice | Neuroinflammation, inhibition of cellular autophagy, reduced synaptic plasticity and signalling | Worsened stroke recovery, toxic to hippocampus and amygdala ↑ Behavioural abnormalities (anxiety and depression) ↓ cellular autophagy (damage to hippocampus and amygdala) | Wang et al., 2025 [109] |
Carotid artery plaque | Detection of NMPs (including PE and PVC) | In vivo, human (patients with carotid artery plaque) | Accumulation of NMPs | ↑ risk of myocardial infarction, stroke, or death from any cause at 34 months of follow-up | Marfella et al., 2024 [74] |
Alzheimer’s Disease | PS-NPs | In silico, in vitro, HMC3 (human microglial clone 3) cells | ↑ Aβ aggregation, impaired microglial clearance, neuroinflammation, metabolic dysfunction | Accelerated disease progression ↑ Aβ-driven neuroimmune dysregulation | Wang et al., 2025 [108] |
Parkinson’s Disease-like degeneration | PS-NPs (50 nm) Doses: 0.25, 2.5, 25, and 250 mg/kg daily (28 days) | In vivo, C57BL/6J mice | Mitochondrial and synaptic dysfunction, ↓ lysosomal degradation, energy metabolism disorders | PD-like symptoms, induced PD-like neurodegeneration by cell-specific pathways | Liang et al., 2022 [112] |
Parkinson’s Disease | PS-NPs (amine surface modifications) | In silico, in vitro, primary neuron cultures In vivo, male wild-type outbred CD1 mice | Bind α-syn amphipathic and NAC domains, impaired lysosomal degradation, accelerate fibril-seeded α-synuclein pathology in neurons | ↑ α-syn accumulation, α-syn spread throughout brain | Liu et al., 2023 [113] |
Neurodegeneration | PS 2 µm MPs, 100 nm, and 20 nm NPs. Polyester MFs of ~10 µm (width) × 50 to 2000 µm (length) Dose: 0.68 mg/kg for 28 days (5 days on and 2 days of rest) | In vivo, C57BL/6J female mice In vitro, human bone marrow-derived neural precursor cells (NPCs) | Oxidative stress | Dose-, shape-, and size- dependent neurotoxicity and neurodegeneration. Cortical neuron vulnerability (nociceptive neurons are more resistant) | Vojnits et al., 2024 [97] |
Cognitive dysfunction | 5.0–5.9 µm MPs Dose: 0.01, 0.1 and 1 mg/day 30 days exposure | In vivo, male Kunming mice | ↑ Escape latency (dose-dependent manner); SOD activity; MDA levels; ROS generation; AchE and ChAT activity ↓ Ratio of brain weight and body weight; GSH; acetylcholine | Oxidative stress Hippocampal cellular disorganization Cognitive deficits (learning and memory) | Wang et al., 2022 [118] |
Cognitive dysfunction | 25 nm PS-NPs Dose: 10, 25 and 50 mg/kg (6 months) | In vivo, male C57BL/6 mice | ↑ Memory errors and incorrect movements; ROS generation Impairment in spatial learning and memory Synaptic and DNA damage | Cognitive dysfunction Neuroinflammation | Chu et al., 2022 [119] |
Cognitive dysfunction | 500 nm PS-NPs Dose: 0.1, 1 and 10 ppm (28 days) | In vivo, male Swiss albino mice | ↓ Neuron and spine density at 1 ppm; number of Nissl bodies; BDNF expression Disruption of dendritic arborization Oxidative stress | Cognitive and neurological impairments Neurophysiological changes Impairment of synaptic activity and morphology | Suman et al., 2024 [120] |
Motor dysfunction | 100–500 nm PS-NPs and 1.0, 2.0 and 5.0 μm PS-MPs Dose: 1.0 mg L−1 (3 days) | In vivo, Caenorhabditis elegans | Neuronal damage, size-dependent toxicity | ↓ Survival; size-dependent excitatory toxicity on locomotor behaviour; damage to cholinergic and GABAergic neurons | Lei et al., 2018 [27] |
Cognitive dysfunction | PS-NH2 50 nm NPs and 2 µm MPs Dose: 50 and 200 mg/kg (10 days) | In vivo, male C57BL/6 mice | ↓ Cell proliferation Mitochondrial dysfunction Cell apoptosis | Memory impairment | Yang et al., 2023 [116] |
5.1. Evidence from Disease Models
5.1.1. Stroke and Traumatic Brain Injury
5.1.2. Neurodegenerative Diseases
5.1.3. Effects on Cognition and Motor Function
5.2. Plastics as an Emerging Barrier to Effective Neurorehabilitation
6. Future Research Directions and Knowledge Gaps
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jahedi, F.; Fard, N.J.H. Micro- and Nanoplastic Toxicity in Humans: Exposure Pathways, Cellular Effects, and Mitigation Strategies. Toxicol. Rep. 2025, 14, 102043. [Google Scholar] [CrossRef]
- Kochanek, A.; Grąz, K.; Potok, H.; Gronba-Chyła, A.; Kwaśny, J.; Wiewiórska, I.; Ciuła, J.; Basta, E.; Łapiński, J. Micro- and Nanoplastics in the Environment: Current State of Research, Sources of Origin, Health Risks, and Regulations—A Comprehensive Review. Toxics 2025, 13, 564. [Google Scholar] [CrossRef]
- Christopher, E.A.; Christopher-de Vries, Y.; Devadoss, A.; Mandemaker, L.D.B.; Van Boxel, J.; Copsey, H.M.; Dusza, H.M.; Legler, J.; Meirer, F.; Muncke, J.; et al. Impacts of Micro- and Nanoplastics on Early-Life Health: A Roadmap towards Risk Assessment. Microplastics Nanoplastics 2024, 4, 13. [Google Scholar] [CrossRef]
- Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.C.A.; Baiocco, F.; Draghi, S.; et al. Plasticenta: First Evidence of Microplastics in Human Placenta. Environ. Int. 2021, 146, 106274. [Google Scholar] [CrossRef] [PubMed]
- Winiarska, E.; Jutel, M.; Zemelka-Wiącek, M. The Potential Impact of Nano- and Microplastics on Human Health: Understanding Human Health Risks. Environ. Res. 2024, 251, 118535. [Google Scholar] [CrossRef] [PubMed]
