Advancements and Strategies for Selectivity Enhancement in Chemiresistive Gas Sensors
Abstract
1. Introduction
2. Gas Sensing Mechanism of Chemiresistive Gas Sensors
- (1)
- Gas sensors based on semiconductor metal oxides
- (2)
- Gas sensors based on two-dimensional materials
3. Selectivity Enhancement Strategies for Chemiresistive Gas Sensors
3.1. Semiconductor Metal Oxide-Based Gas Sensors
3.1.1. Functionalization of Semiconductor Metal Oxides with Catalysts
3.1.2. Defects Generation and Phase Control
3.2. Pure Metal and Alloy-Based Gas Sensors
3.2.1. Noble Metal-Based Sensors
3.2.2. Metal Alloy-Based Sensors
3.3. Conjugated Polymer-Based Gas Sensors
3.3.1. Doping and Functionalization
3.3.2. Composite Structure Design
3.4. Two-Dimensional Materials-Based Gas Sensors
3.4.1. Transition Metal Dichalcogenides (TMDs)
3.4.2. Graphene and Its Derivatives-Based Gas Sensors
4. Novel Selective and System Integration Strategies
4.1. Bionics and Heterogeneous Structures
4.2. Artificial Intelligence-Assisted Sensing
4.3. Multimodal Integrated System
5. Conclusions and Future Perspective
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chaudhary, V.; Taha, B.A.; Lucky, S.; Rustagi, S.; Khosla, A.; Papakonstantinou, P.; Bhalla, N. Nose-on-Chip Nanobiosensors for Early Detection of Lung Cancer Breath Biomarkers. ACS Sens. 2024, 9, 4469–4494. [Google Scholar] [CrossRef]
- Baharfar, M.; Lin, J.; Kilani, M.; Zhao, L.; Zhang, Q.; Mao, G. Gas nanosensors for health and safety applications in mining. Nanoscale Adv. 2023, 5, 5997–6016. [Google Scholar] [CrossRef]
- Shaalan, N.M.; Ahmed, F.; Saber, O.; Kumar, S. Gases in Food Production and Monitoring: Recent Advances in Target Chemiresistive Gas Sensors. Chemosensors 2022, 10, 338. [Google Scholar] [CrossRef]
- Milone, A.; Monteduro, A.G.; Rizzato, S.; Leo, A.; Di Natale, C.; Kim, S.S.; Maruccio, G. Advances in Materials and Technologies for Gas Sensing from Environmental and Food Monitoring to Breath Analysis. Adv. Sustain. Syst. 2023, 7, 2200083. [Google Scholar] [CrossRef]
- Srinivasan, P.; Ezhilan, M.; Kulandaisamy, A.J.; Babu, K.J.; Rayappan, J.B.B. Room temperature chemiresistive gas sensors: Challenges and strategies-a mini review. J. Mater. Sci. Mater. Electron. 2019, 30, 15825–15847. [Google Scholar] [CrossRef]
- Bakker, E.; Telting-Diaz, M. Electrochemical sensors. Anal. Chem. 2002, 74, 2781–2800. [Google Scholar] [CrossRef]
- Zong, B.; Wu, S.; Yang, Y.; Li, Q.; Tao, T.; Mao, S. Smart Gas Sensors: Recent Developments and Future Prospective. Nano-Micro Lett. 2025, 17, 54. [Google Scholar] [CrossRef]
- Li, P.; Li, J.; Song, S.; Chen, J.; Zhong, N.; Xie, Q.; Liu, Y.; Wan, B.; He, Y.; Karimi-Maleh, H. Recent advances in optical gas sensors for carbon dioxide detection. Measurement 2025, 239, 115445. [Google Scholar] [CrossRef]
- Hyodo, T.; Shimizu, Y. Adsorption/Combustion-type Micro Gas Sensors: Typical VOC-sensing Properties and Material-design Approach for Highly Sensitive and Selective VOC Detection. Anal. Sci. 2020, 36, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Naganaboina, V.R.; Singh, S.G. Chemiresistive gas sensors From novel gas-sensing materials to electrode structure. Chem. Phys. Rev. 2023, 4, 021306. [Google Scholar] [CrossRef]
- Reddy, B.K.S.; Borse, P.H. Review—Recent Material Advances and Their Mechanistic Approaches for Room Temperature Chemiresistive Gas Sensors. J. Electrochem. Soc. 2021, 168, 057521. [Google Scholar] [CrossRef]
- Turlybekuly, A.; Shynybekov, Y.; Soltabayev, B.; Yergaliuly, G.; Mentbayeva, A. The Cross-Sensitivity of Chemiresistive Gas Sensors: Nature, Methods, and Peculiarities: A Systematic Review. ACS Sens. 2024, 9, 6358–6371. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.-Y.; Ou, L.-X.; Mao, L.-W.; Wu, X.-Y.; Liu, Y.-P.; Lu, H.-L. Advances in Noble Metal-Decorated Metal Oxide Nanomaterials for Chemiresistive Gas Sensors: Overview. Nano-Micro Lett. 2023, 15, 89. [Google Scholar] [CrossRef]
- Kumar, A.; Mazumder, J.T.; Joyen, K.; Favier, F.; Mirzaei, A.; Kim, J.-Y.; Kwoka, M.; Bechelany, M.; Jha, R.K.; Kumar, M.; et al. Defect engineering approaches for metal oxide semiconductor-based chemiresistive gas sensing. Coord. Chem. Rev. 2025, 541, 216836. [Google Scholar] [CrossRef]
