Previous Issue
Volume 13, August
 
 

Microorganisms, Volume 13, Issue 9 (September 2025) – 239 articles

Cover Story (view full-size image): Microbial contamination of indoor environments is a major factor in infectious disease transmission. This study presents a novel system combining vaporized free chlorine components (mainly HOCl), with high-efficiency particulate filtration. Field tests in occupied classrooms showed an 85.5% reduction in airborne microbes within 2.25 hours. Contact assays estimated significant inactivation of E. coli, P. aeruginosa, and S. aureus (59.0–99.7%) even at a distance of 8 meters. Computational fluid dynamics indicated uniform diffusion of HOCl at concentrations within safety thresholds. These findings show that the system enables non-contact, sustained microbial control and provide evidence of its value as an infection control technology in public health and healthcare. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
28 pages, 3573 KB  
Article
Pathogen Identification, Antagonistic Microbe Screening, and Biocontrol Strategies for Aconitum carmichaelii Root Rot
by Xingxun Dai, Yuqin He, Yu Su, Huishu Mo, Weichun Li, Wanting Li, Shuhui Zi, Lufeng Liu and Yining Di
Microorganisms 2025, 13(9), 2202; https://doi.org/10.3390/microorganisms13092202 - 19 Sep 2025
Abstract
The undefined microbial ecology of Aconitum carmichaelii root rot in western Yunnan constrains the advancement of eco-friendly control strategies. The identification of potential pathogenic determinants affecting A. carmichaelii growth is imperative for sustainable cultivation and ecosystem integrity. High-throughput sequencing was employed to profile [...] Read more.
The undefined microbial ecology of Aconitum carmichaelii root rot in western Yunnan constrains the advancement of eco-friendly control strategies. The identification of potential pathogenic determinants affecting A. carmichaelii growth is imperative for sustainable cultivation and ecosystem integrity. High-throughput sequencing was employed to profile microbial communities across four critical niches, namely rhizosphere soil, tuberous root epidermis, root endosphere, and fibrous roots of healthy and diseased A. carmichaelii. The physicochemical properties of corresponding rhizosphere soils were concurrently analyzed. Putative pathogens were isolated from diseased rhizospheres and tubers through culturing with Koch’s postulates validation, while beneficial microorganisms exhibiting antagonism against pathogens and plant growth-promoting (PGP) traits were isolated from healthy rhizospheres. Highly virulent strains (2F14, FZ1, L23) and their consortia were targeted for suppression. Strain DX3, demonstrating optimal PGP and antagonistic capacity in vitro, was selected for pot trials evaluating growth enhancement and disease control efficacy. Significant disparities in rhizosphere soil properties and bacterial/fungal community structures were evident between healthy and diseased cohorts. Fifteen putative pathogens spanning eight species across four genera were isolated: Fusarium solani, F. avenaceum, Clonostachys rosea, Mucor racemosus, M. irregularis, M. hiemalis, Serratia liquefaciens, and S. marcescens. Concurrently, eight PGP biocontrol strains were identified: Bacillus amyloliquefaciens, B. velezensis, B. subtilis, B. pumilus, and Paenibacillus polymyxa. Pot trials revealed that Bacillus spp. enhanced soil physiochemical properties through nitrogen fixation, phosphate solubilization, potassium mobilization, siderophore production, and cellulose degradation, significantly promoting plant growth. Critically, DX3 inoculation elevated defense-related enzyme activities in A. carmichaelii, enhanced host resistance to root rot, and achieved >50% disease suppression efficacy. This work delineates key pathogenic determinants of Yunnan A. carmichaelii root rot and identifies promising multifunctional microbial resources with dual PGP and biocontrol attributes. Our findings provide novel insights into rhizosphere microbiome-mediated plant health and establish a paradigm for sustainable disease management. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

21 pages, 3200 KB  
Article
Probiotic Potential of Lactic Acid Bacteria Isolated from Moroccan Traditional Food Products
by Ange Olivier Parfait Yao, Majid Mounir, Hary Razafindralambo and Philippe Jacques
Microorganisms 2025, 13(9), 2201; https://doi.org/10.3390/microorganisms13092201 - 19 Sep 2025
Abstract
This study assessed the performance and potential use of lactic acid bacteria (LAB) from Moroccan traditional foods as probiotics in animal feed. Five LAB strains Lactiplantibacillus plantarum from whey sourdough, Leuconostoc pseudomesenteroides and Leuconostoc mesenteroides from goat cheese, Enterococcus durans and Lacticaseibacillus casei [...] Read more.
This study assessed the performance and potential use of lactic acid bacteria (LAB) from Moroccan traditional foods as probiotics in animal feed. Five LAB strains Lactiplantibacillus plantarum from whey sourdough, Leuconostoc pseudomesenteroides and Leuconostoc mesenteroides from goat cheese, Enterococcus durans and Lacticaseibacillus casei from fermented milk were isolated and identified by 16S rRNA gene sequencing and MALDI-TOF mass spectrometry. Probiotic traits were evaluated by measuring acid/bile tolerance, cell surface hydrophobicity, emulsifying properties, antimicrobial activity and organic acid production, and safety checked through hemolysis and antibiotic sensitivity tests. L. plantarum, L. casei, and E. durans showed high survival rates after 24 h of culture under acid/bile stress conditions. The surface hydrophobicity of all strains ranged from 14.4 to 39.2%. L. plantarum showed the highest emulsifying capacity (81.4%) and stability (20%) after 24 h. Most strains inhibited pathogenic Staphylococcus epidermidis, Bacillus cereus, and Escherichia coli. Metabolite profiling revealed L. pseudomesenteroides as an interesting butyric acid-producing bacterium and L. plantarum as a remarkable strain releasing high content of organic acids. Their antibiotic susceptibility and non-hemolytic nature support their safety and potential use as feed additives. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

22 pages, 1640 KB  
Article
Proteomic Research of the Stress Response of Saccharomyces cerevisiae W303 Yeast to Metal Ions Eluted from Orthodontic Appliances
by Lara Dežulović, Božena Ćurko-Cofek and Gordana Čanadi Jurešić
Microorganisms 2025, 13(9), 2200; https://doi.org/10.3390/microorganisms13092200 - 19 Sep 2025
Abstract
Although orthodontic appliances are widely used in daily practice, they also have their downsides due to the large amount of metal ions released from their surface. In this study, the influence of such released metal ions on the yeast Saccharomyces cerevisiae W303 as [...] Read more.
Although orthodontic appliances are widely used in daily practice, they also have their downsides due to the large amount of metal ions released from their surface. In this study, the influence of such released metal ions on the yeast Saccharomyces cerevisiae W303 as a model organism was investigated. Experimental yeast media in which metal ions (iron, aluminum, nickel, chromium, copper, and manganese) were eluted for 3, 7, 14, and 28 days were prepared and then used for yeast cultivation (up to the early stationary growth phase). The growth, increase, and viability of the cells were tested. The mitochondria were isolated from the spheroplasts, and the mitochondrial proteins were obtained and analyzed by liquid chromatography/mass spectrometry. Fortythree significantly altered proteins were identified. They showed significantly reduced expression in all metal-treated groups compared to the control. The metabolic processes for energy supply (glycolysis, gluconeogenesis, tricarboxylic acid cycle, and adenosine triphosphate synthesis) dominated with 50% of the total amount of significantly altered proteins in all samples, but their proportions changed at different time points. The downregulation of mitochondrial proteins such as Atp1, Atp2, and Pet9 under conditions of metal overload suggests a broader impairment of mitochondrial function. Three levels of response to stress can be observed—at relatively low metal ion concentrations in the medium (3 days of elution, approx. 3 mg/L), at medium concentrations (7 days of elution, approx. 5.5 mg/L), and at high concentrations (>8 mg/L, 14 and 28 days of elution), each affecting a specific group of proteins. The results show that mixtures of metal ions in experimental media led to a specific response (in terms of the amount and type of proteins) in each sample type to combat the provoked stress. Full article
Show Figures

