Synthesis and Characterization of EG/Au Composites via Thermal Exfoliation of Graphite Intercalation Compounds with Tetrachloroauric Acid
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Investigation Techniques
3. Results and Discussion
3.1. Synthesis of Graphite Intercalation Compounds with HAuCl4
3.2. Thermal Decomposition of GIC–HAuCl4
3.3. Preparation of Exfoliated Graphite with Gold Particles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GIC | Graphite intercalation compound |
EG | Exfoliated graphite |
XRD | X-ray diffraction |
SEM | Scanning electron microscopy |
TEM | Transmission electron microscopy |
EDX | Energy-dispersive X-ray spectroscopy |
References
- Saikam, L.; Arthi, P.; Senthil, B.; Shanmugam, M. A Review on Exfoliated Graphite: Synthesis and Applications. Inorg. Chem. Commun. 2023, 152, 110685. [Google Scholar] [CrossRef]
- Çalın, Ö.; Kurt, A.; Çelik, Y. Influence of Expansion Conditions and Precursor Flake Size on Porous Structure of Expanded Graphite. Fuller. Nanotub. Carbon Nanostruct. 2020, 28, 611–620. [Google Scholar] [CrossRef]
- Goudarzi, R.; Motlagh, G.H. The Effect of Graphite Intercalated Compound Particle Size and Exfoliation Temperature on Porosity and Macromolecular Diffusion in Expanded Graphite. Heliyon 2019, 5, e02595. [Google Scholar] [CrossRef]
- Solfiti, E.; Berto, F. Mechanical Properties of Flexible Graphite: Review. Procedia Struct. Integr. 2020, 25, 420–429. [Google Scholar] [CrossRef]
- Wei, X.H.; Liu, L.; Zhang, J.X.; Shi, J.L.; Guo, Q.G. Mechanical, Electrical, Thermal Performances and Structure Characteristics of Flexible Graphite Sheets. J. Mater. Sci. 2010, 45, 2449–2455. [Google Scholar] [CrossRef]
- Bouzid, A.-H.; Das, S.K. High Temperature Aged Leakage Relaxation Screening Tests on Confined Flexible Graphite Gaskets. In Proceedings of the ASME 2021 Pressure Vessels & Piping Conference, Virtual, 13–15 July 2021; American Society of Mechanical Engineers Digital Collection. ASME: New York, NY, USA, 2021. [Google Scholar]
- Khovavko, A.; Strativnov, E.; Nebesnyi, A.; Filonenko, D.; Sviatenko, O.; Piatova, A.; Barabash, M. Production Technology and Application of Materials Based on Thermally Expanded Graphite. In Carbon Nanostructured Materials: Synthesis, Characterization, and Industrial Applications; Khovavko, A., Strativnov, E., Nebesnyi, A., Filonenko, D., Sviatenko, O., Piatova, A., Barabash, M., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 97–151. ISBN 978-3-031-64121-3. [Google Scholar]
- Bouzid, A.-H. A Study on Liquid Leak Rates in Packing Seals. Appl. Sci. 2021, 11, 1936. [Google Scholar] [CrossRef]
- Solfiti, E.; Berto, F. A Review on Thermophysical Properties of Flexible Graphite. Procedia Struct. Integr. 2020, 26, 187–198. [Google Scholar] [CrossRef]