- Jian, Y.; Hu, W.; Zhao, Z.; Cheng, P.; Haick, H.; Yao, M.; Wu, W. Gas Sensors Based on Chemi-Resistive Hybrid Functional Nanomaterials. Nano-Micro Lett. 2020, 12, 216836. [Google Scholar] [CrossRef]
- Yang, B.; Myung, N.V.; Tran, T.T. 1D Metal Oxide Semiconductor Materials for Chemiresistive Gas Sensors: A Review. Adv. Electron. Mater. 2021, 7, 2100271. [Google Scholar] [CrossRef]
- Lee, H.S.; Kim, J.; Moon, H.; Lee, W. Hydrogen Gas Sensors Using Palladium Nanogaps on an Elastomeric Substrate. Adv. Mater. 2021, 33, 2005929. [Google Scholar] [CrossRef]
- Tang, Y.M.; Ong, C.W. Analysis and improvement of cyclic stability of H2 sensing properties of Pd/Mg–Ni films. Int. J. Hydrogen Energy 2011, 36, 10188–10196. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, M.; Zheng, K.; Ye, W.; Zhang, S.; Wang, B.; Long, X. High-Performance Room Temperature Ammonia Sensors Based on Pure Organic Molecules Featuring B-N Covalent Bond. Adv. Sci. 2024, 11, e2308483. [Google Scholar] [CrossRef]
- Alzate-Carvajal, N.; Luican-Mayer, A. Functionalized Graphene Surfaces for Selective Gas Sensing. ACS Omega 2020, 5, 21320–21329. [Google Scholar] [CrossRef]
- Chemiresistive sensing with functionalized carbon nanotubes. Nat. Rev. Methods Prim. 2023, 3, 72. [CrossRef]
- Drozdowska, K.; Smulko, J. Selective light-activation of sensing regions in hybrid Au-graphene-TiO2 chemiresistive gas sensor. Sens. Actuators B Chem. 2025, 437, 137764. [Google Scholar] [CrossRef]
- Mei, H.; Peng, J.; Wang, T.; Zhou, T.; Zhao, H.; Zhang, T.; Yang, Z. Overcoming the Limits of Cross-Sensitivity: Pattern Recognition Methods for Chemiresistive Gas Sensor Array. Nano-Micro Lett. 2024, 16, 269. [Google Scholar] [CrossRef]
- Dong, W.; Zhao, J.; Hu, R.; Dong, Y.; Tan, L. Differentiation of Chinese robusta coffees according to species, using a combined electronic nose and tongue, with the aid of chemometrics. Food Chem. 2017, 229, 743–751. [Google Scholar] [CrossRef]
- Bulemo, P.M.; Kim, D.-H.; Shin, H.; Cho, H.-J.; Koo, W.-T.; Choi, S.-J.; Park, C.; Ahn, J.; Guntner, A.T.; Penner, R.M.; et al. Selectivity in Chemiresistive Gas Sensors: Strategies and Challenges. Chem. Rev. 2025, 125, 4111–4183. [Google Scholar] [CrossRef]
- Galvani, M.; Freddi, S.; Sangaletti, L. Disclosing Fast Detection Opportunities with Nanostructured Chemiresistor Gas Sensors Based on Metal Oxides, Carbon, and Transition Metal Dichalcogenides. Sensors 2024, 24, 584. [Google Scholar] [CrossRef]
- Yang, J.; Sun, R.; Bao, X.; Liu, J.; Ng, J.W.; Tang, B.; Liu, Z. Enhancing Selectivity of Two-Dimensional Materials-Based Gas Sensors. Adv. Funct. Mater. 2025, 35, 2420393. [Google Scholar] [CrossRef]
- Yamazoe, N.; Shimanoe, K. Theoretical approach to the gas response of oxide semiconductor film devices under control of gas diffusion and reaction effects. Sens. Actuators B Chem. 2011, 154, 277–282. [Google Scholar] [CrossRef]
- Majhi, S.M.; Navale, S.T.; Mirzaei, A.; Kim, H.W.; Kim, S.S. Strategies to boost chemiresistive sensing performance of In2O3-based gas sensors: An overview. Inorg. Chem. Front. 2023, 10, 3428–3467. [Google Scholar] [CrossRef]
- Franco, M.A.; Conti, P.P.; Andre, R.S.; Correa, D.S. A review on chemiresistive ZnO gas sensors. Sens. Actuators Rep. 2022, 4, 100100. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Kim, J.S.; Lee, J.H. Rational Design of Semiconductor-Based Chemiresistors and their Libraries for Next-Generation Artificial Olfaction. Adv. Mater. 2020, 32, 2002075. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Guo, X.; Zhou, Y.; He, Y.; Zang, Z. Copper-based metal oxides for chemiresistive gas sensors. J. Mater. Chem. C 2022, 10, 16218–16246. [Google Scholar] [CrossRef]
- Wusiman, M.; Taghipour, F. Methods and mechanisms of gas sensor selectivity. Crit. Rev. Solid State Mater. Sci. 2021, 47, 416–435. [Google Scholar] [CrossRef]
- Kim, Y.; Sohn, I.; Shin, D.; Yoo, J.; Lee, S.; Yoon, H.; Park, J.; Chung, S.-m.; Kim, H. Recent Advances in Functionalization and Hybridization of Two-Dimensional Transition Metal Dichalcogenide for Gas Sensor. Adv. Eng. Mater. 2024, 26, 2301063. [Google Scholar] [CrossRef]
- Ghosh, R.; Aslam, M.; Kalita, H. Graphene derivatives for chemiresistive gas sensors: A review. Mater. Today Commun. 2022, 30, 103182. [Google Scholar] [CrossRef]