Figure 1

25 pages, 1882 KB  
Review
Neutralizing Antibodies vs. Viruses: Interacting Mechanisms and Escape Tactics
by Hao Lu, Yichen Liu, Yue Song, Longxin Chen, Limeng Zhang, Runting Li, Xiaoning Nie, Guoqiang Zhu, Xueyan Ding and Linqing Wang
Microorganisms 2025, 13(9), 2199; https://doi.org/10.3390/microorganisms13092199 - 19 Sep 2025
Abstract
Virus-neutralizing antibodies (VNAs) serve as critical components of host immune defense, countering viral infections by specifically recognizing epitopes on viral surface antigens to block viral entry and replication. This review elucidates the functional mechanisms of VNAs, with a focus on the dynamic interactions [...] Read more.
Virus-neutralizing antibodies (VNAs) serve as critical components of host immune defense, countering viral infections by specifically recognizing epitopes on viral surface antigens to block viral entry and replication. This review elucidates the functional mechanisms of VNAs, with a focus on the dynamic interactions between the Fab region and viral epitopes, including steric hindrance and conformational locking, as well as the effector functions mediated by the Fc segment. Furthermore, we dissect diverse viral evasion strategies against neutralization that have emerged in recent studies, encompassing antigenic drift/shift, glycan shielding, epitope occlusion, antibody-dependent enhancement, and mutation accumulation under population immune pressure. Integrating structural biology insights with clinical evidence, we analyze challenges in developing broadly neutralizing antibodies and highlight innovative technological approaches. Our synthesis aims to establish a theoretical framework for the rational design and clinical translation of next-generation VNAs, thereby advancing novel strategies for antiviral therapeutics development. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

20 pages, 2671 KB  
Article
Role of NaCl and Glutamine on Biofilm Production from Pseudomonas aeruginosa
by Laura Maria De Plano, Antonella Iaconis, Salvatore Papasergi, Francesco Mediati, Daniele Caruso, Salvatore Pietro Paolo Guglielmino and Domenico Franco
Microorganisms 2025, 13(9), 2198; https://doi.org/10.3390/microorganisms13092198 - 19 Sep 2025
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen capable of forming antibiotic-resistant biofilms, contributing to persistent infections and treatment failure. Environmental factors such as osmolarity and nutrient availability are known to influence biofilm formation and virulence. In this study, we investigated the effects of NaCl [...] Read more.
Pseudomonas aeruginosa is an opportunistic pathogen capable of forming antibiotic-resistant biofilms, contributing to persistent infections and treatment failure. Environmental factors such as osmolarity and nutrient availability are known to influence biofilm formation and virulence. In this study, we investigated the effects of NaCl depletion and glutamine supplementation on biofilm production in three P. aeruginosa strains: the laboratory strain ATCC 27853 and two clinical isolates with distinct antibiotic resistance profiles and phenazine production patterns (P. aeruginosa Pr, pyorubrin-producing, and P. aeruginosa Pc, pyocyanin-producing). Bacteria were cultured in standard Luria–Bertani (LB) medium, LB without NaCl, and LB in which yeast extract was replaced by glutamine. For each strain and condition, we assessed growth kinetics, phenazine production, and biofilm formation. Biofilm development was quantified via XTT assays and compared to secondary metabolite profiles. NaCl removal did not substantially affect growth, whereas glutamine supplementation reduced growth, especially in the laboratory strain. Both conditions modulated secondary metabolite production and biofilm formation in a strain-specific manner. In P. aeruginosa ATCC 27853, NaCl depletion significantly increased pyoverdine, pyocyanin, and QS gene expression, while biofilm formation showed significant differences only at 72 h; in contrast, glutamine supplementation affected only pyoverdine. A similar trend was observed in the clinical strain P. aeruginosa Pc, although NaCl depletion did not significantly impact pyoverdine production but already enhanced biofilm formation at 48 h. In P. aeruginosa Pr, only glutamine appeared to alter the considered parameters, increasing pyoverdine production while reducing pyocyanin and biofilm levels, although the absence of NaCl also negatively impacted biofilm formation. These findings highlight the impact of osmotic and nutritional signals on P. aeruginosa virulence traits. Full article
Show Figures

Figure 1

15 pages, 401 KB  
Article
Targeted Screening with the Use of Clinical Risk Factors for Detecting Congenital Cytomegalovirus Infection in Newborns: A Prospective Multicenter Cohort Study
by Soromon Kataoka, Masatoki Kaneko, Li Yang, Hajime Ota, Moeka Seki, Aya Kobamatsu, Daiki Nakayama, Yu Furuta, Fumie Tanuma, Yoshiyuki Fukushi, Shinichiro Wada, Keiji Haseyama and Hideto Yamada
Microorganisms 2025, 13(9), 2197; https://doi.org/10.3390/microorganisms13092197 - 19 Sep 2025
Abstract
Congenital cytomegalovirus infection (cCMV) is one of the most common congenital infections. This study aimed to evaluate the diagnostic performance of targeted screening with the use of clinical risk factors for cCMV. A total of 3063 pregnant women and their 3139 newborns were [...] Read more.
Congenital cytomegalovirus infection (cCMV) is one of the most common congenital infections. This study aimed to evaluate the diagnostic performance of targeted screening with the use of clinical risk factors for cCMV. A total of 3063 pregnant women and their 3139 newborns were enrolled. Six clinical findings consisting of maternal fever or flu-like symptoms during pregnancy (fever/flu-like symptoms), hospitalization for threatened miscarriage or preterm labor before 34 weeks of gestation, preterm delivery before 34 weeks of gestation, fetal ultrasound abnormalities, small for gestational age (SGA), and refer results of automated auditory brainstem response screening (AABR refer) were defined as cCMV risk factors before participant registration. All newborns underwent urine cytomegalovirus polymerase chain reaction tests within one week of birth. The predictive accuracy of these six risk factors was analyzed. Nine (0.29%) of the three thousand one hundred and thirty-nine newborns were diagnosed with cCMV, having at least one of the six risk factors. Logistic regression analysis identified fever/flu-like symptoms (odds ratio (OR), 7.5; 95% CI, 1.9–30.3), fetal ultrasound abnormalities (OR, 17.9; 95% CI, 4.4–72.8), SGA (OR, 6.8; 95% CI, 1.8–25.6), and AABR refer (OR, 75.5; 95% CI, 19.7–289) as significant risk factors. The predictive accuracy of the targeted screening for cCMV, when at least one of the six risk factors was present, yielded 100% sensitivity (95% CI, 55.5–100) and 70.7% specificity (95% CI, 69.1–72.3), with a Youden index of 0.707. When at least one of the four significant risk factors was present, 100% sensitivity (95% CI, 55.5–100) and 81.2% specificity (95% CI, 79.8–82.6) with the maximum Youden index of 0.812 were achieved. In conclusion, targeted screening with the use of clinical risk factors in mothers and their newborns could effectively identify cCMV. Full article
(This article belongs to the Special Issue Emerging and Re-Emerging Infections in the Immunocompromised Host)
Show Figures

