One-Step Synthesis of Ultra-Small RhNPs in the Microreactor System and Their Deposition on ACF for Catalytic Conversion of 4–Nitrophenol to 4–Aminophenol
Abstract
1. Introduction
2. Experimental
2.1. Reagents
2.2. Methods
2.2.1. UV-Vis Spectrophotometry
2.2.2. MP-AES Analysis
2.2.3. High-Resolution TEM and STEM Observations
2.2.4. SEM Analysis (RhNPs@ACF)
2.2.5. XPS Analysis
2.2.6. Fourier-Transform Infrared (FT-IR) Analysis
2.2.7. Catalytic Tests
3. Results and Discussion
3.1. Activation of Catalyst Carrier
3.2. Setup Used for Rhnps Synthesis and Catalyst Deposition on ACF
3.3. UV-Vis Analysis
3.4. TEM and STEM Analysis of RhNPs Synthesized in the Microreactor System (Before Passing Through the Catalyst Trap Containing ACFs)
3.5. SEM Analysis of the RhNPs Synthesized and Deposited on Activated Carbon Fibers
3.6. FT-IR Analysis of CF, ACF and Rh@ACF
3.7. XPS Analysis of Rh@ACF
3.8. Catalytic Test Performance for 4-NP Reduction to 4-AP in the Batch Reactor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lebeau, A. Platinum Group Elements: Palladium, Iridium, Osmium, Rhodium, and Ruthenium. In Hamilton & Hardy’s Industrial Toxicology; WILEY: Hoboken, NJ, USA, 2015; pp. 187–192. [Google Scholar]
- Hughes, A.E.; Haque, N.; Northey, S.A.; Giddey, S. Platinum Group Metals: A Review of Resources, Production and Usage with a Focus on Catalysts. Resources 2021, 10, 93. [Google Scholar] [CrossRef]
- Sugimoto, W.; Takimoto, D. Platinum Group Metal-based Nanosheets: Synthesis and Application towards Electrochemical Energy Storage and Conversion. Chem. Lett. 2021, 50, 1304–1312. [Google Scholar] [CrossRef]
- Tang, H.; Peng, Z.; Tian, R.; Ye, L.; Zhang, J.; Rao, M.; Li, G. Platinum-group metals: Demand, supply, applications and their recycling from spent automotive catalysts. J. Environ. Chem. Eng. 2023, 11, 110237. [Google Scholar] [CrossRef]
- Nose, K.; Okabe, T.H. Chapter 2.10—Platinum Group Metals Production. In Treatise on Process Metallurgy; Seetharaman, S., Ed.; Elsevier: Boston, MA, USA, 2014; pp. 1071–1097. [Google Scholar]
- Kinas, S.; Jermakowicz-Bartkowiak, D.; Pohl, P.; Dzimitrowicz, A.; Cyganowski, P. On the path of recovering platinum-group metals and rhenium: A review on the recent advances in secondary-source and waste materials processing. Hydrometallurgy 2024, 223, 106222. [Google Scholar] [CrossRef]
- Marguí, E.; Queralt, I.; Hidalgo, M. Determination of platinum group metal catalyst residues in active pharmaceutical ingredients by means of total reflection X-ray spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2013, 86, 50–54. [Google Scholar] [CrossRef]
- Halli, P.; Heikkinen, J.J.; Elomaa, H.; Wilson, B.P.; Jokinen, V.; Yliniemi, K.; Franssila, S.; Lundström, M. Platinum Recovery from Industrial Process Solutions by Electrodeposition–Redox Replacement. ACS Sustain. Chem. Eng. 2018, 6, 14631–14640. [Google Scholar] [CrossRef]
- Cui, L.; Yliniemi, K.; Vapaavuori, J.; Lundström, M. Recent developments of electrodeposition-redox replacement in metal recovery and functional materials: A review. Chem. Eng. J. 2023, 465, 142737. [Google Scholar] [CrossRef]