- Recum, P.; Hirsch, T. Graphene-based chemiresistive gas sensors. Nanoscale Adv. 2024, 6, 11–31. [Google Scholar] [CrossRef]
- Kumar, S.; Mirzaei, A.; Kumar, A.; Lee, M.H.; Ghahremani, Z.; Kim, T.-U.; Kim, J.Y.; Kwoka, M.; Kumar, M.; Kim, S.S.; et al. Nanoparticles anchored strategy to develop 2D MoS2 and MoSe2 based room temperature chemiresistive gas sensors. Coord. Chem. Rev. 2024, 503, 215657. [Google Scholar] [CrossRef]
- Choi, S.-J.; Kim, I.-D. Recent Developments in 2D Nanomaterials for Chemiresistive-Type Gas Sensors. Electron. Mater. Lett. 2018, 14, 221–260. [Google Scholar] [CrossRef]
- Srinivasan, P.; Samanta, S.; Krishnakumar, A.; Rayappan, J.B.B.; Kailasam, K. Insights into g-C3N4 as a chemi-resistive gas sensor for VOCs and humidity—A review of the state of the art and recent advancements. J. Mater. Chem. A 2021, 9, 10612–10651. [Google Scholar] [CrossRef]
- Joshi, N.; Hayasaka, T.; Liu, Y.; Liu, H.; Oliveira, O.N., Jr.; Lin, L. A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim. Acta 2018, 185, 213. [Google Scholar] [CrossRef]
- Balamurugan, C.; Song, S.-J.; Kim, H.-S. Enhancing Gas Response Characteristics of Mixed Metal Oxide Gas Sensors. J. Korean Ceram. Soc. 2018, 55, 1–20. [Google Scholar] [CrossRef]
- Bulemo, P.M.; Cho, H.-J.; Kim, D.-H.; Kim, I.-D. Facile Synthesis of Pt-Functionalized Meso/Macroporous SnO2 Hollow Spheres through in Situ Templating with SiO2 for H2S Sensors. ACS Appl. Mater. Interfaces 2018, 10, 18183–18191. [Google Scholar] [CrossRef]
- Cho, H.-J.; Kim, S.-J.; Choi, S.-J.; Jang, J.-S.; Kim, I.-D. Facile synthetic method of catalyst-loaded ZnO nanofibers composite sensor arrays using bio-inspired protein cages for pattern recognition of exhaled breath. Sens. Actuators B Chem. 2017, 243, 166–175. [Google Scholar] [CrossRef]
- Jeong, Y.J.; Koo, W.-T.; Jang, J.-S.; Kim, D.-H.; Cho, H.-J.; Kim, I.-D. Chitosan-templated Pt nanocatalyst loaded mesoporous SnO2 nanofibers: A superior chemiresistor toward acetone molecules. Nanoscale 2018, 10, 13713–13721. [Google Scholar] [CrossRef] [PubMed]
- Degler, D.; Weimar, U.; Barsan, N. Current Understanding of the Fundamental Mechanisms of Doped and Loaded Semiconducting Metal-Oxide-Based Gas Sensing Materials. ACS Sens. 2019, 4, 2228–2249. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yuan, P.; Chen, C.; Wang, X.; Wang, J.; Jia, J.; Davaasuren, B.; Lai, Z.; Khashab, N.M.; Huang, K.-W.; et al. Balancing Pd-H Interactions: Thiolate-Protected Palladium Nanoclusters for Robust and Rapid Hydrogen Gas Sensing. Adv. Mater. 2024, 36, e2404291. [Google Scholar] [CrossRef]
- Shringi, A.K.; Kumar, A.; Das, M.; Kim, S.S.; Kim, H.W.; Kumar, M. Ag catalysts boosted NO2 gas sensing performance of RF sputtered α-Fe2O3 films. Sens. Actuators B Chem. 2023, 393, 134307. [Google Scholar] [CrossRef]
- Bae, G.; Kim, M.; Lee, A.; Ji, S.; Jang, M.; Yim, S.; Song, W.; Lee, S.S.; Yoon, D.H.; An, K.-S. Nanometric lamination of zinc oxide nanofilms with gold nanoparticles for self-perceived periodontal disease sensors. Compos. Part B Eng. 2022, 230, 109490. [Google Scholar] [CrossRef]
- Teng, L.; Liu, Y.; Ikram, M.; Liu, Z.; Ullah, M.; Ma, L.; Zhang, X.; Wu, H.; Li, L.; Shi, K. One-step synthesis of palladium oxide-functionalized tin dioxide nanotubes: Characterization and high nitrogen dioxide gas sensing performance at room temperature. J. Colloid Interface Sci. 2019, 537, 79–90. [Google Scholar] [CrossRef]
- Hassan, K.; Chung, G.-S. Catalytically activated quantum-size Pt/Pd bimetallic core–shell nanoparticles decorated on ZnO nanorod clusters for accelerated hydrogen gas detection. Sens. Actuators B Chem. 2017, 239, 824–833. [Google Scholar] [CrossRef]
- Liu, B.; Li, K.; Luo, Y.; Gao, L.; Duan, G. Sulfur spillover driven by charge transfer between AuPd alloys and SnO2 allows high selectivity for dimethyl disulfide gas sensing. Chem. Eng. J. 2021, 420, 129881. [Google Scholar] [CrossRef]
- Le, H.-J.; Van Dao, D.; Yu, Y.-T. Superfast and efficient hydrogen gas sensor using PdAualloy@ ZnO core–shell nanoparticles. J. Mater. Chem. A 2020, 8, 12968–12974. [Google Scholar] [CrossRef]
- Li, G.; Wang, X.; Yan, L.; Wang, Y.; Zhang, Z.; Xu, J. PdPt Bimetal-Functionalized SnO2 Nanosheets: Controllable Synthesis and its Dual Selectivity for Detection of Carbon Monoxide and Methane. ACS Appl. Mater. Interfaces 2019, 11, 26116–26126. [Google Scholar] [CrossRef]