- Chriaa, I.; Karkri, M.; Trigui, A.; Jedidi, I.; Abdelmouleh, M.; Boudaya, C. The Performances of Expanded Graphite on the Phase Change Materials Composites for Thermal Energy Storage. Polymer 2021, 212, 123128. [Google Scholar] [CrossRef]
- Zhang, X.; Qian, J.; Wei, T.; Liu, X. Thermal Conductivity Experiment of Interface Material Based on Graphite Sheet. J. Phys. Conf. Ser. 2024, 2825, 012040. [Google Scholar] [CrossRef]
- Li, L.; Zhang, W.; Pan, W.; Wang, M.; Zhang, H.; Zhang, D.; Zhang, D. Application of Expanded Graphite-Based Materials for Rechargeable Batteries beyond Lithium-Ions. Nanoscale 2021, 13, 19291–19305. [Google Scholar] [CrossRef] [PubMed]
- Murugan, P.; Nagarajan, R.D.; Shetty, B.H.; Govindasamy, M.; Sundramoorthy, A.K. Recent Trends in the Applications of Thermally Expanded Graphite for Energy Storage and Sensors—A Review. Nanoscale Adv. 2021, 3, 6294–6309. [Google Scholar] [CrossRef]
- Zhang, D.; Tan, C.; Zhang, W.; Pan, W.; Wang, Q.; Li, L. Expanded Graphite-Based Materials for Supercapacitors: A Review. Molecules 2022, 27, 716. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, W.; Zhang, S.; Ji, X.; Li, L. Synthesis of Expanded Graphite-Based Materials for Application in Lithium-Based Batteries. J. Energy Storage 2023, 60, 106678. [Google Scholar] [CrossRef]
- Wang, G.; Sun, Q.; Zhang, Y.; Fan, J.; Ma, L. Sorption and Regeneration of Magnetic Exfoliated Graphite as a New Sorbent for Oil Pollution. Desalination 2010, 263, 183–188. [Google Scholar] [CrossRef]
- Takeuchi, K.; Fujishige, M.; Kitazawa, H.; Akuzawa, N.; Medina, J.O.; Morelos-Gomez, A.; Cruz-Silva, R.; Araki, T.; Hayashi, T.; Terrones, M.; et al. Oil Sorption by Exfoliated Graphite from Dilute Oil–Water Emulsion for Practical Applications in Produced Water Treatments. J. Water Process Eng. 2015, 8, 91–98. [Google Scholar] [CrossRef]
- Vinh, N.H.; Hieu, N.P.; Van Thinh, P.; Diep, N.T.M.; Thuan, V.N.; Trinh, N.D.; Thuy, N.H.; Long Giang, B.; Quynh, B.T.P. Magnetic NiFe2O4/Exfoliated Graphite as an Efficient Sorbent for Oils and Organic Pollutants. J. Nanosci. Nanotechnol. 2018, 18, 6859–6866. [Google Scholar] [CrossRef]
- Ivanov, A.V.; Volkova, S.I.; Maksimova, N.V.; Pokholok, K.V.; Kravtsov, A.V.; Belik, A.A.; Posokhova, S.M.; Kalachev, I.L.; Avdeev, V.V. Exfoliated Graphite with γ-Fe2O3 for the Removal of Oil and Organic Pollutants from the Water Surface: Synthesis, Mossbauer Study, Sorption and Magnetic Properties. J. Alloys Compd. 2023, 960, 170619. [Google Scholar] [CrossRef]
- Asalieva, E.; Sineva, L.; Sinichkina, S.; Solomonik, I.; Gryaznov, K.; Pushina, E.; Kulchakovskaya, E.; Gorshkov, A.; Kulnitskiy, B.; Ovsyannikov, D.; et al. Exfoliated Graphite as a Heat-Conductive Frame for a New Pelletized Fischer–Tropsch Synthesis Catalyst. Appl. Catal. A Gen. 2020, 601, 117639. [Google Scholar] [CrossRef]
- Dunaev, A.V.; Arkhangelsky, I.V.; Zubavichus, Y.V.; Avdeev, V.V. Preparation, Structure and Reduction of Graphite Intercalation Compounds with Hexachloroplatinic Acid. Carbon 2008, 46, 788–795. [Google Scholar] [CrossRef]