- MacDonald, L.; Zhang, D.; Karamalidis, A. Platinum group metals: Key solid phase adsorption technologies for separation from primary and secondary sources. Resour. Conserv. Recycl. 2024, 205, 107590. [Google Scholar] [CrossRef]
- Xv, B.; Li, Z.; Zha, G.; Liu, D.; Yang, B.; Jiang, W. Recovery of platinum group metals from spent automotive catalysts: Review of conventional techniques and vacuum metallurgy. Resour. Conserv. Recycl. 2025, 215, 108103. [Google Scholar] [CrossRef]
- Yan, J.; Wei, J.; Zhang, F.; Zhang, X.; He, Z.; Xie, F.; Hua, X.; Zhang, B. Comprehensive review on recovery of platinum group metals from spent automotive catalysts by metal capture technology: Present progress and outlook. J. Environ. Chem. Eng. 2024, 12, 114017. [Google Scholar] [CrossRef]
- Druciarek, J.; Kutyła, D.; Pach, A.; Kula, A.; Luty-Błocho, M. Waste for Product: Pd and Pt Nanoparticle-Modified Ni Foam as a Universal Catalyst for Hydrogen/Oxygen Evolution Reaction and Methyl Orange Degradation. Catalysts 2025, 15, 133. [Google Scholar] [CrossRef]
- Pach, A.; Zaryczny, A.; Michałek, T.; Kamiński, H.; Kutyła, D.; Tokarski, T.; Chat-Wilk, K.; Hessel, V.; Luty-Błocho, M. One-Step Synthesis of Pt–Pd@ACF Catalyst in the Microreactor System for the Hydrogen Evolution Reaction. Ind. Eng. Chem. Res. 2024, 63, 7018–7030. [Google Scholar] [CrossRef]
- Luty-Błocho, M.; Pach, A.; Kutyła, D.; Kula, A.; Małecki, S.; Jeleń, P.; Hessel, V. Waste for Product—Synthesis and Electrocatalytic Properties of Palladium Nanopyramid Layer Enriched with PtNPs. Materials 2024, 17, 4165. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Liu, D.; Chen, D.; Liu, H.; Yang, J. Size and shape controlled synthesis of rhodium nanoparticles. Heliyon 2019, 5, e01165. [Google Scholar] [CrossRef] [PubMed]
- Krajczewski, J.; Ambroziak, R.; Kudelski, A. Formation and selected catalytic properties of ruthenium, rhodium, osmium and iridium nanoparticles. RSC Adv. 2022, 12, 2123–2144. [Google Scholar] [CrossRef]
- Li, F.; Weng, H.; Shang, Y.; Ding, Z.; Yang, Z.; Cheng, S.; Lin, M. Environmentally friendly and facile synthesis of Rh nanoparticles at room temperature by alkaline ethanol solution and their application for ethanol electrooxidation. RSC Adv. 2017, 7, 3161–3169. [Google Scholar] [CrossRef]
- Menumerov, E.; Hughes, R.A.; Neretina, S. Catalytic Reduction of 4-Nitrophenol: A Quantitative Assessment of the Role of Dissolved Oxygen in Determining the Induction Time. Nano Lett. 2016, 16, 7791–7797. [Google Scholar] [CrossRef]
- Ehsani, A.; Nejatbakhsh, S.; Soodmand, A.M.; Farshchi, M.E.; Aghdasinia, H. High-performance catalytic reduction of 4-nitrophenol to 4-aminophenol using M-BDC (M = Ag, Co, Cr, Mn, and Zr) metal-organic frameworks. Environ. Res. 2023, 227, 115736. [Google Scholar] [CrossRef]
- Siri-apai, P.; Yaemphutchong, S.; Suetrong, N.; Suesuwan, A.; Choophun, N.; Wannapaiboon, S.; Rodchanarowan, A.; Chansaenpak, K.; Aroonrote, N.; Hanlumyuang, Y.; et al. Reduction of 4-Nitrophenol to 4-Aminophenol by Reusable CuFe5O8-Based Catalysts Synthesized by Co-Precipitation Method. Molecules 2025, 30, 777. [Google Scholar] [CrossRef]
- Azzam, A.B.; Djellabi, R.; Sheta, S.M.; El-Sheikh, S.M. Ultrafast conversion of carcinogenic 4-nitrophenol into 4-aminophenol in the dark catalyzed by surface interaction on BiPO4/g-C3N4 nanostructures in the presence of NaBH4. RSC Adv. 2021, 11, 18797–18808. [Google Scholar] [CrossRef]