- Dvorak, F.; Camellone, M.F.; Tovt, A.; Nguyen-Dung, T.; Negreiros, F.R.; Vorokhta, M.; Skala, T.; Matolinova, I.; Myslivecek, J.; Matolin, V.; et al. Creating single-atom Pt-ceria catalysts by surface step decoration. Nat. Commun. 2016, 7, 10801. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zheng, W.; Liu, X.; Zhang, L.; Zheng, L.; Yang, C.; Pinna, N.; Zhang, J. Platinum single atoms on tin oxide ultrathin films for extremely sensitive gas detection. Mater. Horiz. 2020, 7, 1519–1527. [Google Scholar] [CrossRef]
- Zhao, H.; Ge, W.; Li, X.; Zhao, T.; Luo, Z.; Wang, R.; Wang, S.; Shang, S.; Zhang, Q.; DiWu, H.; et al. High NO2 sensing for room temperature: A multifunctional hydrophobic sensitive layer with compatible flexible and ultraviolet activated. Chem. Eng. J. 2023, 474, 145915. [Google Scholar] [CrossRef]
- Zhang, B.; Xia, Y.; Zhang, S.; Xu, Y.; Dong, Y.; Yu, P.; Ni, Y.; Wei, Q.; Guo, L.; Wang, J. ZnO Nanowires with Increasing Aspect Ratios for Room-Temperature NO2 Gas Sensing. ACS Appl. Nano Mater. 2022, 5, 10603–10616. [Google Scholar] [CrossRef]
- Srinivasan, P.; Rayappan, J.B.B. Growth of Eshelby twisted ZnO nanowires through nanoflakes & nanoflowers: A room temperature ammonia sensor. Sens. Actuators B Chem. 2018, 277, 129–143. [Google Scholar] [CrossRef]
- Wang, T.; Xing, Q.; Zhai, R.; Huang, T.; Song, P. Defect Engineering for SnO2 Improves NO2 Gas Sensitivity by Plasma Spraying. ACS Sens. 2024, 9, 3178–3186. [Google Scholar] [CrossRef]
- Li, Z.; Liu, X.; Zhou, M.; Zhang, S.; Cao, S.; Lei, G.; Lou, C.; Zhang, J. Plasma-induced oxygen vacancies enabled ultrathin ZnO films for highly sensitive detection of triethylamine. J. Hazard. Mater. 2021, 415, 125757. [Google Scholar] [CrossRef]
- Shin, K.Y.; Mirzaei, A.; Oum, W.; Yu, D.J.; Kang, S.; Kim, E.B.; Kim, H.M.; Kim, S.S.; Kim, H.W. Enhancement of selective NO2 gas sensing via Xenon ion irradiation of ZnO nanoparticles. Sens. Actuators B Chem. 2022, 374, 132808. [Google Scholar] [CrossRef]
- Paolucci, V.; De Santis, J.; Ricci, V.; Lozzi, L.; Giorgi, G.; Cantalini, C. Bidimensional Engineered Amorphous a-SnO2 Interfaces: Synthesis and Gas Sensing Response to H2S and Humidity. ACS Sens. 2022, 7, 2058–2068. [Google Scholar] [CrossRef]
- Chang, C.M.; Hon, M.H.; Leu, I.C. Preparation of ZnO nanorod arrays with tailored defect-related characterisitcs and their effect on the ethanol gas sensing performance. Sens. Actuators B Chem. 2010, 151, 15–20. [Google Scholar] [CrossRef]
- Shen, J.-Y.; Wang, M.-D.; Wang, Y.-F.; Hu, J.-Y.; Zhu, Y.; Zhang, Y.X.; Li, Z.-J.; Yao, H.-C. Iron and carbon codoped WO3 with hierarchical walnut-like microstructure for highly sensitive and selective acetone sensor. Sens. Actuators B Chem. 2018, 256, 27–37. [Google Scholar] [CrossRef]
- Li, Q.; Wang, L.; Xiao, A.; Zhu, L.; Yang, Z. Hydrogen sensing towards palladium-based nanocomposites: A review. Int. J. Hydrogen Energy 2025, 136, 1282–1305. [Google Scholar] [CrossRef]
- Tanaka, T.; Hoshino, S.; Takahashi, T.; Uchida, K. Nanoscale Pt thin film sensor for accurate detection of ppm level hydrogen in air at high humidity. Sens. Actuators B Chem. 2018, 258, 913–919. [Google Scholar] [CrossRef]
- Alkhabet, M.M.; Girei, S.H.; Al-Isawi, Z.K.; Shareef, O.S.F.; Farhan, A.H.; Altalebi, O.; Khalaf, A.L.; Jaafar, J.A.; Yaacob, M.H. Palladium (Pd) coated fiber optic hydrogen sensors: A review. Mater. Sci. Semicond. Process. 2025, 188, 109204. [Google Scholar] [CrossRef]
- Ramgir, N.S.; Yang, Y.; Zacharias, M. Nanowire-based sensors. Small 2010, 6, 1705–1722. [Google Scholar] [CrossRef]
- Ding, M.; Liu, Y.; Wang, G.; Zhao, Z.; Yin, A.; He, Q.; Huang, Y.; Duan, X. Highly Sensitive Chemical Detection with Tunable Sensitivity and Selectivity from Ultrathin Platinum Nanowires. Small 2016, 13, 1602969. [Google Scholar] [CrossRef] [PubMed]
- Koo, W.-T.; Qiao, S.; Ogata, A.F.; Jha, G.; Jang, J.-S.; Chen, V.T.; Kim, I.-D.; Penner, R.M. Accelerating Palladium Nanowire H2 Sensors Using Engineered Nanofiltration. ACS Nano 2017, 11, 9276–9285. [Google Scholar] [CrossRef]
