Synthesis of MnFe2O4 Nanoparticles and Subsequent Prussian Blue Functionalization for a Novel Composite Photothermal Material
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Synthesis of MnFe2O4 Nanoparticles
2.3. Synthesis of MnFe2O4@PB Nanocomposite
2.4. Characterization
3. Results and Discussion
3.1. Characterizations of MnFe2O4 Nanoparticles
3.2. Characterizations of MnFe2O4@PB Nanocomposite
3.3. The Photothermal Properties of MnFe2O4@PB Nanocomposite
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, F.; Li, J.; Chen, T.; Ren, W.; Gao, C.; Lin, J.; Xu, C.; Ma, X.; Xing, J.; Bao, H.; et al. Applications of magnetic nanoparticles for boundarics in biomedicine. Fundam. Res. 2025, 5, 1401–1422. [Google Scholar] [CrossRef] [PubMed]
- Muthukumaran, T.; Philip, J. A review on synthesis, capping and applications of superparamagnetic magnetic nanoparticles. Adv. Colloid Interface Sci. 2024, 334, 103314. [Google Scholar] [CrossRef]
- Islam, K.; Haque, M.; Kumar, A.; Hoq, A.; Hyder, F.; Hoque, S.M. Manganese Ferrite Nanoparticles (MnFe2O4): Size Dependence for Hyperthermia and Negative/Positive Contrast Enhancement in MRI. Nanomaterials 2020, 10, 2297. [Google Scholar] [CrossRef]
- Lee, J.-H.; Huh, Y.-M.; Jun, Y.-w.; Seo, J.-w.; Jang, J.-t.; Song, H.-T.; Kim, S.; Cho, E.-J.; Yoon, H.-G.; Suh, J.-S.; et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 2007, 13, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Akhlaghi, N.; Najafpour-Darzi, G. Manganese ferrite (MnFe2O4) Nanoparticles: From synthesis to application—A review. J. Ind. Eng. Chem. 2021, 103, 292–304. [Google Scholar] [CrossRef]
- Akila, B.; Kogularasu, S.; Vasu, D.; Sakthinathan, S.; Chen, Y.-L.; Chiu, T.-W.; Chang-Chien, G.-P. Bio-waste derived hierarchical hydroxyapatite core–Shell manganese ferrite ceramic biomaterial: Structural, morphological characterization, and controlled drug release properties. Ceram. Int. 2025, 51, 22698–22706. [Google Scholar] [CrossRef]
- Peters, J.A. Relaxivity of manganese ferrite nanoparticles. Prog. Nucl. Magn. Reson. Spectrosc. 2020, 120–121, 72–94. [Google Scholar] [CrossRef]
- Dolai, J.; Mandal, K.; Jana, N.R. Nanoparticle Size Effects in Biomedical Applications. ACS Appl. Nano Mater. 2021, 4, 6471–6496. [Google Scholar] [CrossRef]
- Raland, R.D.; Saikia, D.; Borgohain, C.; Borah, J.P. Heating efficiency and correlation between the structural and magnetic properties of oleic acid coated MnFe2O4 nanoparticles for magnetic hyperthermia application. J. Phys. D Appl. Phys. 2017, 50, 325004. [Google Scholar] [CrossRef]
- Rafique, M.Y.; Pan, L.-Q.; Iqbal, M.Z.; Qiu, H.-M.; Farooq, M.H.; Guo, Z.-G.; Tanveer, M. Growth of monodisperse nanospheres of MnFe2O4 with enhanced magnetic and optical properties. Chin. Phys. B 2013, 22, 107101. [Google Scholar] [CrossRef]
- Chandunika, R.K.; Vijayaraghavan, R.; Sahu, N.K. Magnetic hyperthermia application of MnFe2O4 nanostructures processed through solvents with the varying boiling point. Mater. Res. Express 2020, 7, 064002. [Google Scholar] [CrossRef]