- Cai, X.; Qiu, Y.; Zhou, Y.; Jiao, X. Nanoscale Zero-Valent Iron Loaded Vermiform Expanded Graphite for the Removal of Cr(VI) from Aqueous Solution. R. Soc. Open Sci. 2021, 8, 210801. [Google Scholar] [CrossRef] [PubMed]
- Brandão, R.D.; de Freitas Júnior, A.M.; Linares, J.J.; Suarez, P.A.Z.; Dutra, R.C.; Garnier, J.; Tonhá, M.S.; Ballesteros-Plata, D.; Rodríguez-Castellón, E.; Prauchner, M.J. Activated Carbon-Supported Pt Catalysts Intended for the Hydroprocessing of Lipid Feedstocks: Effects of Support Surface Composition and Impregnation Protocol. Molecules 2025, 30, 2862. [Google Scholar] [CrossRef]
- Paris, C.B.; Howe, A.G.; Lewis, R.J.; Hewes, D.; Morgan, D.J.; He, Q.; Edwards, J.K. Impact of the Experimental Parameters on Catalytic Activity When Preparing Polymer Protected Bimetallic Nanoparticle Catalysts on Activated Carbon. ACS Catal. 2022, 12, 4440–4454. [Google Scholar] [CrossRef]
- Islam, J.; Kim, S.-K.; Kim, K.-H.; Lee, E.; Park, G.-G. Enhanced Durability of Pt/C Catalyst by Coating Carbon Black with Silica for Oxygen Reduction Reaction. Int. J. Hydrogen Energy 2021, 46, 1133–1143. [Google Scholar] [CrossRef]
- Meekins, B.H.; Thompson, A.B.; Gopal, V.; Mehrabadi, B.A.T.; Elvington, M.C.; Ganesan, P.; Newhouse-Illige, T.A.; Shepard, A.W.; Scipioni, L.E.; Greer, J.A.; et al. In-Situ and Ex-Situ Comparison of the Electrochemical Oxidation of SO2 on Carbon Supported Pt and Au Catalysts. Int. J. Hydrogen Energy 2020, 45, 1940–1947. [Google Scholar] [CrossRef]
- Borisov, V.A.; Iost, K.N.; Temerev, V.L.; Surovikin, Y.V.; Osipov, A.R.; Trenikhin, M.V.; Smorokov, A.A.; Shlyapin, D.A. Effect of Sibunite Graphitization on the Stability of Ru (Pt, Pd)/Sibunit Catalysts in an Oxidizing Atmosphere at Elevated Temperatures. Catal. Ind. 2021, 13, 252–257. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, Z.; Shen, J.; Tang, T.; Huang, R. Dispersion of Magnetic Metals on Expanded Graphite for the Shielding of Electromagnetic Radiations. Appl. Phys. Lett. 2007, 90, 133117. [Google Scholar] [CrossRef]
- Yao, Y.; Jin, S.; Sun, J.; Li, L.; Zou, H.; Wen, P.; Lv, G.; Lv, X.; Shu, Q. Sandwich-like Sulfur-Free Expanded Graphite/CoNi Hybrids and Their Synergistic Enhancement of Microwave Absorption. J. Alloys Compd. 2021, 862, 158005. [Google Scholar] [CrossRef]
- Song, N.-N.; Yang, H.-T.; Liu, H.-L.; Ren, X.; Ding, H.-F.; Zhang, X.-Q.; Cheng, Z.-H. Exceeding Natural Resonance Frequency Limit of Monodisperse Fe3O4 Nanoparticles via Superparamagnetic Relaxation. Sci. Rep. 2013, 3, 3161. [Google Scholar] [CrossRef] [PubMed]
- Muravev, A.D.; Ivanov, A.V.; Mukhanov, V.A.; Razuvaeva, V.A.; Vasiliev, A.V.; Kazin, P.E.; Avdeev, V.V. Preparation of Exfoliated Graphite Containing Ferromagnetic Iron, Cobalt, and Nickel Alloys. Inorg. Mater. 2024, 60, 838–845. [Google Scholar] [CrossRef]