- Gautam, Y.K.; Sanger, A.; Kumar, A.; Chandra, R. A room temperature hydrogen sensor based on Pd-Mg alloy and multilayers prepared by magnetron sputtering. Int. J. Hydrogen Energy 2015, 40, 15549–15555. [Google Scholar] [CrossRef]
- Hassan, K.; Chung, G.-S. Fast and reversible hydrogen sensing properties of Pd-capped Mg ultra-thin films modified by hydrophobic alumina substrates. Sens. Actuators B Chem. 2017, 242, 450–460. [Google Scholar] [CrossRef]
- Wang, B.; Zhu, Y.; Chen, Y.; Song, H.; Huang, P.; Dzung Viet, D. Hydrogen sensor based on palladium-yttrium alloy nanosheet. Mater. Chem. Phys. 2017, 194, 231–235. [Google Scholar] [CrossRef]
- Kim, D.-H.; Kim, S.-J.; Shin, H.; Koo, W.-T.; Jang, J.-S.; Kang, J.-Y.; Jeong, Y.J.; Kim, I.-D. High-Resolution, Fast, and Shape-Conformable Hydrogen Sensor Platform: Polymer Nanofiber Yarn Coupled with Nanograined Pd@Pt. ACS Nano 2019, 13, 6071–6082. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.G.; Kim, D.-H.; Samal, S.; Choi, J.; Roh, H.; Cunin, C.E.; Lee, H.M.; Kim, S.O.; Dinca, M.; Gumyusenge, A. Polymer-Based Thermally Stable Chemiresistive Sensor for Real-Time Monitoring of NO2 Gas Emission. ACS Sens. 2023, 8, 3687–3692. [Google Scholar] [CrossRef]
- Ghoorchian, A.; Alizadeh, N. Chemiresistor gas sensor based on sulfonated dye-doped modified conducting polypyrrole film for high sensitive detection of 2,4,6-trinitrotoluene in air. Sens. Actuators B Chem. 2018, 255, 826–835. [Google Scholar] [CrossRef]
- Song, W.; Sun, J.; Wang, Q.; Wu, H.; Zheng, K.; Wang, B.; Wang, Z.; Long, X. n-Type boron β-diketone-containing conjugated polymers for high-performance room temperature ammonia sensors. Mater. Horiz. 2024, 11, 1023–1031. [Google Scholar] [CrossRef]
- Ngai, J.H.L.; Gao, X.; Kumar, P.; Polena, J.; Li, Y. A Highly Stable Diketopyrrolopyrrole (DPP) Polymer for Chemiresistive Sensors. Adv. Electron. Mater. 2021, 7, 202000935. [Google Scholar] [CrossRef]
- Rath, R.J.; Naficy, S.; Giaretta, J.; Oveissi, F.; Yun, J.; Dehghani, F.; Farajikhah, S. Chemiresistive Sensor for Enhanced CO2 Gas Monitoring. ACS Sens. 2024, 9, 1735–1742. [Google Scholar] [CrossRef]
- Rath, R.J.; Farajikhah, S.; Oveissi, F.; Shahrbabaki, Z.; Yun, J.; Naficy, S.; Dehghani, F. A Polymer-Based Chemiresistive Gas Sensor for Selective Detection of Ammonia Gas. Adv. Sens. Res. 2023, 3, 202300125. [Google Scholar] [CrossRef]
- He, W.; Li, Q.-W.; Chen, S.; Liu, H.; Cheng, Z.; Li, S.; Lyu, W.; Xu, G.; Chen, Y.-J.; Liao, Y. Enhanced Conductivity in Conjugated Microporous Polymers via Integrating of Carbon Nanotubes for Ultrasensitive NO2 Chemiresistive Sensor. Small 2025, 21, e2407880. [Google Scholar] [CrossRef] [PubMed]
- Thangamani, G.J.; Deshmukh, K.; Nambiraj, N.A.; Pasha, S.K.K. Chemiresistive gas sensors based on vanadium pentoxide reinforced polyvinyl alcohol/polypyrrole blend nanocomposites for room temperature LPG sensing. Synth. Met. 2021, 273, 116687. [Google Scholar] [CrossRef]
- Jo, Y.K.; Jeong, S.-Y.; Moon, Y.K.; Jo, Y.-M.; Yoon, J.-W.; Lee, J.-H. Exclusive and ultrasensitive detection of formaldehyde at room temperature using a flexible and monolithic chemiresistive sensor. Nat. Commun. 2021, 12, 4955. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Sun, W.; Jin, Y.; Guo, Q.; Muecke, D.; Chu, X.; Liao, Z.; Chandrasekhar, N.; Huang, X.; Lu, Y.; et al. A General Synthesis of Nanostructured Conductive Metal-Organic Frameworks from Insulating MOF Precursors for Supercapacitors and Chemiresistive Sensors. Angew. Chem. Int. Ed. Engl. 2024, 63, e202313591. [Google Scholar] [CrossRef]
- Ambreen, S.; Gupta, D.K.; Kumar, H.; Sharma, A.; Arun, S.; Kumar, S.; Saraswat, A.; Mishra, A.K. Advancements in 2D TMDs as Sensors: From Materials to Real-World Applications. Luminescence 2025, 40, e70273. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, L.; Yang, Y.; Huang, Q.; Li, D.; Zeng, D. A review on two-dimensional materials for chemiresistive- and FET-type gas sensors. Phys. Chem. Chem. Phys. 2021, 23, 15420–15439. [Google Scholar] [CrossRef] [PubMed]
- Wadhwa, R.; Kumar, A.; Sarkar, R.; Mohanty, P.P.; Kumar, D.; Deswal, S.; Kumar, P.; Ahuja, R.; Chakraborty, S.; Kumar, M.; et al. Pt Nanoparticles on Vertically Aligned Large-Area MoS2Flakes for Selective H2Sensing at Room Temperature. ACS Appl. Nano Mater. 2023, 6, 2527–2537. [Google Scholar] [CrossRef]