Figure 1

31 pages, 2380 KB  
Article
Metabarcoding Unveils Seasonal Soil Microbiota Shifts and Their Influence on Boletus edulis and Boletus reticulatus Mycelium in Quercus robur Stands
by Serena Santolamazza-Carbone, Laura Iglesias-Bernabé, Elena Benito-Rueda, Esther Barreal and Pedro Pablo Gallego
Microorganisms 2025, 13(9), 2196; https://doi.org/10.3390/microorganisms13092196 - 19 Sep 2025
Abstract
Forest ecosystems undergo seasonal shifts in bacterial and fungal communities, but little is known about the specific microbiota associated with Quercus roburBoletus edulis systems. This study represents the first examination of seasonal changes in soil microbiota in pedunculate oak habitats in [...] Read more.
Forest ecosystems undergo seasonal shifts in bacterial and fungal communities, but little is known about the specific microbiota associated with Quercus roburBoletus edulis systems. This study represents the first examination of seasonal changes in soil microbiota in pedunculate oak habitats in Galicia (NW Spain) and their relationship with Boletus edulis and Boletus reticulatus mycelium prevalence and concentration. Soil microbiota richness, diversity, and composition, as well as seasonal variation in Boletus mycelium, were assessed using DNA metabarcoding and qPCR, respectively. Sampling was conducted in autumn at two 30–40-year-old Q. robur stands. Bacterial communities were dominated by Acidobacteria (34%) and Proteobacteria (33%), with Acidobacterium (12%), Paludibaculum (9%), and Edaphobacter (7%) identified as most abundant. Fungal communities were primarily Basidiomycota (93%), led by Russula (46%). For both bacteria and fungi, the highest OTU richness was observed in September, followed by a significant decrease in October and a partial recovery in November. Boletus species were found to exhibit positive correlations with specific bacteria (e.g., Massilia, Rhizobium) and fungi (e.g., Amanita, Clavaria, Inocybe, Scleroderma, Suillus and Mortierella), suggesting a potential influence of these microbes on mycelium development. This study provides novel insights into the seasonal dynamics of soil microbiota and their potential role in Boletus ecology, thereby advancing understanding of host–microbe interactions in temperate forests. Full article
(This article belongs to the Special Issue Soil Fungi in Sustainable Agriculture, 2nd Edition)
Show Figures

Figure 1

13 pages, 946 KB  
Article
Acanthospermum australe Extract Inhibits the Chaperone Activity of Plasmodium falciparum Heat Shock Protein 70-1
by Ntombikhona Appear Koza, Ntokozo Nkosinathi Myeza, Heinrich Hoppe, Rebamang Anthony Mosa, Abidemi Paul Kappo, Mthokozisi Blessing Cedric Simelane and Andrew Rowland Opoku
Microorganisms 2025, 13(9), 2195; https://doi.org/10.3390/microorganisms13092195 - 19 Sep 2025
Abstract
The resistance of malaria parasites towards the current antimalarial therapies continues to fuel the search for new antimalarial drugs, preferably from natural sources. This study aimed to investigate the potential of the dichloromethane extract of Acanthospermum australe to inhibit Plasmodium falciparum heat shock [...] Read more.
The resistance of malaria parasites towards the current antimalarial therapies continues to fuel the search for new antimalarial drugs, preferably from natural sources. This study aimed to investigate the potential of the dichloromethane extract of Acanthospermum australe to inhibit Plasmodium falciparum heat shock protein 70-1 (PfHsp70-1). The plasmodium lactate dehydrogenase (pLDH) assay was used to determine the antiplasmodial activity of the crude extract against the chloroquine-sensitive P. falciparum strain 3D7. The inhibitory effect of the plant extract on the chaperone activity of P. falciparum heat shock protein 70-1 (PfHsp70-1) was determined using the ATPase, thermally induced luciferase and malate dehydrogenase (MDH) assays. The extract showed a significantly high activity against P. falciparum strain 3D7 with an IC50 value of 1.3 µg/mL. A decrease in thermally induced aggregation of MDH and luciferase was observed when each of the proteins was incubated with PfHsp70-1 only. However, an increased protein aggregation was observed when the proteins were incubated with PfHsp70-1 in the presence of the plant extract. The extract also exhibited inhibitory activity on the ATPase activity of PfHsp70-1. The results obtained from this study suggest that A. australe extract contains compounds that could target malaria parasite Hsp70 functions. Full article
(This article belongs to the Special Issue Research on Mosquito-Borne Pathogens)
Show Figures

Figure 1

16 pages, 599 KB  
Review
An Overview of the Epidemiology of Multidrug Resistance and Bacterial Resistance Mechanisms: What Solutions Are Available? A Comprehensive Review
by Victoria Birlutiu and Rares-Mircea Birlutiu
Microorganisms 2025, 13(9), 2194; https://doi.org/10.3390/microorganisms13092194 - 19 Sep 2025
Abstract
Antimicrobial resistance has emerged as one of the most critical public health challenges of the 21st century, threatening to undermine the foundations of modern medicine. In 2019, bacterial infections accounted for 13.6% of all global deaths, with more than 7.7 million fatalities directly [...] Read more.
Antimicrobial resistance has emerged as one of the most critical public health challenges of the 21st century, threatening to undermine the foundations of modern medicine. In 2019, bacterial infections accounted for 13.6% of all global deaths, with more than 7.7 million fatalities directly attributable to 33 bacterial pathogens, most prominently Staphylococcus aureus, Streptococcus pneumoniae, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Resistance mechanisms are multifactorial, encompassing enzymatic degradation, target modification, efflux pump overexpression, reduced membrane permeability, and biofilm formation, often in combination, leading to multidrug-resistant, extensively drug-resistant, and pandrug-resistant phenotypes. Alarmingly, projections estimate that by 2050 AMR could result in over 10 million deaths annually. This comprehensive review synthesizes global epidemiological data, insights into bacterial resistance mechanisms, and emerging therapeutic solutions, including novel antibiotics such as lasso peptides and macrocyclic peptides (e.g., zosurabalpin), naturally derived compounds (e.g., corallopyronin, clovibactin, chlorotonil A), and targeted inhibitors (e.g., Debio 1453 for Neisseria gonorrhoeae). Addressing the AMR crisis requires coordinated international efforts, accelerated drug discovery, and the integration of innovative non-antibiotic approaches to preserve the efficacy of existing therapies and ensure preparedness against future bacterial threats. Full article
Show Figures