- Horta, A.C.; Poças, A.; Amaral, J.S.; Amorim, C.O. Fine-Tuning of Mn-Ferrite nanoparticle size using a Dual-Base coprecipitation method. Mater. Sci. Eng. B 2025, 314, 118058. [Google Scholar] [CrossRef]
- Kumar, P.; Pathak, S.; Jain, K.; Singh, A.; Kuldeep; Basheed, G.A.; Pant, R.P. Low-temperature large-scale hydrothermal synthesis of optically active PEG-200 capped single domain MnFe2O4 nanoparticles. J. Alloys Compd. 2022, 904, 163992. [Google Scholar] [CrossRef]
- Yang, Q.; Dong, Y.; Qiu, Y.; Yang, X.; Cao, H.; Wu, Y. Design of Functional Magnetic Nanocomposites for Bioseparation. Colloids Surf. B Biointerfaces 2020, 191, 111014. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.; Li, K.; Zhang, J.; Wang, H.; Huang, Z.; Li, F.; Zhang, H.; Jia, Q.; Zhang, S. Myrica rubra-like MnFe2O4 microsphere: A high efficiency microwave reduction catalyst for Cr (VI) removal from water. Sep. Purif. Technol. 2022, 286, 120434. [Google Scholar] [CrossRef]
- Uddin, M.K.; Deb, N.; Rashid, R.; Das, H.; Syed, I.M.; Hoque, S.M. Physical properties with high specific loss power of magnetite (Fe3O4) synthesized via thermal decomposition technique. AIP Adv. 2023, 13, 105105. [Google Scholar] [CrossRef]
- Mahin, J.; Torrente-Murciano, L. Continuous synthesis of monodisperse iron@iron oxide core@shell nanoparticles. Chem. Eng. J. 2020, 396, 125299. [Google Scholar] [CrossRef]
- Gavilán, H.; Rizzo, G.M.R.; Silvestri, N.; Mai, B.T.; Pellegrino, T. Scale-up approach for the preparation of magnetic ferrite nanocubes and other shapes with benchmark performance for magnetic hyperthermia applications. Nat. Protoc. 2023, 18, 783–809. [Google Scholar] [CrossRef]
- Wu, M.; Xiao, Y.; Wu, R.; Lei, J.; Li, T.; Zheng, Y. Aggregable gold nanoparticles for cancer photothermal therapy. J. Mater. Chem. B 2024, 12, 8048–8061. [Google Scholar] [CrossRef]
- Liang, P.; Mao, L.; Dong, Y.; Zhao, Z.; Sun, Q.; Mazhar, M.; Ma, Y.; Yang, S.; Ren, W. Design and Application of Near-Infrared Nanomaterial-Liposome Hybrid Nanocarriers for Cancer Photothermal Therapy. Pharmaceutics 2021, 13, 2070. [Google Scholar] [CrossRef]
- Sun, Y.; Zhai, W.; Liu, X.; Song, X.; Gao, X.; Xu, K.; Tang, B. Homotypic cell membrane-cloaked biomimetic nanocarrier for the accurate photothermal-chemotherapy treatment of recurrent hepatocellular carcinoma. J. Nanobiotechnol. 2020, 18, 60. [Google Scholar] [CrossRef]
- Xiong, Y.; Rao, Y.; Hu, J.; Luo, Z.; Chen, C. Nanoparticle-Based Photothermal Therapy for Breast Cancer Noninvasive Treatment. Adv. Mater. 2025, 37, 2305140. [Google Scholar] [CrossRef] [PubMed]
- Patrick, P.S.; Stuckey, D.J.; Zhu, H.; Kalber, T.L.; Iftikhar, H.; Southern, P.; Bear, J.C.; Lythgoe, M.F.; Hattersley, S.R.; Pankhurst, Q.A. Improved tumour delivery of iron oxide nanoparticles for magnetic hyperthermia therapy of melanoma via ultrasound guidance and 111In SPECT quantification. Nanoscale 2024, 16, 19715–19729. [Google Scholar] [CrossRef]
- Blasa, S.; Borzenkov, M.; Pastori, V.; Doveri, L.; Pallavicini, P.; Chirico, G.; Lecchi, M.; Collini, M. Prussian Blue Nanoparticle-Mediated Scalable Thermal Stimulation for In Vitro Neuronal Differentiation. Nanomaterials 2022, 12, 2304. [Google Scholar] [CrossRef]