- Bharathi, P.; Harish, S.; Mathankumar, G.; Krishna Mohan, M.; Archana, J.; Kamalakannan, S.; Prakash, M.; Shimomura, M.; Navaneethan, M. Solution processed edge activated Ni-MoS2 nanosheets for highly sensitive room temperature NO2 gas sensor applications. Appl. Surf. Sci. 2022, 600, 154086. [Google Scholar] [CrossRef]
- Bharathi, P.; Harish, S.; Shimomura, M.; Ponnusamy, S.; Krishna Mohan, M.; Archana, J.; Navaneethan, M. Conductometric NO2 gas sensor based on Co-incorporated MoS2 nanosheets for room temperature applications. Sens. Actuators B Chem. 2022, 360, 131600. [Google Scholar] [CrossRef]
- Tian, X.; Cui, X.; Xiao, Y.; Chen, T.; Xiao, X.; Wang, Y. Pt/MoS2/Polyaniline Nanocomposite as a Highly Effective Room Temperature Flexible Gas Sensor for Ammonia Detection. ACS Appl. Mater. Interfaces 2023, 15, 9604–9617. [Google Scholar] [CrossRef]
- Li, Z.; Liao, Y.; Liu, Y.; Zeng, W.; Zhou, Q. Room temperature detection of nitrogen dioxide gas sensor based on Pt-modified MoSe2 nanoflowers: Experimental and theoretical analysis. Appl. Surf. Sci. 2023, 610, 155527. [Google Scholar] [CrossRef]
- Niu, Y.; Zeng, J.; Liu, X.; Li, J.; Wang, Q.; Li, H.; Rooij, N.F.d.; Wang, Y.; Zhou, G. A Photovoltaic Self-Powered Gas Sensor Based on All-Dry Transferred MoS2/GaSe Heterojunction for ppb-Level NO2 Sensing at Room Temperature. Adv. Sci. 2021, 8, 2100472. [Google Scholar] [CrossRef]
- Naganaboina, V.R.; Singh, S.G. Graphene-CeO2 based flexible gas sensor: Monitoring of low ppm CO gas with high selectivity at room temperature. Appl. Surf. Sci. 2021, 563, 150272. [Google Scholar] [CrossRef]
- Jagannathan, M.; Dhinasekaran, D.; Rajendran, A.R.; Subramaniam, B. Selective room temperature ammonia gas sensor using nanostructured ZnO/CuO@graphene on paper substrate. Sens. Actuators B Chem. 2022, 350, 130833. [Google Scholar] [CrossRef]
- Emam, S.; Nasrollahpour, M.; Allen, J.P.; He, Y.; Hussein, H.; Shah, H.S.; Tavangarian, F.; Sun, N.-X. A handheld electronic device with the potential to detect lung cancer biomarkers from exhaled breath. Biomed. Microdevices 2022, 24, 41. [Google Scholar] [CrossRef] [PubMed]
- Feicht, P.; Eigler, S. Defects in Graphene Oxide as Structural Motifs. ChemNanoMat 2018, 4, 244–252. [Google Scholar] [CrossRef]
- Wang, J.; Singh, B.; Park, J.-H.; Rathi, S.; Lee, I.-y.; Maeng, S.; Joh, H.-I.; Lee, C.-H.; Kim, G.-H. Dielectrophoresis of graphene oxide nanostructures for hydrogen gas sensor at room temperature. Sens. Actuators B Chem. 2014, 194, 296–302. [Google Scholar] [CrossRef]
- Yang, Z.; Zhao, L.; Zhang, Y.; Xing, Y.; Wei, Z.; Xin, C.; Fei, T.; Liu, S.; Zhang, T. Isolated Cu-N5 sites engineered polypyrrole-reduced graphene oxide hybrids for enhancing room-temperature DMMP sensing. Sens. Actuators B Chem. 2023, 385, 133671. [Google Scholar] [CrossRef]
- Thathsara, T.; Meilak, J.; Sangchap, M.; Harrison, C.; Hocking, R.; Shafiei, M. Visible light active rGO nanosheet encapsulated Pd quantum-sized dots decorated TiO2 nano-spheres for hydrogen gas sensing at low temperatures. Int. J. Hydrogen Energy 2023, 48, 33358–33371. [Google Scholar] [CrossRef]
- Jayaramulu, K.; Esclance Dmello, M.; Kesavan, K.; Schneemann, A.; Otyepka, M.; Kment, S.; Narayana, C.; Kalidindi, S.B.; Varma, R.S.; Zboril, R.; et al. A multifunctional covalently linked graphene–MOF hybrid as an effective chemiresistive gas sensor. J. Mater. Chem. A 2021, 9, 17434–17441. [Google Scholar] [CrossRef]
- Zhou, Q.; Xu, L.; Kan, Z.; Yang, L.; Chang, Z.; Dong, B.; Bai, X.; Lu, G.; Song, H. A multi-platform sensor for selective and sensitive H2S monitoring: Three-dimensional macroporous ZnO encapsulated by MOFs with small Pt nanoparticles. J. Hazard. Mater. 2022, 426, 128075. [Google Scholar] [CrossRef]
- Weber, I.C.; Ruedi, P.; Sot, P.; Guntner, A.T.; Pratsinis, S.E. Handheld Device for Selective Benzene Sensing over Toluene and Xylene. Adv. Sci. 2022, 9, 2103853. [Google Scholar] [CrossRef]
- Park, S.-W.; Jeong, S.-Y.; Moon, Y.K.; Kim, K.; Yoon, J.-W.; Lee, J.-H. Highly Selective and Sensitive Detection of Breath Isoprene by Tailored Gas Reforming: A Synergistic Combination of Macroporous WO3 Spheres and Au Catalysts. ACS Appl. Mater. Interfaces 2022, 14, 11587–11596. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, B.; Yao, S.; Li, H.; Chen, C.; Bala, H.; Zhang, Z. Improved triethylamine sensing properties of fish-scale-like porous SnO2 nanosheets by decorating with Ag nanoparticles. J. Mater. 2022, 8, 518–525. [Google Scholar] [CrossRef]