- Prüst, M.; Meijer, J.; Westerink, R.H.S. The Plastic Brain: Neurotoxicity of Micro- and Nanoplastics. Part. Fibre Toxicol. 2020, 17, 24. [Google Scholar] [CrossRef]
- Tang, K.H.D.; Li, R.; Li, Z.; Wang, D. Health Risk of Human Exposure to Microplastics: A Review. Environ. Chem. Lett. 2024, 22, 1155–1183. [Google Scholar] [CrossRef]
- Nihart, A.J.; Garcia, M.A.; El Hayek, E.; Liu, R.; Olewine, M.; Kingston, J.D.; Castillo, E.F.; Gullapalli, R.R.; Howard, T.; Bleske, B.; et al. Bioaccumulation of Microplastics in Decedent Human Brains. Nat. Med. 2025, 31, 1114–1119. [Google Scholar] [CrossRef]
- Amato-Lourenço, L.F.; Dantas, K.C.; Júnior, G.R.; Paes, V.R.; Ando, R.A.; de Oliveira Freitas, R.; da Costa, O.M.M.M.; Rabelo, R.S.; Soares Bispo, K.C.; Carvalho-Oliveira, R.; et al. Microplastics in the Olfactory Bulb of the Human Brain. JAMA Netw. Open 2024, 7, e2440018. [Google Scholar] [CrossRef]
- Ehsanifar, M.; Yavari, Z. Neurotoxicity Following Exposure to Micro and Nanoplastics. OBM Neurobiol. 2025, 9, 277. [Google Scholar] [CrossRef]
- Kopatz, V.; Wen, K.; Kovács, T.; Keimowitz, A.S.; Pichler, V.; Widder, J.; Vethaak, A.D.; Hollóczki, O.; Kenner, L. Micro- and Nanoplastics Breach the Blood–Brain Barrier (BBB): Biomolecular Corona’s Role Revealed. Nanomaterials 2023, 13, 1404. [Google Scholar] [CrossRef]
- Paing, Y.M.M.; Eom, Y.; Song, G.B.; Kim, B.; Choi, M.G.; Hong, S.; Lee, S.H. Neurotoxic Effects of Polystyrene Nanoplastics on Memory and Microglial Activation: Insights from In Vivo and In Vitro Studies. Sci. Total Environ. 2024, 924, 171681. [Google Scholar] [CrossRef]
- Araújo, A.M.; Mota, C.; Ramos, H.; Faria, M.A.; Carvalho, M.; Ferreira, I.M.P.L.V.O. The Neurotoxic Threat of Micro- and Nanoplastics: Evidence from In Vitro and In Vivo Models. Arch. Toxicol. 2025, 99, 9. [Google Scholar] [CrossRef]
- Han, S.-W.; Choi, J.; Ryu, K.-Y. Recent Progress and Future Directions of the Research on Nanoplastic-Induced Neurotoxicity. Neural Regen. Res. 2024, 19, 331–335. [Google Scholar] [CrossRef]
- Toader, C.; Tataru, C.P.; Munteanu, O.; Serban, M.; Covache-Busuioc, R.-A.; Ciurea, A.V.; Enyedi, M. Decoding Neurodegeneration: A Review of Molecular Mechanisms and Therapeutic Advances in Alzheimer’s, Parkinson’s, and ALS. Int. J. Mol. Sci. 2024, 25, 12613. [Google Scholar] [CrossRef] [PubMed]
- Moiniafshari, K.; Zanut, A.; Tapparo, A.; Pastore, P.; Bogialli, S.; Abdolahpur Monikh, F. A Perspective on the Potential Impact of Microplastics and Nanoplastics on the Human Central Nervous System. Environ. Sci. Nano 2025, 12, 1809–1820. [Google Scholar] [CrossRef]
- Gou, X.; Fu, Y.; Li, J.; Xiang, J.; Yang, M.; Zhang, Y. Impact of Nanoplastics on Alzheimer ’s Disease: Enhanced Amyloid-β Peptide Aggregation and Augmented Neurotoxicity. J. Hazard. Mater. 2024, 465, 133518. [Google Scholar] [CrossRef]
- Liu, S. Neurotoxicities Induced by Micro/Nanoplastics: A Review Focusing on the Risks of Neurological Diseases. J. Hazard. Mater. 2024, 469, 134054. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Zeng, Y.; Zhang, P.; Zhu, B.; Feng, J.; Deng, T.; Fu, Z.; Liu, C.; Chen, C.; Zhang, Y. Polystyrene Nanoplastics Trigger Pyroptosis in Dopaminergic Neurons through TSC2/TFEB-Mediated Disruption of Autophagosome-Lysosome Fusion in Parkinson’s Disease. J. Transl. Med. 2025, 23, 631. [Google Scholar] [CrossRef]
- Zhang, L.; Xue, M.; Xin, Q.; Tang, J.; Liu, Y.; Bian, Z.; Zheng, X. Cellular Uptake of Polystyrene Nanoplastics with Surface Functionalization: An AIE-Based Quantitative Approach. Anal. Chim. Acta 2025, 1362, 344184. [Google Scholar] [CrossRef]
- Dąbrowska, A.; Komorowska, W.; Kriszt, B.; Szabó, I. Feasibility of Raman and FTIR Spectroscopy for Direct Microplastic Search in the Human Milk Samples: Comparative Qualitative Study. Ecotoxicol. Environ. Saf. 2025, 296, 118159. [Google Scholar] [CrossRef]
- Santos, F.A.; Andre, R.S.; Alvarenga, A.D.; Alves, A.L.M.M.; Correa, D.S. Micro- and Nanoplastics in the Environment: A Comprehensive Review on Detection Techniques. Environ. Sci. Nano 2025, 12, 3442–3467. [Google Scholar] [CrossRef]
- Li, Y.; Ling, W.; Yang, J.; Xing, Y. Risk Assessment of Microplastics in Humans: Distribution, Exposure, and Toxicological Effects. Polymers 2025, 17, 1699. [Google Scholar] [CrossRef] [PubMed]
- Gouin, T.; Ellis-Hutchings, R.; Pemberton, M.; Wilhelmus, B. Addressing the Relevance of Polystyrene Nano- and Microplastic Particles Used to Support Exposure, Toxicity and Risk Assessment: Implications and Recommendations. Part. Fibre Toxicol. 2024, 21, 39. [Google Scholar] [CrossRef]
- Nawab, A.; Ahmad, M.; Khan, M.T.; Nafees, M.; Khan, I.; Ihsanullah, I. Human Exposure to Microplastics: A Review on Exposure Routes and Public Health Impacts. J. Hazard. Mater. Adv. 2024, 16, 100487. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, Y.; Shao, Y.; Ray, S.S.; Wang, B.; Zhao, Z.; Yu, B.; Zhang, X.; Li, W.; Ding, J.; et al. A Review on the Occurrence, Detection Methods, and Ecotoxicity of Biodegradable Microplastics in the Aquatic Environment: New Cause for Concern. TrAC Trends Anal. Chem. 2024, 178, 117832. [Google Scholar] [CrossRef]
- Lei, L.; Liu, M.; Song, Y.; Lu, S.; Hu, J.; Cao, C.; Xie, B.; Shi, H.; He, D. Polystyrene (Nano)Microplastics Cause Size-Dependent Neurotoxicity, Oxidative Damage and Other Adverse Effects in Caenorhabditis Elegans. Environ. Sci. Nano 2018, 5, 2009–2020. [Google Scholar] [CrossRef]