- Gao, W.; Wang, Y.; Zheng, Y.; Cai, X. Prussian Blue Nanoparticle: From a Photothermal Conversion Agent and a Drug Delivery System, to a Bioactive Drug. Acc. Mater. Res. 2024, 5, 687–698. [Google Scholar] [CrossRef]
- Chen, B.; Wu, M.; Qin, J.; Zhang, L.; Cao, X.; Jiang, K. Prussian blue-EGCG nanoparticles for synergistic photothermal and chemo anticancer therapy in vitro. Dye. Pigment. 2025, 232, 112487. [Google Scholar] [CrossRef]
- Hong, H.; Kim, M.; Lee, W.; Jeon, M.; Lee, C.; Kim, H.; Im, H.-J.; Piao, Y. Injectable biocompatible nanocomposites of Prussian blue nanoparticles and bacterial cellulose as a safe and effective photothermal cancer therapy. J. Nanobiotechnol. 2023, 21, 365. [Google Scholar] [CrossRef]
- Zhang, Y.; Ang, C.Y.; Zhao, Y. Polymeric nanocarriers incorporating near-infrared absorbing agents for potent photothermal therapy of cancer. Polym. J. 2016, 48, 589–603. [Google Scholar] [CrossRef]
- Xue, P.; Sun, L.; Li, Q.; Zhang, L.; Guo, J.; Xu, Z.; Kang, Y. PEGylated polydopamine-coated magnetic nanoparticles for combined targeted chemotherapy and photothermal ablation of tumour cells. Colloids Surf. B Biointerfaces 2017, 160, 11–21. [Google Scholar] [PubMed]
- Zhu, D.; Liu, F.; Ma, L.; Liu, D.; Wang, Z. Nanoparticle-Based Systems for T1-Weighted Magnetic Resonance Imaging Contrast Agents. Int. J. Mol. Sci. 2013, 14, 10591–10607. [Google Scholar] [CrossRef] [PubMed]
- Gong, M.; Yang, H.; Zhang, S.; Yang, Y.; Zhang, D.; Li, Z.; Zou, L. Targeting T1 and T2 dual modality enhanced magnetic resonance imaging of tumor vascular endothelial cells based on peptides-conjugated manganese ferrite nanomicelles. Int. J. Nanomed. 2016, 11, 4051–4063. [Google Scholar] [CrossRef] [PubMed]
- Gorgizadeh, M.; Behzadpour, N.; Salehi, F.; Daneshvar, F.; Vais, R.D.; Nazari-Vanani, R.; Azarpira, N.; Lotfi, M.; Sattarahmady, N. A MnFe2O4/C nanocomposite as a novel theranostic agent in MRI, sonodynamic therapy and photothermal therapy of a melanoma cancer model. J. Alloys Compd. 2020, 816, 152597. [Google Scholar] [CrossRef]
- Patrick, P.S.; Pankhurst, Q.A.; Payne, C.; Kalber, T.L.; Lythgoe, M.F. Magnet-Targeted Delivery and Imaging. In Design and Applications of Nanoparticles in Biomedical Imaging; Bulte, J.W.M., Modo, M.M.J., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 123–152. [Google Scholar]
- Mohseni, M.; Connell, J.J.; Payne, C.; Patrick, P.S.; Baker, R.; Yu, Y.; Siow, B.; Zaw-Thin, M.; Kalber, T.L.; Pankhurst, Q.A.; et al. Scalable magnet geometries enhance tumour targeting of magnetic nano-carriers. Mater. Des. 2020, 191, 108610. [Google Scholar] [CrossRef]
- Kozakova, Z.; Kuritka, I.; Kazantseva, N.E.; Babayan, V.; Pastorek, M.; Machovsky, M.; Bazant, P.; Saha, P. The formation mechanism of iron oxide nanoparticles within the microwave-assisted solvothermal synthesis and its correlation with the structural and magnetic properties. Dalton Trans. 2015, 44, 21099–21108. [Google Scholar] [CrossRef] [PubMed]