- Zhang, W.; Yuan, T.; Wang, X.; Xu, J. Coal mine gases sensors with dual selectivity at variable temperatures based on a W18O49 ultra-fine nanowires/Pd@Au bimetallic nanoparticles composite. Sens. Actuators B Chem. 2022, 354, 131004. [Google Scholar] [CrossRef]
- Liu, X.; Duan, X.; Zhang, C.; Hou, P.; Xu, X. Improvement toluene detection of gas sensors based on flower-like porous indium oxide nanosheets. J. Alloys Compd. 2022, 897, 163222. [Google Scholar] [CrossRef]
- D’Andria, M.; Krumeich, F.; Yao, Z.; Wang, F.R.; Guntner, A.T. Structure-Function Relationship of Highly Reactive CuOx Clusters on Co3O4 for Selective Formaldehyde Sensing at Low Temperatures. Adv. Sci. 2024, 11, e2308224. [Google Scholar] [CrossRef]
- Cho, M.; Zhu, J.; Kim, H.; Kang, K.; Park, I. Half-Pipe Palladium Nanotube-Based Hydrogen Sensor Using a Suspended Nanofiber Scaffold. ACS Appl. Mater. Interfaces 2019, 11, 13343–13349. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhang, Z.; Zhuang, Z.; Guo, J.; Fang, Z.; Fereja, S.L.; Chen, W. Pd-Doping-Induced Oxygen Vacancies in One-Dimensional Tungsten Oxide Nanowires for Enhanced Acetone Gas Sensing. Anal. Chem. 2021, 93, 7465–7472. [Google Scholar] [CrossRef] [PubMed]
- Tung, P.; Li, G.; Bekyarova, E.; Itkis, M.E.; Mulchandani, A. MoS2-Based Optoelectronic Gas Sensor with Sub-parts-per-billion Limit of NO2 Gas Detection. ACS Nano 2019, 13, 3196–3205. [Google Scholar] [CrossRef]
- Roy, P.K.; Haider, G.; Chou, T.-C.; Chen, K.-H.; Chen, L.-C.; Chen, Y.-F.; Liang, C.-T. Ultrasensitive Gas Sensors Based on Vertical Graphene Nanowalls/SiC/Si Heterostructure. ACS Sens. 2019, 4, 406–412. [Google Scholar] [CrossRef]
- Qin, C.; Wei, Z.; Zhao, X.; Sun, J.; Cao, J.; Wang, Y. Nanosheet-assembled hierarchical CeO2/Co3O4 heterostructures derived from bimetallic MOFs for enhanced CO detection. Sens. Actuators B Chem. 2025, 423, 136754. [Google Scholar] [CrossRef]
- Chen, M.; Li, X.; Li, Y.; Li, Y.; Qin, Z.; Wang, Q. MOF-derived Co3O4 nanoparticles over direct grown ZnO nanoflower on ceramic for CO sensor with high selectivity. Sens. Actuators B Chem. 2024, 401, 134951. [Google Scholar] [CrossRef]
- Chun, S.Y.; Song, Y.G.; Kim, J.E.; Kwon, J.U.; Soh, K.; Kwon, J.Y.; Kang, C.; Yoon, J.H. An Artificial Olfactory System Based on a Chemi-Memristive Device. Adv. Mater. 2023, 35, e2302219. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Z.; Chan, C.L.J.; Wan, Z.a.; Ye, W.; Tang, W.; Ma, Z.; Ren, B.; Zhang, D.; Song, Z.; et al. Biomimetic olfactory chips based on large-scale monolithically integrated nanotube sensor arrays. Nat. Electron. 2024, 7, 157–167. [Google Scholar] [CrossRef]
- Yu, M.; Li, J.; Yin, D.; Zhou, Z.; Wei, C.; Wang, Y.; Hao, J. Enhanced oxygen anions generation on Bi2S3/Sb2S3 heterostructure by visible light for trace H2S detection at room temperature. J. Hazard. Mater. 2024, 476, 134932. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Yao, Y.; Zheng, S.; Wan, Y.; Wei, C.; Yang, G.; Yuan, Y.; Tsai, H.-S.; Wang, Y.; Hao, J. Te@Se Core–Shell Heterostructures with Tunable Shell Thickness for Ultra-Stable NO2 Detection. ACS Sens. 2025, 10, 283–291. [Google Scholar] [CrossRef]
- Yao, L.; Tian, X.; Cui, X.; Zhao, R.; Chen, T.; Xiao, X.; Wang, Y. Low operating temperature and highly selective NH3 chemiresistive gas sensors based on a novel 2D Ti3C2Tx/ZnO composite with p–n heterojunction. Appl. Phys. Rev. 2023, 10, 031414. [Google Scholar] [CrossRef]
- Zhu, F.; Gao, J.; Yang, J.; Ye, N. Neighborhood linear discriminant analysis. Pattern Recognit. 2022, 123, 108422. [Google Scholar] [CrossRef]
- Ma, H.; Wang, T.; Li, B.; Cao, W.; Zeng, M.; Yang, J.; Su, Y.; Hu, N.; Zhou, Z.; Yang, Z. A low-cost and efficient electronic nose system for quantification of multiple indoor air contaminants utilizing HC and PLSR. Sens. Actuators B Chem. 2022, 350, 130768. [Google Scholar] [CrossRef]
- Chauhan, V.K.; Dahiya, K.; Sharma, A. Problem formulations and solvers in linear SVM: A review. Artif. Intell. Rev. 2019, 52, 803–855. [Google Scholar] [CrossRef]