Figure 1

20 pages, 1651 KB  
Review
Emerging Roles of the Gut Microbiome in Musculoskeletal Injury and Repair
by Joseph L. Roberts and Connor C. Park
Microorganisms 2025, 13(9), 2193; https://doi.org/10.3390/microorganisms13092193 - 19 Sep 2025
Abstract
Over the past decade, significant attention has been directed toward understanding the role of the gut microbiome in health and disease. The gut microbiota, comprising a complex and diverse community of microorganisms, has been linked to numerous conditions, including metabolic disorders, gastrointestinal diseases, [...] Read more.
Over the past decade, significant attention has been directed toward understanding the role of the gut microbiome in health and disease. The gut microbiota, comprising a complex and diverse community of microorganisms, has been linked to numerous conditions, including metabolic disorders, gastrointestinal diseases, and inflammatory or autoimmune conditions. Recently, a growing body of evidence has revealed a compelling relationship between gut microbiota composition and musculoskeletal injury recovery, highlighting its potential as a novel therapeutic target. Musculoskeletal injuries, including fractures, post-traumatic osteoarthritis, and tendon or ligament injuries, commonly lead to changes in the community structure of the gut microbiota, intestinal permeability, and systemic inflammation, processes known to negatively influence tissue repair. Preclinical studies demonstrate that microbiota-targeted interventions, such as probiotics, prebiotics, and fecal microbiota transplantation, effectively restore gut barrier integrity, modulate inflammation, and normalize gut-derived metabolite profiles. Despite these promising findings, critical gaps remain in translating these effects into clinical practice, particularly regarding the mechanisms linking specific microbiota changes to improved musculoskeletal healing outcomes. Future research incorporating rigorous clinical trials, multi-omics analyses, and advanced predictive tools, including artificial intelligence and microbiome-informed digital twins, is urgently needed to fully harness the therapeutic potential of microbiome-based interventions in musculoskeletal injury recovery. This narrative review provides insights into our evolving understanding of the relationship between the gut microbiota and musculoskeletal injury and explores the potential of gut microbiota-targeted therapies for improved healing outcomes. Full article
Show Figures

Figure 1

19 pages, 3409 KB  
Article
Unveiling Bacterial Diversity in Portuguese Red Wine Effluents Through a Metagenomic Approach
by Ana Gabriela Gomes, Ana Cláudia Sousa, João S. Carreira, Alberto Oliveira, Marta C. Justino and Carla Amarelo Santos
Microorganisms 2025, 13(9), 2192; https://doi.org/10.3390/microorganisms13092192 - 19 Sep 2025
Abstract
The sustainable reuse of agro-industrial effluents requires a detailed understanding of their microbial composition, especially in the context of integrated vineyard–winery ecosystems. This study investigated the bacterial communities present in winery effluents generated during the early stages of red wine production, using samples [...] Read more.
The sustainable reuse of agro-industrial effluents requires a detailed understanding of their microbial composition, especially in the context of integrated vineyard–winery ecosystems. This study investigated the bacterial communities present in winery effluents generated during the early stages of red wine production, using samples collected at a winery in the Setúbal Peninsula, Portugal. Metagenomic analysis targeting the 16S rRNA gene was used to characterise microbial diversity and identify taxa with potential relevance for biotechnology and environmental applications. The effluents exhibited a diverse microbiome, including Prevotella paludivivens, species from the Lactobacillus genus, and members of the Clostridiaceae family, the latter representing about 5% of the total community. Functional profiling of lactic acid bacteria revealed the predominance of Oenococcus and Lactobacillus genera, highlighting adaptive traits that may be beneficial under stress conditions. These results suggest that winery effluents, often considered waste, harbour microbial communities with functional potential that extends beyond fermentation, contributing to a broader grape–wine microbial system. The findings emphasise the value of studying winemaking byproducts as reservoirs of microbial diversity and as resources for developing innovative and sustainable applications in biotechnology and environmental management within the wine industry. Full article
(This article belongs to the Special Issue Microbiology of the Grape-Wine System)
Show Figures

Figure 1

14 pages, 4266 KB  
Article
Detection of Aeromonas hydrophila by Basic and Fluorescent MIRA Assays
by Qiuya Huang, Fa Dai, Lujia Su, Miaomiao Zhang, Xinjie Miao, Yujie Ding, Cheng Xu and Jiehao Xu
Microorganisms 2025, 13(9), 2191; https://doi.org/10.3390/microorganisms13092191 - 19 Sep 2025
Abstract
Aeromonas hydrophila is a prevalent opportunistic pathogen in aquaculture. To establish a rapid, convenient, and accurate detection method for A. hydrophila, this study developed and evaluated Multi-Enzyme Isothermal Rapid Amplification (MIRA) assays, which could complete amplification within 20 min at a constant [...] Read more.
Aeromonas hydrophila is a prevalent opportunistic pathogen in aquaculture. To establish a rapid, convenient, and accurate detection method for A. hydrophila, this study developed and evaluated Multi-Enzyme Isothermal Rapid Amplification (MIRA) assays, which could complete amplification within 20 min at a constant temperature of 39 °C. The basic MIRA assay targeting the aerolysin (aerA) gene demonstrated high specificity, showing no cross-reactivity with six related bacterial species including Aeromonas veronii, Vibrio harveyi, Pseudomonas fluorescens, Bacillus subtilis, Bacillus cereus, and Lactiplantibacillus plantarum. The fluorescent MIRA assay achieved a detection limit of 1 fg/μL (3.1 × 102 copies/μL) when using the pUC57-aerA standard plasmid, while real-time quantitative PCR achieved a detection limit of 0.1 fg/μL (31 copies/μL). Thus, the MIRA assay exhibited 10-fold lower sensitivity than qPCR but shortened the reaction time from several hours (nearly two hours) to within one hour. Both the specificity and sensitivity of the MIRA reactions were evaluated with three independent experiments. These findings suggested that the developed MIRA assays provide a rapid, specific, and practical diagnostic tool for A. hydrophila detection in aquaculture environments, particularly suitable for resource-limited field applications. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