- Cho, Y.; Seo, E.U.; Hwang, K.S.; Kim, H.; Choi, J.; Kim, H.N. Evaluation of Size-Dependent Uptake, Transport and Cytotoxicity of Polystyrene Microplastic in a Blood-Brain Barrier (BBB) Model. Nano Converg. 2024, 11, 40. [Google Scholar] [CrossRef]
- Skaba, D.; Fiegler-Rudol, J.; Dembicka-Mączka, D.; Wiench, R. Nanoplastics and Immune Disruption: A Systematic Review of Exposure Routes, Mechanisms, and Health Implications. Int. J. Mol. Sci. 2025, 26, 5228. [Google Scholar] [CrossRef]
- Rani-Borges, B.; Ando, R.A. How Small a Nanoplastic Can Be? A Discussion on the Size of This Ubiquitous Pollutant. Camb. Prism. Plast. 2024, 2, e23. [Google Scholar] [CrossRef]
- Du, B.; Li, T.; He, H.; Xu, X.; Zhang, C.; Lu, X.; Wang, Y.; Cao, J.; Lu, Y.; Liu, Y.; et al. Analysis of Biodistribution and In Vivo Toxicity of Varying Sized Polystyrene Micro and Nanoplastics in Mice. Int. J. Nanomed. 2024, 19, 7617–7630. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Wu, Y.; Shi, P.; Ni, Y.; Zeng, H.; Zhang, Z.; Zhao, C.; Sun, W.; Yi, Q. Mitigating Microplastic-Induced Organ Damage: Mechanistic Insights from the Microplastic-Macrophage Axes. Redox Biol. 2025, 84, 103688. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.-H.; Baek, S.M.; Park, H.J.; Bian, Y.; Chung, H.Y.; Bae, O.-N. Polystyrene Nanoplastics Promote the Blood-Brain Barrier Dysfunction through Autophagy Pathway and Excessive Erythrophagocytosis. Ecotoxicol. Environ. Saf. 2025, 289, 117471. [Google Scholar] [CrossRef]
- Wang, J.; Cong, J.; Wu, J.; Chen, Y.; Fan, H.; Wang, X.; Duan, Z.; Wang, L. Nanoplastic-Protein Corona Interactions and Their Biological Effects: A Review of Recent Advances and Trends. TrAC Trends Anal. Chem. 2023, 166, 117206. [Google Scholar] [CrossRef]
- Abdolahpur Monikh, F.; Lehtonen, Š.; Kekäläinen, J.; Karkossa, I.; Auriola, S.; Schubert, K.; Zanut, A.; Peltonen, S.; Niskanen, J.; Bandekar, M.; et al. Biotransformation of Nanoplastics in Human Plasma and Their Permeation through a Model in Vitro Blood-Brain Barrier: An in-Depth Quantitative Analysis. Nano Today 2024, 59, 102466. [Google Scholar] [CrossRef]
- Gan, A.J.W.; Chia, K.F.; Lim, C.L.; Tan, B.K.; Wong, S.F.; Chye, S.M.; Leong, C.O.; Koh, R.Y. Neurotoxicity of Nanoplastics: A Review. F1000Research 2024, 13, 793. [Google Scholar] [CrossRef]
- Dzierżyński, E.; Gawlik, P.J.; Puźniak, D.; Flieger, W.; Jóźwik, K.; Teresiński, G.; Forma, A.; Wdowiak, P.; Baj, J.; Flieger, J. Microplastics in the Human Body: Exposure, Detection, and Risk of Carcinogenesis: A State-of-the-Art Review. Cancers 2024, 16, 3703. [Google Scholar] [CrossRef]
- Samaei, S.H.-A.; Mojahednia, P.; Chen, J.; Li, Z.; Jaszczyszyn, K.; Kiedrzyńska, E.; Xue, J. What Does the “Trojan Horse” Carry? The Pollutants Associated with Microplastics/Nanoplastics in Water Environments. ACS EST Water 2025, 5, 1530–1545. [Google Scholar] [CrossRef]
- Barhoumi, B.; Metian, M.; Oberhaensli, F.; Mourgkogiannis, N.; Karapanagioti, H.K.; Bersuder, P.; Tolosa, I. Extruded Polystyrene Microplastics as a Source of Brominated Flame Retardant Additives in the Marine Environment: Long-Term Field and Laboratory Experiments. Environ. Int. 2023, 172, 107797. [Google Scholar] [CrossRef] [PubMed]
- Costa, H.E.; Cairrao, E. Effect of Bisphenol A on the Neurological System: A Review Update. Arch. Toxicol. 2024, 98, 1–73. [Google Scholar] [CrossRef]
- Chen, Y.; Nan, Y.; Xu, L.; Dai, A.; Orteg, R.M.M.; Ma, M.; Zeng, Y.; Li, J. Polystyrene Nanoplastics Exposure Induces Cognitive Impairment in Mice via Induction of Oxidative Stress and ERK/MAPK-Mediated Neuronal Cuproptosis. Part. Fibre Toxicol. 2025, 22, 13. [Google Scholar] [CrossRef]
- Henkel, C.; Hüffer, T.; Maletić, S.; Hofmann, T. Micro- and Nanoplastics as Transport Vectors for Organic Contaminants in the Environment: A Critical Review. Curr. Opin. Colloid Interface Sci. 2025, 78, 101934. [Google Scholar] [CrossRef]
- Yang, H.; Chen, Z.; Kong, L.; Xing, H.; Yang, Q.; Wu, J. A Review of Eco-Corona Formation on Micro/Nanoplastics and Its Effects on Stability, Bioavailability, and Toxicity. Water 2025, 17, 1124. [Google Scholar] [CrossRef]
- Coşkun, N.S.; Keskin, Ş.; Nassouhı, D.; Ergönül, M.B. A Mini-Review on the Microplastic-Heavy Metal Interactions and the Factors Affecting Their Fate in Aquatic Habitats. Commun. Fac. Sci. Univ. Ank. Ser. C Biol. 2024, 33, 162–193. [Google Scholar] [CrossRef]
- Fang, S.; Hua, C.; Yang, J.; Liu, F.; Wang, L.; Wu, D.; Ren, L. Combined Pollution of Soil by Heavy Metals, Microplastics, and Pesticides: Mechanisms and Anthropogenic Drivers. J. Hazard. Mater. 2025, 485, 136812. [Google Scholar] [CrossRef]
- Carriera, F.; Di Fiore, C.; Avino, P. Trojan Horse Effects of Microplastics: A Mini-Review about Their Role as a Vector of Organic and Inorganic Compounds in Several Matrices. AIMS Environ. Sci. 2023, 10, 732–742. [Google Scholar] [CrossRef]
- Moscatiello, G.Y.; Natale, C.; Inserra, M.; Morelli, A.; Russo, L.; Battajini, N.; Sironi, L.; Panzeri, D.; Corbelli, A.; De Luigi, A.; et al. The Surface Charge Both Influences the Penetration and Safety of Polystyrene Nanoparticles despite the Protein Corona Formation. Environ. Sci. Nano 2025, 12, 2857–2870. [Google Scholar] [CrossRef]