- Xu, C.; Qiu, Y.; Yang, X.; Gao, Z.; Wang, Z.; Liu, C.; Sun, Y.; Ma, J.; Liu, L. High-Performance Catalytic Reduction of 4-Nitrophenol to 4-Aminophenol over Pt Nanoparticles Supported on Co-Al LDH Nanosheets. Crystals 2024, 14, 284. [Google Scholar] [CrossRef]
- Staudenmaier, L. Ber. Dtsch. Verfahren zur Darstellung der Graphitsäure. Chem. Ges. 1898, 31, 1481–1487. [Google Scholar] [CrossRef]
- Muszynski, R.; Seger, B.; Kamat, P.V. Decorating Graphene Sheets with Gold Nanoparticles. J. Phys. Chem. C 2008, 112, 5263–5266. [Google Scholar] [CrossRef]
- Michałek, T.; Wojtaszek, K.; Małecki, S.; Kornaus, K.; Wandor, S.; Druciarek, J.; Fitzner, K.; Wojnicki, M. Recovery of Pd(II) Ions from Aqueous Solutions Using Activated Carbon Obtained in a Single-Stage Synthesis from Cherry Seeds. C 2023, 9, 46. [Google Scholar] [CrossRef]
- Granados-Reyes, J.; Salagre, P.; Cesteros, Y.; Busca, G.; Finocchio, E. Assessment through FT-IR of surface acidity and basicity of hydrocalumites by nitrile adsorption. Appl. Clay Sci. 2019, 180, 105180. [Google Scholar] [CrossRef]
- Michałek, T.; Wojtaszek, K.; Youssif, M.M.; Żabiński, P.; Kołczyk-Siedlecka, K.; Kowalik, R.; Socha, R.P.; Hessel, V.; Wojnicki, M. Adsorption of Au(III), Pt(IV), Pd(II), and Rh(III) ions on activated carbon in a batch reactor supported by microwave radiation. Sci. Rep. 2025, 15, 5852. [Google Scholar] [CrossRef]
- Zhang, M.; Yin, H.; Wan, L.; Gao, H.; Liu, S.; Liu, Y. The fluorescent and colorimetric dual-response sensor based on carbon dots doped with nitrogen and sulfur for detecting copper ions. Carbon Lett. 2024, 34, 1155–1164. [Google Scholar] [CrossRef]
- Huang, Y.; Li, S.; Chen, J.; Zhang, X.; Chen, Y. Adsorption of Pb(II) on mesoporous activated carbons fabricated from water hyacinth using H3PO4 activation: Adsorption capacity, kinetic and isotherm studies. Appl. Surf. Sci. 2014, 293, 160–168. [Google Scholar] [CrossRef]
- Moussa, M.; Bohli, T.; Pevida, C.; Querejeta, N.; Ouederni, A. Olive stones based carbon foam: Synthesis, characterization and application on post-combustion CO2 adsorption. J. Porous Mater. 2022, 29, 1097–1112. [Google Scholar] [CrossRef]
- Prokić, D.; Vukčević, M.; Mitrović, A.; Maletić, M.; Kalijadis, A.; Janković-Častvan, I.; Đurkić, T. Adsorption of estrone, 17β-estradiol, and 17α-ethinylestradiol from water onto modified multi-walled carbon nanotubes, carbon cryogel, and carbonized hydrothermal carbon. Environ. Sci. Pollut. Res. 2022, 29, 4431–4445. [Google Scholar] [CrossRef]
- Harding, D.J.; Mackenzie, S.R.; Walsh, T.R. Density functional theory calculations of vibrational spectra of rhodium oxide clusters. Chem. Phys. Lett. 2009, 469, 31–34. [Google Scholar] [CrossRef]
- Musić, S.; Šarić, A.; Popović, S.; Ivanda, M. Formation and characterisation of nanosize α-Rh2O3 particles. J. Mol. Struct. 2009, 924–926, 221–224. [Google Scholar] [CrossRef]
- Wagner, C.D.; Naumkin, A.V.; Kraut-Vass, A.; Allison, J.W.; Powell, C.J.; Rumble, J.R.J. NIST Standard Reference Database 20, Version 3.4; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2003.