30 pages, 500 KB  
Systematic Review
Role of Lipidomics in Respiratory Tract Infections: A Systematic Review of Emerging Evidence
by Vasiliki E. Georgakopoulou, Konstantinos Dodos and Vassiliki C. Pitiriga
Microorganisms 2025, 13(9), 2190; https://doi.org/10.3390/microorganisms13092190 - 19 Sep 2025
Abstract
Lower respiratory tract infections (LRTIs) remain a major cause of global morbidity and mortality, yet accurate pathogen identification and risk stratification continue to pose clinical challenges. Lipidomics—the comprehensive analysis of lipid species within biological systems—has emerged as a promising tool to unravel host–pathogen [...] Read more.
Lower respiratory tract infections (LRTIs) remain a major cause of global morbidity and mortality, yet accurate pathogen identification and risk stratification continue to pose clinical challenges. Lipidomics—the comprehensive analysis of lipid species within biological systems—has emerged as a promising tool to unravel host–pathogen interactions and reveal novel diagnostic and prognostic biomarkers. This systematic review synthesizes evidence from nine original studies applying mass spectrometry-based lipidomic profiling in human LRTIs, including community-acquired pneumonia (CAP), ventilator-associated pneumonia (VAP), and coronavirus disease 2019 (COVID-19). Across diverse study designs, sample types, and analytical platforms, consistent alterations in lipid metabolism were observed. Perturbations in phospholipid classes, particularly phosphatidylcholines (PCs) and lysophosphatidylcholines (LPCs), were frequently associated with disease severity and immune activation. The ratios of PC to LPC and phosphatidylethanolamine (PE) to lysophosphatidylethanolamine (LPE) emerged as markers of inflammatory remodeling. Sphingolipids—including sphingomyelins (SMs) and sphingosine-1-phosphate (S1P)—were identified as key modulators of monocyte and neutrophil activation. Fatty acid–derived lipid mediators such as oxylipins (e.g., 12,13-epoxyoctadecenoic acid and 15-hydroxyeicosatetraenoic acid) and acylcarnitines reflected pathogen-specific immune responses and mitochondrial dysfunction. Several lipid-based classifiers demonstrated superior diagnostic and prognostic performance compared to conventional clinical scores, including the CURB-65 and pneumonia severity index. However, significant heterogeneity in experimental design, lipid identification workflows, and reporting standards limits inter-study comparability. While preliminary findings support the integration of lipidomics into infectious disease research, larger multi-omic and longitudinal studies are required. This review provides the first comprehensive synthesis of lipidomic alterations in human LRTIs and highlights their emerging translational relevance. Full article
Show Figures

Figure 1

25 pages, 6655 KB  
Article
Posttranscriptional 3′-Terminal Modifications of Escherichia coli RNA Fragments Evolved for Diversity Boosting
by Nikita M. Kamoldinov, Valery V. Panyukov, Nikolay P. Kolzhetsov, Natalia Y. Markelova, Konstantin S. Shavkunov, Uliana S. Shvyreva, Olga V. Alikina, Olga A. Glazunova, Iuliia A. Praslova and Olga N. Ozoline
Microorganisms 2025, 13(9), 2189; https://doi.org/10.3390/microorganisms13092189 - 19 Sep 2025
Abstract
An emerging area of microbial biology focuses on oligonucleotides excised from functional RNAs and subsequently fulfilling an independent cellular role. Some of these products are subjected to modifications that may expand their functional inventory. Here, we applied a differential analysis of intra- and [...] Read more.
An emerging area of microbial biology focuses on oligonucleotides excised from functional RNAs and subsequently fulfilling an independent cellular role. Some of these products are subjected to modifications that may expand their functional inventory. Here, we applied a differential analysis of intra- and extracellular RNA fragments produced by wild-type Escherichia coli and its dps-null mutant and discovered leucine tRNA fragments with random 3′-terminal extensions among oligonucleotides with Dps-dependent secretion. We observed an exclusive intracellular enrichment of modified LeuT(VPQ) tRNA fragments compared to secretomes, with abundance level dependent on growth medium and the presence of competing bacteria. To assess the pervasiveness of this phenomenon, we developed a custom computational pipeline for detecting variable RNA termini in RNA-seq data. Beyond LeuT(VPQ) tRNA fragments, several other genomic loci yielded oligos with highly heterogeneous ends, indicating that terminal elongation, most prevalent in LeuT(VPQ), is not exclusive to these fragments. Ex vivo testing using synthetic LeuT(VPQ) analogs revealed their stimulatory effect on the persistence of multiple taxa in an artificial microbiome, which was attenuated by 3′-end elongation. We propose that non-template extensions may serve to broaden the spectrum of target molecules for elimination of unused mRNAs by an interference-like mechanism or to generate sequences absent from the E. coli genome as part of a primitive defense system. Full article
(This article belongs to the Special Issue Transcriptional Regulation in Bacteria, 2nd Edition)
Show Figures

Figure 1

13 pages, 1185 KB  
Article
First Detection of Cytauxzoon spp. DNA in Questing Ixodes ricinus Ticks
by Marina L. Meli, Theres Meili, Benita Pineroli, Eva Boenzli, Ramon M. Eichenberger, Barbara Willi and Regina Hofmann-Lehmann
Microorganisms 2025, 13(9), 2188; https://doi.org/10.3390/microorganisms13092188 - 19 Sep 2025
Abstract
Feline cytauxzoonosis is an emerging tick-borne disease in Europe. While infections have been reported in different European countries, the tick vector remains unknown. This study investigated 665 ticks collected in 2019 (n = 160), 2022 (n = 7), and 2024 (n = 498) [...] Read more.
Feline cytauxzoonosis is an emerging tick-borne disease in Europe. While infections have been reported in different European countries, the tick vector remains unknown. This study investigated 665 ticks collected in 2019 (n = 160), 2022 (n = 7), and 2024 (n = 498) in a Cytauxzoon spp. hotspot region in central Switzerland (62 ticks from cats; 603 ticks from vegetation). Ticks were morphologically characterized, pooled by origin and life-stage, and screened for Cytauxzoon spp. 18S rRNA by qPCR and conventional PCR, and positive samples confirmed by sequencing. All ticks belonged to Ixodes ricinus (50 males, 83 females, 532 nymphs). Four tick pools from 2019 tested Cytauxzoon spp. positive: one pool of 3 non-engorged male ticks from two cats and three pools of 5–6 nymphs each from vegetation. All ticks collected in 2022 and 2024 tested negative. Amplification of the almost full-length (1535 bp, one pool) or partial (140–219 bp, three pools) 18S rRNA gene revealed a sequence identity of 98.6–100% with Cytauxzoon spp. previously detected in cats from this area. The detection of Cytauxzoon spp. in questing I. ricinus nymphs suggests a potential role of this tick species in the parasites’ transmission cycle in Central Europe and raises the possibility of transstadial or potentially transovarial transmission. Mitochondrial gene sequencing was unsuccessful, but the detected Cytauxzoon spp. likely represent Cytauxzoon europaeus. Discrepancies between qPCR and conventional PCR results point to possible amplification of tick endosymbionts, highlighting the importance of confirmatory sequencing, particularly when testing tick-derived DNA. Thus, the 18S rRNA qPCR assay used appears suboptimal for screening tick samples, as its specificity in this matrix was limited. In conclusion, this is the first report of Cytauxzoon spp. in questing I. ricinus ticks in Europe. Our findings underscore the need for further research to confirm vector competence and clarify transmission dynamics. Full article
(This article belongs to the Section Public Health Microbiology)
Show Figures