- Jiang, K.; Yu, Y.; Qiu, W.; Tian, K.; Guo, Z.; Qian, J.; Lu, H.; Zhan, C. Protein Corona on Brain Targeted Nanocarriers: Challenges and Prospects. Adv. Drug Deliv. Rev. 2023, 202, 115114. [Google Scholar] [CrossRef]
- Baghirov, H. Mechanisms of Receptor-Mediated Transcytosis at the Blood-Brain Barrier. J. Control. Release 2025, 381, 113595. [Google Scholar] [CrossRef]
- Khan, A.; Jia, Z. Recent Insights into Uptake, Toxicity, and Molecular Targets of Microplastics and Nanoplastics Relevant to Human Health Impacts. iScience 2023, 26, 106061. [Google Scholar] [CrossRef]
- Cui, T.; Shi, W.; Wang, H.; Lihui, A.N. Standardizing Microplastics Used for Establishing Recovery Efficiency When Assessing Microplastics in Environmental Samples. Sci. Total Environ. 2022, 827, 154323. [Google Scholar] [CrossRef]
- Pan, Y.; Xu, S.; Yang, X. Standardizing Methodologies to Study Microplastics and Nanoplastics in Cardiovascular Diseases. Trends Endocrinol. Metab. 2025, 36, 105–108. [Google Scholar] [CrossRef]
- Barceló, D.; Picó, Y.; Alfarhan, A.H. Microplastics: Detection in Human Samples, Cell Line Studies, and Health Impacts. Environ. Toxicol. Pharmacol. 2023, 101, 104204. [Google Scholar] [CrossRef]
- Roth, A.; Tannert, A.; Ziller, N.; Eiserloh, S.; Göhrig, B.; Guliev, R.R.; Gonzalez Vazquez, M.J.; Naumann, M.; Mosig, A.S.; Stengel, S.; et al. Quantification of Polystyrene Uptake by Different Cell Lines Using Fluorescence Microscopy and Label-Free Visualization of Intracellular Polystyrene Particles by Raman Microspectroscopic Imaging. Cells 2024, 13, 454. [Google Scholar] [CrossRef]
- Mariano, S.; Tacconi, S.; Fidaleo, M.; Rossi, M.; Dini, L. Micro and Nanoplastics Identification: Classic Methods and Innovative Detection Techniques. Front. Toxicol. 2021, 3, 636640. [Google Scholar] [CrossRef]
- Prata, J.C.; Paço, A.; Reis, V.; Da Costa, J.P.; Fernandes, A.J.S.; Da Costa, F.M.; Duarte, A.C.; Rocha-Santos, T. Identification of Microplastics in White Wines Capped with Polyethylene Stoppers Using Micro-Raman Spectroscopy. Food Chem. 2020, 331, 127323. [Google Scholar] [CrossRef]
- Chen, Y.; Wen, D.; Pei, J.; Fei, Y.; Ouyang, D.; Zhang, H.; Luo, Y. Identification and Quantification of Microplastics Using Fourier-Transform Infrared Spectroscopy: Current Status and Future Prospects. Curr. Opin. Environ. Sci. Health 2020, 18, 14–19. [Google Scholar] [CrossRef]
- Nene, A.; Sadeghzade, S.; Viaroli, S.; Yang, W.; Uchenna, U.P.; Kandwal, A.; Liu, X.; Somani, P.; Galluzzi, M. Recent Advances and Future Technologies in Nano-Microplastics Detection. Environ. Sci. Eur. 2025, 37, 7. [Google Scholar] [CrossRef]
- Belli, M.; Cristina, M.; Calabrese, V.; Russo, M.; Granato, M.; Russo, M.A.; Sansone, L. Ultrastructural Changes of Neuroendocrine Pheochromocytoma Cell Line PC-12 Exposed In Vitro to Rotenone. Brain Sci. 2024, 14, 476. [Google Scholar] [CrossRef]
- Malatesta, M. Transmission Electron Microscopy as a Powerful Tool to Investigate the Interaction of Nanoparticles with Subcellular Structures. Int. J. Mol. Sci. 2021, 22, 12789. [Google Scholar] [CrossRef]
- Gniadek, M.; Dąbrowska, A. The Marine Nano- and Microplastics Characterisation by SEM-EDX: The Potential of the Method in Comparison with Various Physical and Chemical Approaches. Mar. Pollut. Bull. 2019, 148, 210–216. [Google Scholar] [CrossRef]
- Ragusa, A.; Matta, M.; Cristiano, L.; Matassa, R.; Battaglione, E.; Svelato, A.; De Luca, C.; D’Avino, S.; Gulotta, A.; Rongioletti, M.C.A.; et al. Deeply in Plasticenta: Presence of Microplastics in the Intracellular Compartment of Human Placentas. Int. J. Environ. Res. Public Health 2022, 19, 11593. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Zong, S.; Qi, J.; Dong, X.; Zhao, W.; Wu, W.; Fu, Q.; Lu, Y.; Chen, Z. The Trigeminal Pathway Dominates the Nose-to-Brain Transportation of Intact Polymeric Nanoparticles: Evidence from Aggregation-Caused Quenching Probes. J. Biomed. Nanotechnol. 2019, 15, 686–702. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, Y.; Dou, J.; Hou, Q.; Cheng, J.; Jiang, X. Bioeffects of Inhaled Nanoplastics on Neurons and Alteration of Animal Behaviors through Deposition in the Brain. Nano Lett. 2022, 22, 1091–1099. [Google Scholar] [CrossRef]
- Xie, J.; Ji, J.; Sun, Y.; Ma, Y.; Wu, D.; Zhang, Z. Blood-Brain Barrier Damage Accelerates the Accumulation of Micro- and Nanoplastics in the Human Central Nervous System. J. Hazard. Mater. 2024, 480, 136028. [Google Scholar] [CrossRef]
- Almutairi, M.M.A.; Gong, C.; Xu, Y.G.; Chang, Y.; Shi, H. Factors Controlling Permeability of the Blood-Brain Barrier. Cell. Mol. Life Sci. 2016, 73, 57–77. [Google Scholar] [CrossRef]
- Jin, H.; Yang, C.; Jiang, C.; Li, L.; Pan, M.; Li, D.; Han, X.; Ding, J. Evaluation of Neurotoxicity in BALB/c Mice Following Chronic Exposure to Polystyrene Microplastics. Environ. Health Perspect. 2022, 130, 107002. [Google Scholar] [CrossRef]
- Vignon, A.N.; Dudon, G.; Oliva, G.; Thirard, S.; Alenda, U.G.; Brugoux, A.; Cazevieille, C.; Imbert, J.; Bellières, C.; Lehmann, S.; et al. Lifelong Exposure to Polystyrene-Nanoplastics Induces an Attention-Deficit Hyperactivity Disorder-like Phenotype and Impairs Brain Aging in Mice. J. Hazard. Mater. 2025, 494, 138640. [Google Scholar] [CrossRef]