- Muravev, A.D.; Ivanov, A.V.; Mukhanov, V.A.; Pokholok, K.V.; Vasiliev, A.V.; Kazin, P.E.; Sividova, V.D.; Maksimova, N.V.; Kalachev, I.L.; Avdeev, V.V. Preparation of Magnetic Composite Sorbent Based on Exfoliated Graphite with Metallic Iron, Cobalt and Nickel Using Melamine as a Reducing Agent. J. Alloys Compd. 2024, 1000, 175125. [Google Scholar] [CrossRef]
- Li, M.; Fan, Q.; Gao, L.; Liang, K.; Huang, Q. Chemical Intercalation of Layered Materials: From Structure Tailoring to Applications. Adv. Mater. 2024, 36, 2312918. [Google Scholar] [CrossRef]
- Zhou, J.; Lin, Z.; Ren, H.; Duan, X.; Shakir, I.; Huang, Y.; Duan, X. Layered Intercalation Materials. Adv. Mater. 2021, 33, 2004557. [Google Scholar] [CrossRef]
- Stumpp, E. The Intercalation of Metal Chlorides and Bromides into Graphite. Mater. Sci. Eng. 1977, 31, 53–59. [Google Scholar] [CrossRef]
- Ishii, T.; Shibayama, Y.; Enoki, T.; Bandow, S.; Shirotani, I.; Sugihara, K. C-Axis Compressibility and Thermal Expansion of Gold Trichloride-Graphite Intercalation Compounds (AuCl3-GICs). J. Phys. Soc. Jpn. 1995, 64, 4748–4758. [Google Scholar] [CrossRef]
- Vangelisti, R.; Herold, A. Observations macroscopiques et microscopiques des produits d’insertion du graphite avec le trichlorure d’or. Carbon 1977, 15, 327–333. [Google Scholar] [CrossRef]
- Stumpp, E. From Iron Chloride to Metal Nitrate GICs. Recent Synthetic Developments in GIC Chemistry. Mater. Sci. Forum 1992, 91–93, 1–9. [Google Scholar] [CrossRef]
- Forsman, W.C.; Vogel, F.L.; Carl, D.E.; Hoffman, J. Chemistry of Graphite Intercalation by Nitric Acid. Carbon 1978, 16, 269–271. [Google Scholar] [CrossRef]
- Sorokina, N.E.; Maksimova, N.V.; Avdeev, V.V. Intercalation of Graphite in the Ternary Systems C–HNO3–R (R = H2O, CH3COOH, H3PO4, H2SO4). Inorg. Mater. 2002, 38, 564–570. [Google Scholar] [CrossRef]
- Vittal, J.J.; Puddephatt, R.J. Gold: Inorganic & Coordination Chemistry. In Encyclopedia of Inorganic and Bioinorganic Chemistry; Scott, R.A., Ed.; Wiley: Hoboken, NJ, USA, 2005; ISBN 978-1-119-95143-8. [Google Scholar]
- Stumpp, E.; Ehrhardt, C. Reaction of Metal Chloride Graphite Intercalation Compounds with Ammonia. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A Mol. Cryst. Liq. Cryst. 1994, 245, 237–242. [Google Scholar] [CrossRef]
- Otto, K.; Oja Acik, I.; Krunks, M.; Tõnsuaadu, K.; Mere, A. Thermal Decomposition Study of HAuCl4·3H2O and AgNO3 as Precursors for Plasmonic Metal Nanoparticles. J. Therm. Anal. Calorim. 2014, 118, 1065–1072. [Google Scholar] [CrossRef]
- Chung, D.D.L. A Review of Exfoliated Graphite. J. Mater. Sci. 2016, 51, 554–568. [Google Scholar] [CrossRef]
- Claramunt, S.; Varea, A.; López-Díaz, D.; Velázquez, M.M.; Cornet, A.; Cirera, A. The Importance of Interbands on the Interpretation of the Raman Spectrum of Graphene Oxide. J. Phys. Chem. C 2015, 119, 10123–10129. [Google Scholar] [CrossRef]