Figure 1

11 pages, 336 KB  
Article
Prevalence and Clinical Characteristics of Visceral Involvement in HIV-Associated Kaposi Sarcoma: A Three-Year Retrospective Cohort Study at a Tertiary Care Center in Mexico
by Emily Itzel Pecero-García, Juan Carlos Domínguez-Hermosillo, Yessica Sara Pérez-González, Juan Pablo Sánchez-Navarro, Mauricio Alfredo Ambriz-Alarcón, Natalia Jaime-Gómez, Sol Ramírez-Ochoa, Gabino Cervantes-Guevara, Berenice Vicente-Hernández, Francisco Javier Hernández-Mora and Enrique Cervantes-Pérez
Microorganisms 2025, 13(9), 2187; https://doi.org/10.3390/microorganisms13092187 - 19 Sep 2025
Abstract
Despite advances in the understanding of Kaposi sarcoma (KS), research from resource-limited settings remains limited. This study aimed to estimate the proportion of epidemic visceral KS among Mexican people living with HIV (PLHIV) and to describe their clinical and biochemical characteristics. We included [...] Read more.
Despite advances in the understanding of Kaposi sarcoma (KS), research from resource-limited settings remains limited. This study aimed to estimate the proportion of epidemic visceral KS among Mexican people living with HIV (PLHIV) and to describe their clinical and biochemical characteristics. We included PLHIV with histopathologically confirmed KS who received care at the National Medical Center La Raza between March 2020 and February 2023. We calculated the prevalence of epidemic KS and epidemic visceral KS and analyzed clinical and biochemical variables potentially associated with visceral involvement. The prevalence of epidemic KS was 5.6%. Among these cases, 51.4% had visceral involvement, yielding an overall prevalence of 2.8%. Patients with epidemic visceral KS exhibited significantly higher rates of oral mucosal involvement and lower hemoglobin levels compared with those without visceral disease. These findings highlight the substantial burden of epidemic visceral KS in this population and should be confirmed in future studies with larger cohorts and robust designs aimed at identifying clinical and biochemical predictors of visceral involvement. Full article
Show Figures

Figure 1

23 pages, 11105 KB  
Article
Elucidation of Mechanism of Soil Degradation Caused by Continuous Cropping of Dictyophora rubrovalvata Using Metagenomic and Metabolomic Technologies
by Chengrui Lu, Guozheng Qian, Ludi Luo, Yunsong Peng, Hao Ren, Bo Yan and Yongyan Xu
Microorganisms 2025, 13(9), 2186; https://doi.org/10.3390/microorganisms13092186 - 19 Sep 2025
Abstract
Dictyophora rubrovalvata is a soil-cultivated edible fungus with high economic and medicinal value, yet its continuous cultivation is frequently hindered by cropping obstacles. To elucidate the underlying ecological mechanisms, this study employed metagenomic sequencing and untargeted metabolomics (UHPLC–OE–MS) to analyze the changes in [...] Read more.
Dictyophora rubrovalvata is a soil-cultivated edible fungus with high economic and medicinal value, yet its continuous cultivation is frequently hindered by cropping obstacles. To elucidate the underlying ecological mechanisms, this study employed metagenomic sequencing and untargeted metabolomics (UHPLC–OE–MS) to analyze the changes in soil microbial communities and metabolite profiles under different continuous cropping treatments (CC0: Uncultivated; CC1: one cropping cycle; CC2: two cropping cycle; CC3: three cropping cycle.). Continuous cropping significantly decreased soil pH from 7.94 to 7.52 and available phosphorus (AP) from 213.69 mg/kg to 15.7 mg/kg, while increasing available nitrogen (AN) from 284.5 mg/kg to 886.33 mg/kg. The Shannon index of fungal communities rose from 3.15 to 4.55. Notably, the relative abundance of the beneficial bacterium Sphingomonas declined from 15.63% to 1.12%, whereas the pathogenic fungus Aspergillus increased from 0.06% to 3.06%. A total of 1408 secondary metabolites were detected, with 39 significantly upregulated and 416 downregulated in CC3 compared to CC0. Several autotoxic compounds, including ferulic acid, hydroxycinnamic acid derivatives, and jasmonic acid, were enriched and positively correlated with pathogenic fungi. These results suggest that continuous cropping may reshape the soil microecosystem by promoting autotoxic metabolite accumulation and pathogenic Microbial enrichment, thereby contributing to soil degradation and cropping obstacles. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