- Long, X.-Y.; Li, J.-Y.; Sheng, D.; Lian, H.-Z. Spinel-type manganese ferrite (MnFe2O4) microspheres: A novel affinity probe for selective and fast enrichment of phosphopeptides. Talanta 2017, 166, 36–45. [Google Scholar] [CrossRef]
- Xuan, S.; Wang, F.; Wang, Y.-X.J.; Yu, J.C.; Leung, K.C.-F. Facile synthesis of size-controllable monodispersed ferrite nanospheres. J. Mater. Chem. 2010, 20, 5086–5094. [Google Scholar] [CrossRef]
- Sagdeev, D.I.; Fomina, M.G.; Mukhamedzyanov, G.K.; Abdulagatov, I.M. Experimental study of the density and viscosity of polyethylene glycols and their mixtures at temperatures from 293K to 465K and at high pressures up to 245MPa. Fluid Phase Equilibria 2012, 315, 64–76. [Google Scholar] [CrossRef]
- Qi, X.; Liu, M.; Zhu, W.; Wei, Z.; Liang, Y.; Sun, C.; Bao, C.; Zhao, W. Spherical Fe3O4 morphology modulation for enhancing infrared emissivity and radiant heat dissipation. Opt. Mater. 2024, 152, 115541. [Google Scholar] [CrossRef]
- Zhuang, L.; Zhang, W.; Zhao, Y.; Shen, H.; Lin, H.; Liang, J. Preparation and Characterization of Fe3O4 Particles with Novel Nanosheets Morphology and Magnetochromatic Property by a Modified Solvothermal Method. Sci. Rep. 2015, 5, 9320. [Google Scholar] [CrossRef]
- Wang, W.; Tang, B.; Wu, S.; Gao, Z.; Ju, B.; Teng, X.; Zhang, S. Controllable 5-sulfosalicylic acid assisted solvothermal synthesis of monodispersed superparamagnetic Fe3O4 nanoclusters with tunable size. J. Magn. Magn. Mater. 2017, 423, 111–117. [Google Scholar] [CrossRef]
- Ji, J.; Huang, Y.; Yin, J.; Zhao, X.; Cheng, X.; He, J.; Wang, J.; Li, X.; Liu, J. Electromagnetic Wave Absorption Performance on Fe3O4 Polycrystalline Synthesized by the Synergy Reduction of Ethylene Glycol and Diethylene Glycol. J. Phys. Chem. C 2018, 122, 3628–3637. [Google Scholar] [CrossRef]
- AboGabal, R.; Shokeir, D.; Oraby, A.H. Design and synthesis of biologically inspired biocompatible various polymeric magnetic nanoparticles for imaging and biomedical applications. Nano-Struct. Nano-Objects 2023, 36, 101048. [Google Scholar] [CrossRef]
- Chang, L.; Chang, S.; Chen, W.; Han, W.; Li, Z.; Zhang, Z.; Dai, Y.; Chen, D. Facile one-pot synthesis of magnetic Prussian blue core/shell nanoparticles for radioactive cesium removal. RSC Adv. 2016, 6, 96223–96228. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Xie, X.; Wang, Z. Bifunctional MnFe2O4/chitosan modified biochar composite for enhanced methyl orange removal based on adsorption and photo-Fenton process. Colloids Surf. A Physicochem. Eng. Asp. 2021, 613, 126104. [Google Scholar] [CrossRef]
- Ibrahim, I.; Ali, I.O.; Salama, T.M.; Bahgat, A.A.; Mohamed, M.M. Synthesis of magnetically recyclable spinel ferrite (MFe2O4, M=Zn, Co, Mn) nanocrystals engineered by sol gel-hydrothermal technology: High catalytic performances for nitroarenes reduction. Appl. Catal. B Environ. 2016, 181, 389–402. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, N.; Tian, K.; Qing, T.; Hao, Y.; Liang, P.; Li, M. Nitrilotriacetic acid modified magnetic Prussian blue for efficient removal of cadmium from wastewater. Appl. Surf. Sci. 2022, 600, 154102. [Google Scholar] [CrossRef]