- Zheng, Y.; Xu, S.; Liu, J.; Liu, Z. The Effects of Micro- and Nanoplastics on the Central Nervous System: A New Threat to Humanity? Toxicology 2024, 504, 153799. [Google Scholar] [CrossRef]
- Jenner, L.C.; Rotchell, J.M.; Bennett, R.T.; Cowen, M.; Tentzeris, V.; Sadofsky, L.R. Detection of Microplastics in Human Lung Tissue Using μFTIR Spectroscopy. Sci. Total Environ. 2022, 831, 154907. [Google Scholar] [CrossRef]
- Carreón, T.; Hein, M.J.; Hanley, K.W.; Viet, S.M.; Ruder, A.M. Coronary Artery Disease and Cancer Mortality in a Cohort of Workers Exposed to Vinyl Chloride, Carbon Disulfide, Rotating Shift Work, and o-toluidine at a Chemical Manufacturing Plant. Am. J. Ind. Med. 2014, 57, 398–411. [Google Scholar] [CrossRef]
- Gennaro, V.; Ceppi, M.; Crosignani, P.; Montanaro, F. Reanalysis of Updated Mortality among Vinyl and Polyvinyl Chloride Workers: Confirmation of Historical Evidence and New Findings. BMC Public Health 2008, 8, 21. [Google Scholar] [CrossRef]
- Miller, M.R.; Raftis, J.B.; Langrish, J.P.; McLean, S.G.; Samutrtai, P.; Connell, S.P.; Wilson, S.; Vesey, A.T.; Fokkens, P.H.B.; Boere, A.J.F.; et al. Inhaled Nanoparticles Accumulate at Sites of Vascular Disease. ACS Nano 2017, 11, 4542–4552. [Google Scholar] [CrossRef]
- Marfella, R.; Prattichizzo, F.; Sardu, C.; Fulgenzi, G.; Graciotti, L.; Spadoni, T.; D’Onofrio, N.; Scisciola, L.; La Grotta, R.; Frigé, C.; et al. Microplastics and Nanoplastics in Atheromas and Cardiovascular Events. N. Engl. J. Med. 2024, 390, 900–910. [Google Scholar] [CrossRef]
- Montano, L.; Giorgini, E.; Notarstefano, V.; Notari, T.; Ricciardi, M.; Piscopo, M.; Motta, O. Raman Microspectroscopy Evidence of Microplastics in Human Semen. Sci. Total Environ. 2023, 901, 165922. [Google Scholar] [CrossRef]
- Cheemerla, S.; Balakrishnan, M. Global Epidemiology of Chronic Liver Disease. Clin. Liver Dis. 2021, 17, 365–370. [Google Scholar] [CrossRef]
- Horvatits, T.; Tamminga, M.; Liu, B.; Sebode, M.; Carambia, A.; Fischer, L.; Püschel, K.; Huber, S.; Fischer, E.K. Microplastics Detected in Cirrhotic Liver Tissue. eBioMedicine 2022, 82, 104147. [Google Scholar] [CrossRef]
- Kaushik, A. Nano/Micro-Plastic, an Invisible Threat Getting into the Brain. Chemosphere 2024, 361, 142380. [Google Scholar] [CrossRef]
- Windheim, J.; Colombo, L.; Battajni, N.C.; Russo, L.; Cagnotto, A.; Diomede, L.; Bigini, P.; Vismara, E.; Fiumara, F.; Gabbrielli, S.; et al. Micro- and Nanoplastics’ Effects on Protein Folding and Amyloidosis. Int. J. Mol. Sci. 2022, 23, 10329. [Google Scholar] [CrossRef]
- Gabbrielli, S.; Colnaghi, L.; Mazzuoli-Weber, G.; Redaelli, A.C.L.; Gautieri, A. In Silico Analysis of Nanoplastics’ and β-Amyloid Fibrils’ Interactions. Molecules 2023, 28, 388. [Google Scholar] [CrossRef]
- Weiss, A.; Ding, Y. The Impact of Microplastics on Neurodegenerative Diseases and Underlying Molecular Mechanisms: A Narrative Review. Environ. Dis. 2024, 9, 60–64. [Google Scholar] [CrossRef]
- Wang, G.; Lin, Y.; Shen, H. Exposure to Polystyrene Microplastics Promotes the Progression of Cognitive Impairment in Alzheimer’s Disease: Association with Induction of Microglial Pyroptosis. Mol. Neurobiol. 2024, 61, 900–907. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; He, E.; Chen, G.; Cao, X.; Zhao, L.; Xu, X.; Fu, Z.; Qiu, H. Intergenerational neurotoxicity of polystyrene nanoplastics in offspring mice is mediated by dysfunctional microbe-gut-brain axis. Environ. Int. 2024, 192, 109026. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, Y.; Du, Y.; Zhang, W.; Liu, Z.; Bai, J.; Cui, G.; Du, Z. Involvement of the JNK/HO 1/FTH1 signaling pathway in nanoplastic induced inflammation and ferroptosis of BV2 microglia cells. Int. J. Mol. Med. 2023, 52, 61. [Google Scholar] [CrossRef]
- Shan, S.; Zhang, Y.; Zhao, H.; Zeng, T.; Zhao, X. Polystyrene Nanoplastics Penetrate across the Blood-Brain Barrier and Induce Activation of Microglia in the Brain of Mice. Chemosphere 2022, 298, 134261. [Google Scholar] [CrossRef]
- Hua, T.; Kiran, S.; Li, Y.; Sang, Q.-X.A. Microplastics exposure affects neural development of human pluripotent stem cell-derived cortical spheroids. J. Hazard. Mater. 2022, 435, 128884. [Google Scholar] [CrossRef]
- Kwon, W.; Kim, D.; Kim, H.-Y.; Jeong, S.W.; Lee, S.-G.; Kim, H.-C.; Lee, Y.-J.; Kwon, M.K.; Hwang, J.-S.; Han, J.E.; et al. Microglial phagocytosis of polystyrene microplastics results in immune alteration and apoptosis in vitro and in vivo. Sci. Total Environ. 2022, 807, 150817. [Google Scholar] [CrossRef]
- Kang, H.; Zhang, W.; Jing, J.; Huang, D.; Zhang, L.; Wang, J.; Han, L.; Liu, Z.; Wang, Z.; Gao, A. The gut-brain axis involved in polystyrene nanoplastics-induced neurotoxicity via reprogramming the circadian rhythm-related pathways. J. Hazard. Mater. 2023, 458, 131949. [Google Scholar] [CrossRef]
- Bai, H.; Wu, Y.; Li, H.; Zhu, Y.; Che, R.; Wang, F.; Zhang, C. Cerebral neurotoxicity of amino-modified polystyrene nanoplastics in mice and the protective effects of functional food Camellia pollen. Sci. Total Environ. 2024, 912, 169511. [Google Scholar] [CrossRef]
- Hollóczki, O. Evidence for Protein Misfolding in the Presence of Nanoplastics. Int. J. Quantum Chem. 2021, 121, e26372. [Google Scholar] [CrossRef]