11 pages, 248 KB  
Article
Cutibacterium acnes Phylotyping and Antibiotic Resistance to Six Antibiotics: A Bulgarian Study
by Lyudmila Boyanova, Georgi Dimitrov, Vessela Raykova, Kircho Patrikov, Raina Gergova and Rumyana Markovska
Microorganisms 2025, 13(9), 2185; https://doi.org/10.3390/microorganisms13092185 - 19 Sep 2025
Abstract
Cutibacterium acnes subspecies/phylotypes can cause infections requiring antibiotic therapy. Phylotyping of 73 (55 acneic and 18 non-acneic) C. acnes strains was performed, and antibiotic susceptibility was tested by E tests, breakpoint susceptibility test, or disk diffusion method. The dominant phylotype in both acneic [...] Read more.
Cutibacterium acnes subspecies/phylotypes can cause infections requiring antibiotic therapy. Phylotyping of 73 (55 acneic and 18 non-acneic) C. acnes strains was performed, and antibiotic susceptibility was tested by E tests, breakpoint susceptibility test, or disk diffusion method. The dominant phylotype in both acneic and non-acneic strains was IA1 (56.2%). Phylotype II was >3-fold more frequent in non-acneic than acneic isolates. Resistance in acneic strains was >41% for clindamycin, 36.4% for tetracycline and 15.9% for levofloxacin, and that in non-acneic strains was >38% for clindamycin, 22.2% for tetracycline and 5.6% for levofloxacin. No strain was piperacillin/tazobactam or vancomycin resistant. Amoxicillin resistance was found in both acneic (5.4%) and non-acneic strains (11.1%), and was rare (1.8%) in phylotype I but higher (23.5%) in other strains. Double resistance was found in 32.6% of acneic and 22.2% of the non-acneic strains, and 9.3% of acneic strains displayed multidrug resistance. In conclusion, IA1 phylotype was dominant in both acneic and non-acneic strains, and type II was more frequent in non-acneic isolates. The detection (at >6%) of amoxicillin resistance represents a rare yet important finding. The presence of double/multidrug resistance strongly implies the need of susceptibility-guided therapy of the associated infections. Full article
25 pages, 9148 KB  
Article
PCV2 Infection Represses the Differentiation of Light Zone Germinal Center B Cells by Inhibiting Their Interaction with Helper Cells
by Tengfei Shi, Qian Du, Jiasai Kang, Haoshu Zhang, Xinru Xu, Yang Wang, Dewen Tong and Yong Huang
Microorganisms 2025, 13(9), 2184; https://doi.org/10.3390/microorganisms13092184 - 18 Sep 2025
Abstract
Porcine circovirus 2 (PCV2) is one of the most widespread immunosuppressive viruses, impairing the protective efficacy of vaccines in pig herds. Previous studies have shown that PCV2 infection reduces the generation of immune memory and antibody secretion induced by vaccination in hosts. In [...] Read more.
Porcine circovirus 2 (PCV2) is one of the most widespread immunosuppressive viruses, impairing the protective efficacy of vaccines in pig herds. Previous studies have shown that PCV2 infection reduces the generation of immune memory and antibody secretion induced by vaccination in hosts. In this study, we used single-cell mRNA sequencing of mice splenic cells to show that PCV2 infection decelerates the differentiation of light zone germinal center (GC) B cells into memory B cells and plasma cells. We found that, although PCV2 infection led to lymphocyte depletion in the spleens of mice, the remaining splenic B cells were activated by the infection. The percentage of naïve B cells in PCV2-infected mice decreased mainly due to differentiation rather than death. Meanwhile, the percentages of memory B cells and plasma cells increased without significant enhancement of functional gene expression. Focusing on the GC B cells, we found that PCV2 infection activated the proliferation of dark zone GC B cells, but not the differentiation of light zone GC B cells. Furthermore, the transcriptional level of Prdm1 was not significantly altered by PCV2 infection, and the level of Bach2 was dramatically reduced. Further analysis showed that the interactions between light zone GC B cells and dendritic cells, macrophages, and follicular helper T cells were weakened in the spleens of PCV2-infected mice. In conclusion, this study found that PCV2 infection impairs the differentiation of B cells into functional memory B cells and plasma cells. This may be an important and previously unrecognized reason why PCV2 infection impairs vaccine efficiency. Full article
(This article belongs to the Special Issue Animal Viral Infectious Diseases)
19 pages, 390 KB  
Review
Virulence Regulation in Borrelia burgdorferi
by Sierra George and Zhiming Ouyang
Microorganisms 2025, 13(9), 2183; https://doi.org/10.3390/microorganisms13092183 - 18 Sep 2025
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, is the most common vector-borne disease in the United States. Compared with other bacterial pathogens, B. burgdorferi has many unique features. For instance, its highly segmented genome was predicted to encode very few proteins directly [...] Read more.
Borrelia burgdorferi, the causative agent of Lyme disease, is the most common vector-borne disease in the United States. Compared with other bacterial pathogens, B. burgdorferi has many unique features. For instance, its highly segmented genome was predicted to encode very few proteins directly dedicated to gene expression regulation. Yet, the spirochete continuously reprograms its transcriptome and proteome to promote survival and pathogenesis as spirochetes traverse the enzootic lifecycle between ticks and mammals. Signal sensing systems, a unique alternative sigma factor cascade, and multi-functional regulators work in concert to coordinate virulence gene expression under different tick and mammal environments. In this review, we have summarized recent advances in gene regulation in B. burgdorferi. Full article
(This article belongs to the Special Issue Ticks, Tick Microbiome and Tick-Borne Diseases)
15 pages, 4506 KB  
Article
Transmissibility of Clade IIb Monkeypox Virus in Young Rabbits
by Zhaoliang Chen, Lei Zhang, Linzhi Li, Mingjie Shao, Mingda Zhang, Zongzheng Zhao, Chao Shang, Zirui Liu, Juxiang Liu and Zhendong Guo
Microorganisms 2025, 13(9), 2182; https://doi.org/10.3390/microorganisms13092182 - 18 Sep 2025
Abstract
The monkeypox virus (MPXV) has spread globally, posing a severe challenge to global public health. This study systematically evaluated the aerosol shedding dynamics of the epidemic Clade IIb MPXV strain in infected young rabbits, along with its direct contact and airborne transmission potential [...] Read more.
The monkeypox virus (MPXV) has spread globally, posing a severe challenge to global public health. This study systematically evaluated the aerosol shedding dynamics of the epidemic Clade IIb MPXV strain in infected young rabbits, along with its direct contact and airborne transmission potential among them. We found that young rabbits could be experimentally infected with MPXV, exhibiting distinct pathogenic features and viral shedding patterns. Young rabbits infected with MPXV shed the virus through nasal secretions and exhaled aerosols, peaking at 7 dpi. In total, 89–95.8% of virus-laden respiratory particles had a diameter ≥4.7 μm. Notably, MPXV can be efficiently shed and transferred among young rabbits through direct contact and airborne routes. The nasal secretions and exhaled virus particles from donor rabbits can be contacted or inhaled by recipient rabbits. Large amounts of viral DNA were detected in the nasal wash of rabbits exposed to contact or airborne exposure. Furthermore, virus particles invade the lungs, causing pathological changes and disseminating them to multiple organs. However, no infectious virus was successfully recovered from these recipient rabbits, as their exposed or inhaled MPXV dose might have been below the MPXV’s minimum infectious dose for young rabbits. These findings indicate that although the airborne transmissibility of the current MPXV strain is relatively limited, inhalation of viral particles following airborne exposure can still result in bodily damage. Continuous monitoring of MPXV transmissibility and mutation evolution is imperative to prevent efficient respiratory aerosol transmission, which guides global monkeypox prevention and control strategies. Full article
(This article belongs to the Special Issue The Microbial Pathogenesis)
Show Figures