- Patade, S.R.; Andhare, D.D.; Somvanshi, S.B.; Jadhav, S.A.; Khedkar, M.V.; Jadhav, K. Self-heating evaluation of superparamagnetic MnFe2O4 nanoparticles for magnetic fluid hyperthermia application towards cancer treatment. Ceram. Int. 2020, 46, 25576–25583. [Google Scholar] [CrossRef]
- Arun, T.; Kumar, T.K.; Udayabhaskar, R.; Morel, M.J.; Rajesh, G.; Mangalaraja, R.; Akbari-Fakhrabadi, A. Size dependent magnetic and capacitive performance of MnFe2O4 magnetic nanoparticles. Mater. Lett. 2020, 276, 128240. [Google Scholar] [CrossRef]
- Li, Z.; Si, F.; Ma, Y.; Geng, J.; Wang, G.; Wang, Z.; Yu, R.; Mu, J.; Hou, J.; Wang, Y.; et al. Self-assembled bio-inspired cauliflower-like MnFe2O4 nanospheres as dispersed materials for high-stability magnetorheological fluid. J. Magn. Magn. Mater. 2023, 571, 170589. [Google Scholar] [CrossRef]
- Du, B.; Cao, X.; Zhao, F.; Su, X.; Wang, Y.; Yan, X.; Jia, S.; Zhou, J.; Yao, H. Multimodal imaging-guided, dual-targeted photothermal therapy for cancer. J. Mater. Chem. B 2016, 4, 2038–2050. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, C.; Zou, B.; Wang, Y. Hollow prussian blue nanospheres for photothermal/chemo-synergistic therapy. Int. J. Nanomed. 2020, 15, 5165–5177. [Google Scholar] [CrossRef]
- Zou, H.; Wang, H.; Zhong, Y.; Zhang, Z.; Wang, Z.; Shang, T. Prussian blue nanoparticles coated with tumor cell membranes for precise photothermal therapy and subsequent inflammation reduction. Biochem. Biophys. Res. Commun. 2024, 723, 150173. [Google Scholar] [CrossRef]
- Valente-Rodrigues, C.L.; Caraballo-Vivas, R.J.; Santos, E.C.S.; Sharma, S.K.; Garcia, F. Investigation of Cr3+ doped Zn-Co nanoferrites as potential candidate for self-regulated magnetic hyperthermia applications. Phys. Scr. 2023, 98, 095913. [Google Scholar] [CrossRef]
- Cai, Y.; Chai, T.; Nguyen, W.; Liu, J.; Xiao, E.; Ran, X.; Ran, Y.; Du, D.; Chen, W.; Chen, X. Phototherapy in cancer treatment: Strategies and challenges. Signal Transduct. Target. Ther. 2025, 10, 115. [Google Scholar] [CrossRef]
- Ren, W.; Yan, Y.; Zeng, L.; Shi, Z.; Gong, A.; Schaaf, P.; Wang, D.; Zhao, J.; Zou, B.; Yu, H.; et al. A Near Infrared Light Triggered Hydrogenated Black TiO2 for Cancer Photothermal Therapy. Adv. Healthc. Mater. 2015, 4, 1526–1536. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Ma, Y.; Wang, X.; Wu, X.; Zha, Z. Facile synthesis of Prussian blue nanoparticles as pH-responsive drug carriers for combined photothermal-chemo treatment of cancer. RSC Adv. 2017, 7, 248–255. [Google Scholar] [CrossRef]
- Kale, S.S.; Burga, R.A.; Sweeney, E.E.; Zun, Z.; Sze, R.W.; Tuesca, A.; Subramony, J.A.; Fernandes, R. Composite iron oxide–Prussian blue nanoparticles for magnetically guided T1-weighted magnetic resonance imaging and photothermal therapy of tumors. Int. J. Nanomed. 2017, 12, 6413–6424. [Google Scholar] [CrossRef]
- Augustine, R.; Lee, H.R.; Kim, H.; Zhang, Y.; Kim, I. Hyperbranched lipopolymer-folate-stabilized manganese ferrite nanoparticles for the water-soluble targeted MRI contrast agent. React. Funct. Polym. 2019, 144, 104352. [Google Scholar] [CrossRef]