- Le, G.T.T.; Manyam, J.; Opaprakasit, P.; Chanlek, N.; Grisdanurak, N.; Sreearunothai, P. Divergent Mechanisms for Thermal Reduction of Graphene Oxide and Their Highly Different Ion Affinities. Diam. Relat. Mater. 2018, 89, 246–256. [Google Scholar] [CrossRef]
- Ivanov, A.V.; Divitskaya, D.A.; Lavrin, M.A.; Kravtsov, A.V.; Volkova, S.I.; Maksimova, N.V.; Kalachev, I.L.; Kirichenko, A.N.; Rodionov, N.B.; Malakho, A.P.; et al. Exfoliated Graphite for Sorption of Liquid Hydrocarbons from the Water Surface: Effect of Preparation Conditions on Sorption Capacity and Water Wettability. Adsorption 2024, 30, 755–767. [Google Scholar] [CrossRef]
EG Sample | Initial GIC | Expansion Temperature, °C | Reaction Environment | dEG, g/L | ωAu, wt.%. | d′EG, g/L |
---|---|---|---|---|---|---|
EG-700-A | GIC–HAuCl4 | 700 | Air | 13 | 46.4 | 7 |
EG-700-N | 700 | N2 | 19 | 46.0 | 10 | |
EG-900-A | 900 | Air | 9 | 48.4 | 5 | |
EG-900-N | 900 | N2 | 13 | 47.1 | 7 | |
EG-M-700-A | GIC–HAuCl4 treated by methylamine | 700 | Air | 5 | 47.4 | 3 |
EG-M-700-N | 700 | N2 | 8 | 46.6 | 4 | |
EG-M-900-A | 900 | Air | 4 | 48.1 | 2 | |
EG-M-900-N | 900 | N2 | 6 | 47.5 | 3 |
Sample | Au Particle Size Measured Manually, nm | Au Particle Size Measured Through Area, nm |
---|---|---|
EG-700-A | 380 ± 20 | 390 ± 40 |
EG-700-N | 520 ± 30 | 420 ± 40 |
EG-900-A | 370 ± 16 | 380 ± 40 |
EG-900-N | 450 ± 19 | 450 ± 45 |
EG-M-700-A | 360 ± 20 | 250 ± 25 |
EG-M-700-N | 480 ± 20 | 440 ± 45 |
EG-M-900-A | 380 ± 30 | 410 ± 40 |
EG-M-900-N | 410 ± 20 | 310 ± 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muravev, A.D.; Ivanov, A.V.; Mukhanov, V.A.; Kulnitskiy, B.A.; Maksimova, N.V.; Avdeev, V.V. Synthesis and Characterization of EG/Au Composites via Thermal Exfoliation of Graphite Intercalation Compounds with Tetrachloroauric Acid. Nanomaterials 2025, 15, 1363. https://doi.org/10.3390/nano15171363
Muravev AD, Ivanov AV, Mukhanov VA, Kulnitskiy BA, Maksimova NV, Avdeev VV. Synthesis and Characterization of EG/Au Composites via Thermal Exfoliation of Graphite Intercalation Compounds with Tetrachloroauric Acid. Nanomaterials. 2025; 15(17):1363. https://doi.org/10.3390/nano15171363
Chicago/Turabian StyleMuravev, Aleksandr D., Andrei V. Ivanov, Vladimir A. Mukhanov, Boris A. Kulnitskiy, Natalia V. Maksimova, and Victor V. Avdeev. 2025. "Synthesis and Characterization of EG/Au Composites via Thermal Exfoliation of Graphite Intercalation Compounds with Tetrachloroauric Acid" Nanomaterials 15, no. 17: 1363. https://doi.org/10.3390/nano15171363
APA StyleMuravev, A. D., Ivanov, A. V., Mukhanov, V. A., Kulnitskiy, B. A., Maksimova, N. V., & Avdeev, V. V. (2025). Synthesis and Characterization of EG/Au Composites via Thermal Exfoliation of Graphite Intercalation Compounds with Tetrachloroauric Acid. Nanomaterials, 15(17), 1363. https://doi.org/10.3390/nano15171363