- Antunes, J.; Sobral, P.; Martins, M.; Branco, V. Nanoplastics Activate a TLR4/P38-Mediated pro-Inflammatory Response in Human Intestinal and Mouse Microglia Cells. Environ. Toxicol. Pharmacol. 2023, 104, 104298. [Google Scholar] [CrossRef]
- Gecegelen, E.; Ucdal, M.; Dogu, B.B. A Novel Risk Factor for Dementia: Chronic Microplastic Exposure. Front. Neurol. 2025, 16, 1581109. [Google Scholar] [CrossRef]
- Yu, F.; Huang, T.; Ran, Y.; Li, D.; Ye, L.; Tian, G.; Xi, J.; Liu, Z. New Insights Into the Roles of Microglial Regulation in Brain Plasticity-Dependent Stroke Recovery. Front. Cell. Neurosci. 2021, 15, 727899. [Google Scholar] [CrossRef]
- Qiao, C.; Liu, Z.; Qie, S. The Implications of Microglial Regulation in Neuroplasticity-Dependent Stroke Recovery. Biomolecules 2023, 13, 571. [Google Scholar] [CrossRef] [PubMed]
- Das, A. The Emerging Role of Microplastics in Systemic Toxicity: Involvement of Reactive Oxygen Species (ROS). Sci. Total Environ. 2023, 895, 165076. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Li, Y.; Niu, S.; Zhang, R.; Shen, X.; Ma, Y.; Wu, L.; Wu, T.; Zhang, T.; Tang, M.; et al. Oxidative Stress-Activated Nrf2 Remitted Polystyrene Nanoplastic-Induced Mitochondrial Damage and Inflammatory Response in HepG2 Cells. Environ. Toxicol. Pharmacol. 2024, 106, 104385. [Google Scholar] [CrossRef] [PubMed]
- Vojnits, K.; De León, A.; Rathore, H.; Liao, S.; Zhao, M.; Gibon, J.; Pakpour, S. ROS-Dependent Degeneration of Human Neurons Induced by Environmentally Relevant Levels of Micro- and Nanoplastics of Diverse Shapes and Forms. J. Hazard. Mater. 2024, 469, 134017. [Google Scholar] [CrossRef]
- Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules 2019, 24, 1583. [Google Scholar] [CrossRef]
- Spina, E.; Ferrari, R.R.; Pellegrini, E.; Colombo, M.; Poloni, T.E.; Guaita, A.; Davin, A. Mitochondrial Alterations, Oxidative Stress, and Therapeutic Implications in Alzheimer’s Disease: A Narrative Review. Cells 2025, 14, 229. [Google Scholar] [CrossRef]
- Bustamante-Barrientos, F.A.; Luque-Campos, N.; Araya, M.J.; Lara-Barba, E.; De Solminihac, J.; Pradenas, C.; Molina, L.; Herrera-Luna, Y.; Utreras-Mendoza, Y.; Elizondo-Vega, R.; et al. Mitochondrial Dysfunction in Neurodegenerative Disorders: Potential Therapeutic Application of Mitochondrial Transfer to Central Nervous System-Residing Cells. J. Transl. Med. 2023, 21, 613. [Google Scholar] [CrossRef]
- Sun, J.; Peng, S.; Yang, Q.; Yang, J.; Dai, Y.; Xing, L. Microplastics/Nanoplastics and Neurological Health: An Overview of Neurological Defects and Mechanisms. Toxicology 2025, 511, 154030. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, N.; Saudrais, F.; Rysak, M.; Pieri, L.; Pin, S.; Roma, G.; Renault, J.-P.; Boulard, Y. Exploring the Interaction of Human α-Synuclein with Polyethylene Nanoplastics: Insights from Computational Modeling and Experimental Corroboration. Biomacromolecules 2025, 26, 1476–1497. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Li, Y.; Yao, C.; Qu, J.; Tang, J.; Chen, G.; Han, Y. Acute Exposure to Polystyrene Nanoplastics Induces Unfolded Protein Response and Global Protein Ubiquitination in Lungs of Mice. Ecotoxicol. Environ. Saf. 2024, 280, 116580. [Google Scholar] [CrossRef]
- Naidu, G.; Nagar, N.; Poluri, K.M. Mechanistic Insights into Cellular and Molecular Basis of Protein-Nanoplastic Interactions. Small 2024, 20, 2305094. [Google Scholar] [CrossRef]
- Su, Z.; Kong, R.; Huang, C.; Wang, K.; Liu, C.; Gu, X.; Wang, H.-L. Exposure to Polystyrene Nanoplastics Causes Anxiety and Depressive-like Behavior and down-Regulates EAAT2 Expression in Mice. Arch. Toxicol. 2025, 99, 2595–2609. [Google Scholar] [CrossRef]
- Savuca, A.; Nicoara, M.N.; Ciobica, A.; Gorgan, D.L.; Ureche, D.; Balmus, I.M. Current Aspects on the Plastic Nano- and Microparticles Toxicity in Zebrafish—Focus on the Correlation between Oxidative Stress Responses and Neurodevelopment. Animals 2023, 13, 1810. [Google Scholar] [CrossRef]
- Zou, L.; Xu, X.; Wang, Y.; Lin, F.; Zhang, C.; Liu, R.; Hou, X.; Wang, J.; Jiang, X.; Zhang, Q.; et al. Neonatal Exposure to Polystyrene Nanoplastics Impairs Microglia-Mediated Synaptic Pruning and Causes Social Behavioral Defects in Adulthood. Environ. Sci. Technol. 2024, 58, 11945–11957. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, G.; Liang, X.; Andrikopoulos, N.; Tang, H.; Ding, F.; Ke, P.C.; Li, Y. Microglial Clearance of Alzheimer’s Amyloid-Beta Obstructed by Nanoplastics. Environ. Sci. Nano 2025, 12, 3247–3260. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Lin, K.; Zhang, Z.; Pan, Y.; Miao, Q.; Han, X.; Zhang, Z.; Zhu, P.; Yang, J.; Peng, Y.; et al. Adolescent Exposure to Micro/Nanoplastics Induces Cognitive Impairments in Mice with Neuronal Morphological Damage and Multi-Omic Alterations. Environ. Int. 2025, 197, 109323. [Google Scholar] [CrossRef]
- Bai, H.; Gu, H.; Zhou, W.; Shi, G.; Yan, J.; Su, Y.; Li, W.; Li, Y.; Zhong, C.; Zhao, N.; et al. PD-like Pathogenesis Induced by Intestinal Exposure to Microplastics: An in Vivo Study of Animal Models to a Public Health Survey. J. Hazard. Mater. 2025, 486, 136974. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhang, B.; Yao, Q.; Feng, X.; Shen, T.; Guo, P.; Wang, P.; Bai, Y.; Li, B.; Wang, P.; et al. Toxicological Effects of Micro/Nano-Plastics on Mouse/Rat Models: A Systematic Review and Meta-Analysis. Front. Public Health 2023, 11, 1103289. [Google Scholar] [CrossRef]