- Mohamed, H.D.A.; Watson, S.M.D.; Horrocks, B.R.; Houlton, A. Chemical and electrochemical routes to DNA-templated rhodium nanowires. J. Mater. Chem. C 2015, 3, 438–446. [Google Scholar] [CrossRef]
- Abe, Y.; Kato, K.; Kawamura, M.; Sasaki, K. Rhodium and Rhodium Oxide Thin Films Characterized by XPS. Surf. Sci. Spectra 2002, 8, 117–125. [Google Scholar] [CrossRef]
- Trzcinski, M.; Balcerowska-Czerniak, G.; Bukaluk, A. XPS Studies of the Initial Oxidation of Polycrystalline Rh Surface. Catalysts 2020, 10, 617. [Google Scholar] [CrossRef]
- Beamson, G.; Briggs, D. High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database (Beamson, G.; Briggs, D.). J. Chem. Educ. 1993, 70, A25. [Google Scholar] [CrossRef]
- Rouxhet, P.G.; Genet, M.J. XPS analysis of bio-organic systems. Surf. Interface Anal. 2011, 43, 1453–1470. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Wagner, C.D.; Passoja, D.E.; Hillery, H.F.; Kinisky, T.G.; Six, H.A.; Jansen, W.T.; Taylor, J.A. Auger and photoelectron line energy relationships in aluminum–oxygen and silicon–oxygen compounds. J. Vac. Sci. Technol. 1982, 21, 933–944. [Google Scholar] [CrossRef]
- Naumkin, A.V.; Kraut-Vass, A.; Gaarenstroom, S.W.; Powell, C.J. NIST X-Ray Photoelectron Spectroscopy Database (SRD 20), Version 5.0; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2023. Available online: https://srdata.nist.gov/xps/ (accessed on 4 September 2025).
- Liu, S.; Qileng, A.; Huang, J.; Liu, Y. Polydopamine as a bridge to decorate monodisperse gold nanoparticles on Fe3O4 nanoclusters for the catalytic reduction of 4-nitrophenol. RSC Adv. 2017, 7, 45545–45551. [Google Scholar] [CrossRef]
- Mwafy, E.A.; Mousa, S.M.; El-Bassyouni, G.T. Catalytic Degradation of 4-Nitrophenol Using CuO Nanoparticles: A Study of Structural, Optical, and Catalytic Properties. Plasmonics 2025. [Google Scholar] [CrossRef]
C | O | Na | Si | Cl | Rh | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Binding energy [eV] | 285.0 | 286.5 | 288.2 | 289.7 | 531.0 | 532.3 | 1071.3 | 102.1 | 197.9 | 307.2 | 309.6 |
Groups/Ox. State | C-C C-H | C-O C-OH | C=O O-C-O | O-C=O CO32− | O-Me O=C | O-C-OH O-Si | Na+ | siloxane silicone | Cl− | Rh0 | RhCl3 |
Rh-ACF | 43.5 | 7.9 | 7.0 | 3.4 | 17.4 | 9.7 | 8.1 | 1.6 | 0.4 | 0.4 | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pach, A.; Wojtaszek, K.; Elhadad, A.I.; Michałek, T.; Kula, A.; Luty-Błocho, M. One-Step Synthesis of Ultra-Small RhNPs in the Microreactor System and Their Deposition on ACF for Catalytic Conversion of 4–Nitrophenol to 4–Aminophenol. Nanomaterials 2025, 15, 1375. https://doi.org/10.3390/nano15171375
Pach A, Wojtaszek K, Elhadad AI, Michałek T, Kula A, Luty-Błocho M. One-Step Synthesis of Ultra-Small RhNPs in the Microreactor System and Their Deposition on ACF for Catalytic Conversion of 4–Nitrophenol to 4–Aminophenol. Nanomaterials. 2025; 15(17):1375. https://doi.org/10.3390/nano15171375
Chicago/Turabian StylePach, Adrianna, Konrad Wojtaszek, Ahmed Ibrahim Elhadad, Tomasz Michałek, Anna Kula, and Magdalena Luty-Błocho. 2025. "One-Step Synthesis of Ultra-Small RhNPs in the Microreactor System and Their Deposition on ACF for Catalytic Conversion of 4–Nitrophenol to 4–Aminophenol" Nanomaterials 15, no. 17: 1375. https://doi.org/10.3390/nano15171375
APA StylePach, A., Wojtaszek, K., Elhadad, A. I., Michałek, T., Kula, A., & Luty-Błocho, M. (2025). One-Step Synthesis of Ultra-Small RhNPs in the Microreactor System and Their Deposition on ACF for Catalytic Conversion of 4–Nitrophenol to 4–Aminophenol. Nanomaterials, 15(17), 1375. https://doi.org/10.3390/nano15171375