- Monaco, I.; Armanetti, P.; Locatelli, E.; Flori, A.; Maturi, M.; Del Turco, S.; Menichetti, L.; Comes Franchini, M. Smart assembly of Mn-ferrites/silica core–shell with fluorescein and gold nanorods: Robust and stable nanomicelles for in vivo triple modality imaging. J. Mater. Chem. B 2018, 6, 2993–2999. [Google Scholar] [CrossRef] [PubMed]
- Patrick, P.S.; Bogart, L.K.; Macdonald, T.J.; Southern, P.; Powell, M.J.; Zaw-Thin, M.; Voelcker, N.H.; Parkin, I.P.; Pankhurst, Q.A.; Lythgoe, M.F.; et al. Surface radio-mineralisation mediates chelate-free radiolabelling of iron oxide nanoparticles. Chem. Sci. 2019, 10, 2592–2597. [Google Scholar] [CrossRef]
- Zhang, X.-Q.; Gong, S.-W.; Zhang, Y.; Yang, T.; Wang, C.-Y.; Gu, N. Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity. J. Mater. Chem. 2010, 20, 5110–5116. [Google Scholar] [CrossRef]
- Niculescu, A.-G.; Chircov, C.; Grumezescu, A.M. Magnetite nanoparticles: Synthesis methods—A comparative review. Methods 2022, 199, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zheng, A.; Jiang, Y.; Lan, D.; Lu, F.; Zheng, L.; Zhuang, L.; Hong, R. Large-scale preparation of size-controlled Fe3O4@SiO2 particles for electrophoretic display with non-iridescent structural colors. RSC Adv. 2019, 9, 498–506. [Google Scholar] [CrossRef] [PubMed]
MnFe2O4:PB | 5:1 | 5:2 | 5:3 | 5:4 | 5:4.5 | 5:5.4 |
---|---|---|---|---|---|---|
Sample Name | MPB1 | MPB2 | MPB3 | MPB4 | MPB4.5 | MPB5.4 |
DEG Ratio (%) | Average Particle Size (nm) | RSD (%) |
---|---|---|
0 | 266.37 ± 48.83 | 18.33 |
50 | 203.43 ± 43.05 | 21.16 |
60 | 190.69 ± 28.18 | 14.78 |
70 | 155.99 ± 24.06 | 15.42 |
80 | 104.69 ± 20.19 | 19.29 |
Sample | Initial Temperature (°C) | Temperature at 5 min of Light Irradiation (°C) | Temperature Difference (°C) |
---|---|---|---|
Water | 29.70 | 30.93 | 1.23 |
MPB1 | 27.60 | 42.47 | 14.87 |
MPB2 | 28.80 | 43.63 | 14.83 |
MPB3 | 29.00 | 44.10 | 15.10 |
MPB4 | 29.00 | 43.73 | 14.73 |
MPB4.5 | 29.30 | 45.17 | 15.87 |
MPB5.4 | 29.50 | 45.03 | 15.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Zhang, M.; Liang, Z.; Su, M. Synthesis of MnFe2O4 Nanoparticles and Subsequent Prussian Blue Functionalization for a Novel Composite Photothermal Material. Nanomaterials 2025, 15, 1382. https://doi.org/10.3390/nano15171382
Wang M, Zhang M, Liang Z, Su M. Synthesis of MnFe2O4 Nanoparticles and Subsequent Prussian Blue Functionalization for a Novel Composite Photothermal Material. Nanomaterials. 2025; 15(17):1382. https://doi.org/10.3390/nano15171382
Chicago/Turabian StyleWang, Mengyu, Ming Zhang, Zhihan Liang, and Min Su. 2025. "Synthesis of MnFe2O4 Nanoparticles and Subsequent Prussian Blue Functionalization for a Novel Composite Photothermal Material" Nanomaterials 15, no. 17: 1382. https://doi.org/10.3390/nano15171382
APA StyleWang, M., Zhang, M., Liang, Z., & Su, M. (2025). Synthesis of MnFe2O4 Nanoparticles and Subsequent Prussian Blue Functionalization for a Novel Composite Photothermal Material. Nanomaterials, 15(17), 1382. https://doi.org/10.3390/nano15171382