- Liang, B.; Huang, Y.; Zhong, Y.; Li, Z.; Ye, R.; Wang, B.; Zhang, B.; Meng, H.; Lin, X.; Du, J.; et al. Brain Single-Nucleus Transcriptomics Highlights That Polystyrene Nanoplastics Potentially Induce Parkinson’s Disease-like Neurodegeneration by Causing Energy Metabolism Disorders in Mice. J. Hazard. Mater. 2022, 430, 128459. [Google Scholar] [CrossRef]
- Liu, Z.; Sokratian, A.; Duda, A.M.; Xu, E.; Stanhope, C.; Fu, A.; Strader, S.; Li, H.; Yuan, Y.; Bobay, B.G.; et al. Anionic Nanoplastic Contaminants Promote Parkinson’s Disease–Associated α-Synuclein Aggregation. Sci. Adv. 2023, 9, eadi8716. [Google Scholar] [CrossRef]
- Maiti, P.; Manna, J.; Ilavazhagan, G.; Rossignol, J.; Dunbar, G.L. Molecular Regulation of Dendritic Spine Dynamics and Their Potential Impact on Synaptic Plasticity and Neurological Diseases. Neurosci. Biobehav. Rev. 2015, 59, 208–237. [Google Scholar] [CrossRef]
- Lee, C.-W.; Hsu, L.-F.; Wu, I.-L.; Wang, Y.-L.; Chen, W.-C.; Liu, Y.-J.; Yang, L.-T.; Tan, C.-L.; Luo, Y.-H.; Wang, C.-C.; et al. Exposure to Polystyrene Microplastics Impairs Hippocampus-Dependent Learning and Memory in Mice. J. Hazard. Mater. 2022, 430, 128431. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Lee, S.; Lee, Y.; Cho, J.-H.; Kim, S.; Ha, E.-S.; Jung, Y.-S.; Chung, H.; Kim, M.-S.; Kim, H.S.; et al. Cationic Nanoplastic Causes Mitochondrial Dysfunction in Neural Progenitor Cells and Impairs Hippocampal Neurogenesis. Free Radic. Biol. Med. 2023, 208, 194–210. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.Y.; Park, M.K.; Yang, H.W.; Woo, S.Y.; Jung, H.H.; Son, D.-S.; Choi, B.Y.; Suh, S.W. Effects of Microplastic Accumulation on Neuronal Death After Global Cerebral Ischemia. Cells 2025, 14, 241. [Google Scholar] [CrossRef]
- Wang, S.; Han, Q.; Wei, Z.; Wang, Y.; Xie, J.; Chen, M. Polystyrene Microplastics Affect Learning and Memory in Mice by Inducing Oxidative Stress and Decreasing the Level of Acetylcholine. Food Chem. Toxicol. 2022, 162, 112904. [Google Scholar] [CrossRef]
- Chu, C.; Zhang, Y.; Liu, Q.; Pang, Y.; Niu, Y.; Zhang, R. Identification of ceRNA Network to Explain the Mechanism of Cognitive Dysfunctions Induced by PS NPs in Mice. Ecotoxicol. Environ. Saf. 2022, 241, 113785. [Google Scholar] [CrossRef]
- Suman, A.; Mahapatra, A.; Gupta, P.; Ray, S.S.; Singh, R.K. Polystyrene Microplastics Induced Disturbances in Neuronal Arborization and Dendritic Spine Density in Mice Prefrontal Cortex. Chemosphere 2024, 351, 141165. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Zhang, M.; Di, F.; Bai, W.; Sun, J.; Zhang, M.; Sun, J.; Li, M.; Liang, X. Polystyrene Nanoplastics Induced Learning and Memory Impairments in Mice by Damaging the Glymphatic System. Ecotoxicol. Environ. Saf. 2024, 284, 116874. [Google Scholar] [CrossRef]
- Urani, C.; Barbieri, R.; Alloisio, S.; Tesauro, M. From the Environment to Molecular Interactions of Nanoplastics: Unraveling the Neurotoxic Impacts and the Implications in Neurodegenerative Processes. Appl. Sci. 2024, 14, 7280. [Google Scholar] [CrossRef]
- Lothian, A.; Hare, D.J.; Grimm, R.; Ryan, T.M.; Masters, C.L.; Roberts, B.R. Metalloproteomics: Principles, Challenges and Applications to Neurodegeneration. Front. Aging Neurosci. 2013, 5, 35. [Google Scholar] [CrossRef]
- Zheng, D.; Wang, D.; Zhang, S.; Liu, Y.; Xi, Q.; Weng, Y. Impact of Urinary Microplastic Exposure on Cognitive Function in Primary School Children. Ecotoxicol. Environ. Saf. 2025, 302, 118532. [Google Scholar] [CrossRef]
- Yuan, Z.; Nag, R.; Cummins, E. Human Health Concerns Regarding Microplastics in the Aquatic Environment—From Marine to Food Systems. Sci. Total Environ. 2022, 823, 153730. [Google Scholar] [CrossRef]
- Leslie, H.A.; Van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and Quantification of Plastic Particle Pollution in Human Blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef]
- Marfella, R.; Kallweit, U. Neurotoxicity at the Tides: A Call to Action on Marine Microplastics and Brain Health. Eur. J. Neurol. 2025, 32, e70181. [Google Scholar] [CrossRef] [PubMed]
- Winanto; Tan, L.-Y.; Chooi, W.H.; Lee, C.Y.-P.; Ho, W.Y.; Lim, Y.S.; Soh, B.S.; Sanford, E.; Tan, C.-L.; Liou, Y.-C.; et al. Polystyrene Nanoplastics Promote Neurodegeneration by Catalyzing TDP43 Hyperphosphorylation. bioRxiv 2024. [Google Scholar] [CrossRef]
- Huang, Z.; Hu, B.; Wang, H. Analytical Methods for Microplastics in the Environment: A Review. Environ. Chem. Lett. 2023, 21, 383–401. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, P.; Abhishek, K. Sampling, Separation, and Characterization Methodology for Quantification of Microplastic from the Environment. J. Hazard. Mater. Adv. 2024, 14, 100416. [Google Scholar] [CrossRef]
- European Commission; Joint Research Centre. Analytical Methods to Measure Microplastics in Drinking Water: Review and Evaluation of Methods; Publications Office: Luxembourg, 2024. [Google Scholar]
Model/Condition | Plastic Type | Particle Size | Exposure Route | Observed Effects | Reference |
---|---|---|---|---|---|