- Greenacre, M.; Groenen, P.J.F.; Hastie, T.; D’Enza, A.L.; Markos, A.; Tuzhilina, E. Principal component analysis. Nat. Rev. Methods Primers 2022, 2, 100. [Google Scholar] [CrossRef]
- Sebastian, A.; Pannone, A.; Radhakrishnan, S.S.; Das, S. Gaussian synapses for probabilistic neural networks. Nat. Commun. 2019, 10, 4199. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef]
- Chu, J.; Li, W.; Yang, X.; Wu, Y.; Wang, D.; Yang, A.; Yuan, H.; Wang, X.; Li, Y.; Rong, M. Identification of gas mixtures via sensor array combining with neural networks. Sens. Actuators B Chem. 2021, 329, 129090. [Google Scholar] [CrossRef]
- Pan, X.; Chen, J.; Wen, X.; Hao, J.; Xu, W.; Ye, W.; Zhao, X. A comprehensive gas recognition algorithm with label-free drift compensation based on domain adversarial network. Sens. Actuators B Chem. 2023, 387, 133709. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Zhang, J.; Li, X.; Wang, J.; Yi, S.; Zhu, W.; Xu, Y.; Li, J. Prediction of the freshness of horse mackerel (Trachurus japonicus) using E-nose, E-tongue, and colorimeter based on biochemical indexes analyzed during frozen storage of whole fish. Food Chem. 2023, 402, 134325. [Google Scholar] [CrossRef]
- Han, H.J.; Cho, S.H.; Han, S.; Jang, J.-S.; Lee, G.R.; Cho, E.N.; Kim, S.-J.; Kim, I.-D.; Jang, M.S.; Tuller, H.L.; et al. Synergistic Integration of Chemo-Resistive and SERS Sensing for Label-Free Multiplex Gas Detection. Adv. Mater. 2021, 33, 2105199. [Google Scholar] [CrossRef] [PubMed]
- Burgués, J.; Doñate, S.; Esclapez, M.D.; Saúco, L.; Marco, S. Characterization of odour emissions in a wastewater treatment plant using a drone-based chemical sensor system. Sci. Total. Environ. 2022, 846, 157290. [Google Scholar] [CrossRef] [PubMed]
Modification Method | Materials | Target Gas | Temperature (°C) | Interferents | Response/Conc (ppm) | Ref. |
---|---|---|---|---|---|---|
Noble Metal Loading | Pt/ZnO | H2S | 310 | VOCs and NH3 | 118 a/5.5 | [101] |
Noble Metal Loading | Pd/SnO2 | Benzene | RT | benzene, m-xylene, toluene, acetone, acetaldehyde, isoprene, methanol, ethanol, CO, hdrogen, and ethylbenzene | 2.1 a/1 | [102] |
Nanostructure Engineering | Au/WO3 | Isoprene | 275 | not investigated | 11.3 a/0.1 | [103] |
Nanostructure Engineering | Ag/SnO2 | TEA | 170 | not investigated | 1700 a/100 | [104] |
Bimetallic Core–Shell Loading | PdAu/W18O49 | H2S | 100 | CH4 | 55.5 a/50 | [105] |
Bimetallic Noble Metal Loading | AgPd/In2O3 | Toluene | 180 | Methanol, ammonia, acetone, ethanol and formaldehyde | 15.9 a/1 | [106] |
Metal Oxide Loading | CuOx/Co3O4 | formaldehyde | 75 | acetone, toluene, ethanol, NO, acetaldehyde, NH3, CO, CH4 | 5.2% c/1 | [107] |
Noble Metal Decoration | Pd hemitubes | H2 | RT | NH3, CO, NO2, and H2S | 2.1% e/1 | [108] |
Pd-Doping | WO3 nanomaterials | Acetone | 175 | Acetone, Ethanol, Ammonium hydroxide, Methyl cyanide, Dichloromethane, Trichloromethane, Ether, Acetic acid and Hexane | 150% a/50 | [109] |
Photoelectronic Sensing | MoS2 with led light | NO2 | RT | not investigated | 12% e/200 | [110] |
Nanostructure Engineering | 3D epitaxial graphene nanowalls | O2 | RT | N2 and H2 | 77% d/500 | [111] |
Heterojunction Construction | 5CeO2/Co3O4 | CO | 200 | not investigated | 184% b/50 | [112] |
Heterojunction Construction | Co3O4/ZnO | CO | 210 | H2, CH4 and NH3 | 38% c/10 | [113] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Sun, J.; Zhu, L.; Zhang, J.; Yang, X.; Zhang, Y.; Yan, W. Advancements and Strategies for Selectivity Enhancement in Chemiresistive Gas Sensors. Nanomaterials 2025, 15, 1381. https://doi.org/10.3390/nano15171381
Liu J, Sun J, Zhu L, Zhang J, Yang X, Zhang Y, Yan W. Advancements and Strategies for Selectivity Enhancement in Chemiresistive Gas Sensors. Nanomaterials. 2025; 15(17):1381. https://doi.org/10.3390/nano15171381
Chicago/Turabian StyleLiu, Jianwei, Jingyun Sun, Lei Zhu, Jiaxin Zhang, Xiaomeng Yang, Yating Zhang, and Wei Yan. 2025. "Advancements and Strategies for Selectivity Enhancement in Chemiresistive Gas Sensors" Nanomaterials 15, no. 17: 1381. https://doi.org/10.3390/nano15171381
APA StyleLiu, J., Sun, J., Zhu, L., Zhang, J., Yang, X., Zhang, Y., & Yan, W. (2025). Advancements and Strategies for Selectivity Enhancement in Chemiresistive Gas Sensors. Nanomaterials, 15(17), 1381. https://doi.org/10.3390/nano15171381