In vitro, mouse microglial cell line BV2 | PS | 2.5 µm | Direct exposure (1, 10, and 100 µg/mL) | ↑ production and release of TNFα, IL-1β, and IL-6 ↑ pyroptosis-related proteins N-GSDMD and GSDMD | Wang et al., 2024 [82] |
In vitro, mouse microglial cell line BV2 | PS | 480–30.3 nm | Direct exposure (25, 50, and 100 µg/mL) | ↓ cell viability at 50 and 100 µg/mL ↑ NO and pro-inflammatory cytokines ↑ HRAS, Iba-1, NF-kB p65, and p-PERK levels | Li et al., 2024 [83] |
In vitro, mouse microglial cell line BV2 | PS | 44 nm | Direct exposure (25, 50, and 100 µg/mL) | ↓ cell viability ↑ ROS generation ↑ GPX4, XCT, ACSL4 ↑ NLRP3 and IL-1β in a concentration- and time-dependent manner ↑ ROS and MDA levels ↓ GSH and SOD in a concentration- and time-dependent manner Modification of ferritin transport proteins ROS levels reverted by NAC pre-treatment | Sun et al., 2023 [84] |
In vitro, human cerebral microvascular endothelial cells (hCMEC/D3), murine microglia BV2 cells | PS | 50 nm | Direct exposure (25, 50, and 100 µg/mL) | hCMEC/D3: NF-kB activation, ↑ TNFα levels, disruption tight junction ↓ TEER and expression of occluding ↑ ROS in a concentration- and time-dependent manner BV2 cells: ↑ TNFα and IL-1β; ↑ ROS generation | Shan et al., 2022 [85] |
In vitro, hiPSC-derived cortical spheroids | PS-MPs | 1–10 µm | Direct exposure (5, 50, and 100 µg/mL) | ↑ expression of Ki67, MKI67, ATF4, Nestin, PAX6, HOXB4, and SOD2 ↓ cell viability; ↓ expression of TUBB3-TBR1/TBR2 | Hua et al., 2022 [86] |
In vitro, human neuronal cell line SH-SY5Y | PS | 70–150 nm | Direct exposure | ↑ Neurotoxicity of Aβ proteins, promoting the formation of pathogenic oligomers, oxidative damage, and neurological deficits | Gou et al., 2024 [17] |
In vivo, male C57BL/6 mice In vitro, human neuronal cell line SH-SY5Y | PS | 60–65 nm | In vivo: oral gavage In vitro: direct exposure in culture | In mice: cognitive deficits, neuronal loss, Nissl bodies in the prefrontal cortex ↓ GSH, SOD levels ↑ ERK/MAPK pathway, aggregation of lipolyzed proteins ↑ markers of cuproptosis (FDX1, LIAS, HSP70). In SH-SY5Y: ↓ cell viability, ↑ intracellular Cu+, ↑ FDX1, LIAS, HSP70 | Chen et al., 2025 [41] |
In vivo, 20 post-mortem human lung tissue samples | PP, 35.1% PE, 24.3% PVC, polystyrene polyurethane polyamide (<5%). | 5.5–26.4 µm | Inhalation via the olfactory (nasal) route | Plasticity detected in 8/15 subjects; suggests transit via the olfactory nerve | Amato-Lourenço et al., 2024 [9] |
In vivo, post-mortem human brain samples—frontal cortex | PE~75%, PP, PVC, SBR | <200 nm | Environmental exposure (inhalation + environmental ingestion), unspecified | Brain accumulation higher than in liver/kidney; correlation with dementia; particles in vessels and microglia | Nihart et al., 2025 [8] |
In vivo, male C57BL/6 mice In vitro, HMC-3 cell line (human microglia) | PS | 0.2 µm, 2 µm, 10 µm | In vivo: oral (gavage) In vitro: direct exposure in culture | ↑ immune activation, apoptosis of microglia, inducing neuroinflammation and loss of support cells | Kwon et al., 2022 [87] |
In vivo, male C57BL/6J mice In vitro, primary cultures of microglia, astrocytes, and hippocampal neurons | PS | 30–50 nm | In vivo: oral (gavage) In vitro: direct exposure in culture | ↑ microglial activation and inflammatory response ↓ neuronal activity Contribution to cognitive deficits | Paing et al., 2024 [12] |
In vivo, male C57BL/6 mice In vitro, MN9D dopamine neuron line | PS | 45–68 nm | In vivo: oral (gavage) In vitro: direct exposure in culture | ↑ neuronal pyroptosis, blocking autophagic degradation through the TSC2-mTOR-TFEB pathway Progression of Parkinson’s disease | Liang et al., 2025 [19] |
In vivo, male C57BL/6 mice | PS | 80 nm | In vivo: oral (gavage) | Altered expression of neurotransmitter levels (5-HT, GABA) and nervous system proteins (AChE, BDNF, SYN, CREB) ↓ learning and memory ability ↑ Camk2g and Adcyap1 mRNA, ↓ Per1 mRNA in mouse hippocampus | Kang et al., 2023 [88] |
In vivo, male C57BL/6 mice | APS (amino-modified PS) | 100 nm | In vivo: oral (gavage) | ↑ escape latency ↓ spatial learning and cognitive flexibility Memory and cognitive impairments Upregulation of AD mRNA markers ↑ Bax levels, ↓ Bcl-2 and NeuN levels ↑ iNOS, nNOS, Ac-Tau expression; ↓ Sirt1 expression | Bai et al., 2024 [89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baroni, A.; Moulton, C.; Cristina, M.; Sansone, L.; Belli, M.; Tasciotti, E. Nano- and Microplastics in the Brain: An Emerging Threat to Neural Health. Nanomaterials 2025, 15, 1361. https://doi.org/10.3390/nano15171361
Baroni A, Moulton C, Cristina M, Sansone L, Belli M, Tasciotti E. Nano- and Microplastics in the Brain: An Emerging Threat to Neural Health. Nanomaterials. 2025; 15(17):1361. https://doi.org/10.3390/nano15171361
Chicago/Turabian StyleBaroni, Anna, Chantalle Moulton, Mario Cristina, Luigi Sansone, Manuel Belli, and Ennio Tasciotti. 2025. "Nano- and Microplastics in the Brain: An Emerging Threat to Neural Health" Nanomaterials 15, no. 17: 1361. https://doi.org/10.3390/nano15171361
APA StyleBaroni, A., Moulton, C., Cristina, M., Sansone, L., Belli, M., & Tasciotti, E. (2025). Nano- and Microplastics in the Brain: An Emerging Threat to Neural Health. Nanomaterials, 15(17), 1361. https://doi.org/10.3390/nano15171361