Figure 1

18 pages, 1138 KB  
Article
Sorption–Biological Treatment of Coastal Substrates of the Barents Sea in Low Temperature Using the Rhodococcus erythropolis Strain HO-KS22
by Vladimir Myazin, Maria Korneykova, Nadezhda Fokina, Ekaterina Semenova, Tamara Babich and Milana Murzaeva
Microorganisms 2025, 13(9), 2181; https://doi.org/10.3390/microorganisms13092181 - 18 Sep 2025
Abstract
The efficiency of the sorption–biological method for treatment of oil-polluted coastal substrates (soil and sand) of the Barents Sea under low temperature (10 °C) using the active hydrocarbon-oxidizing bacterial strain Rhodococcus erythropolis HO-KS22 was assessed in the laboratory. The highest rate of hydrocarbon [...] Read more.
The efficiency of the sorption–biological method for treatment of oil-polluted coastal substrates (soil and sand) of the Barents Sea under low temperature (10 °C) using the active hydrocarbon-oxidizing bacterial strain Rhodococcus erythropolis HO-KS22 was assessed in the laboratory. The highest rate of hydrocarbon degradation was in sand polluted with a low-density oil emulsion and in soil polluted with a medium-density oil emulsion. Sorption–biological treatment increased the rate of hydrocarbon degradation in sand by 3–4 times during the first month and enhanced the overall efficiency by 20% over a three-month period. The use of sorbents (granular activated carbon, thermally activated vermiculite and peat) both in sand and soil prevents secondary pollution of coastal ecosystems, since it significantly reduces the hydrocarbons’ desorption and their leaching by water. Rhodococcus erythropolis HO-KS22, in combination with sorbents, can be applied during the biological remediation of coastal sandy substrates following the initial removal of emergency oil spills. However, for biological treatment of oil-polluted soils of the Barents Sea coast, further selection of active strains of hydrocarbon-oxidizing bacteria resistant to low pH values and temperatures typical for this region is necessary. The use of microbiological preparations without taking into account the soil and climatic factors of the region may be ineffective, which will increase the cost of remediation of the territory without significantly improving its condition. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

20 pages, 4396 KB  
Article
Unveiling Species Diversity of Plectosphaerellaceae (Sordariomycetes) Fungi Involved in Rhizome and Root Rots of Ginger in Shandong Province, China
by Qian Zhao, Ao Jia, Hongjuan Yang, Jinming Hu, Xuli Gao, Weiqin Zhao, Lifeng Zhou, Miao Zhang, Zhaoxia Li and Weihua Zhang
Microorganisms 2025, 13(9), 2180; https://doi.org/10.3390/microorganisms13092180 - 18 Sep 2025
Abstract
Ginger holds significant economic importance in both China and worldwide agriculture. Fungi from the family Plectosphaerellaceae are globally recognized as aggressive plant pathogens. However, the effects of Plectosphaerellaceae species on ginger have been poorly understood. In this research, we identified two novel Musidium [...] Read more.
Ginger holds significant economic importance in both China and worldwide agriculture. Fungi from the family Plectosphaerellaceae are globally recognized as aggressive plant pathogens. However, the effects of Plectosphaerellaceae species on ginger have been poorly understood. In this research, we identified two novel Musidium species (M. shandongensis sp. nov. and M. zingiberis sp. nov.), one newly recorded species (Gibellulopsis serrae) and one new host record (Plectosphaerella cucumerina) from the rotten rhizomes and roots of ginger in Shandong Province, China, utilizing morphological observations combined with multilocus phylogenetic analysis of the 28S large subunit (LSU), internal transcribed spacer (ITS) region, and translation elongation factor 1-alpha (TEF1-α) gene, along with pathogenicity analyses. Key diagnostic features include M. shandongensis exhibiting abundant mycelium ropes and coils, M. zingiberis showing dark olivaceous colonies, G. serrae producing brown chlamydospores, and P. cucumerina displaying conspicuous guttulae conidia. Comparative analyses with closely related taxa were based on detailed morphological descriptions, illustrations, and phylogenetic analyses. Artificial inoculation of healthy ginger in vitro and in vivo assays caused characteristic symptoms, such as wilt, leaf yellowing, and rhizome necrosis, identical to those observed on naturally infected plants. Our findings broaden current knowledge on the diversity of Plectosphaerellaceae associated with ginger, revealing them as serious threats to ginger cultivation in China. Full article
(This article belongs to the Special Issue Advances in Fungal Plant Pathogens: Diagnosis, Resistance and Control)
Show Figures

Figure 1

22 pages, 3210 KB  
Article
Amino Acid Balanced Compound Low-Protein Diets Improve Resource Efficiency in Sanhua Goose Production: Impacts on Metabolism, Gut Health, and Microbial Diversity
by Xianze Wang, Huiying Wang, Yi Liu, Guangquan Li, Daqian He, Shufang Chen, Huiyan Jia, Jiuli Dai and Xiao Zhou
Microorganisms 2025, 13(9), 2179; https://doi.org/10.3390/microorganisms13092179 - 18 Sep 2025
Abstract
This study investigated a compound low-protein diet (CLPD) strategy to reduce soybean meal (SBM) dependency in meat geese. Diets were formulated with crude protein (CP) levels decreasing from 16.5% (corn-soybean meal diet, CSD) to 9.8%, incorporating alternative ingredients such as rapeseed meal, corn [...] Read more.
This study investigated a compound low-protein diet (CLPD) strategy to reduce soybean meal (SBM) dependency in meat geese. Diets were formulated with crude protein (CP) levels decreasing from 16.5% (corn-soybean meal diet, CSD) to 9.8%, incorporating alternative ingredients such as rapeseed meal, corn distillers dried grains with solubles (DDGS), broken rice, and rice bran. All diets were balanced for limiting amino acids (lysine, methionine, threonine, and valine) through supplemental synthetic amino acids. A total of 192 four-week-old Sanhua geese were randomly assigned according to a single-factor completely randomized design to four dietary treatment groups: the 16.5% (CSD) group and three CLPD treatment groups (14.0% CP, 11.5% CP, and 9.8% CP). Each treatment consisted of six replicate pens with eight geese per pen. During the six-week trial, evaluations included growth performance, organ weights, nutrient digestibility, serum biochemistry, amino acid profiles, intestinal morphology, and cecal microbiota composition. Results demonstrated that compared to the 16.5% (CSD) group, the 11.5% CP (CLPD) group significantly improved final body weight (p < 0.05), average daily gain (P_Linear < 0.01, p < 0.05), and feed conversion efficiency (P_Linear < 0.01, p < 0.05), alongside enhanced apparent digestibility of crude protein and amino acids (P_Linear < 0.01, p < 0.05). Organ weights were generally stable, though the 9.8% CP (CLPD) group showed reduced liver weight (p < 0.05) and increased abdominal fat (P_Linear < 0.01, p < 0.05). Serum levels of low-density lipoprotein cholesterol increased (P_Linear < 0.05, p < 0.05). Intestinal morphology improved in the duodenum and jejunum: in the duodenum, villus height and villus-to-crypt ratio were significantly increased, and crypt depth was significantly decreased (P_Linear < 0.01, p < 0.05); in the jejunum, villus height was significantly increased (p < 0.05) and crypt depth was significantly decreased (p < 0.05). Cecal microbiota alpha diversity remained consistent. The dominant genera in the 9.8% CP (CLPD) group were unclassified_Oscillospiraceae and unclassified_Ruminococcaceae (p < 0.05), among which, Megamonas, Prevotellaceae_Ga6A1_group, and Rikenellaceae_RC9_gut_group dominated in the 16.5% (CSD) group (p < 0.05). These findings indicate that a compound low-protein diet (CLPD) with 11.5% CP, precisely balanced for limiting amino acids, supports optimal growth performance, improves nutrient utilization, and maintains intestinal health in meat geese. Overall, this offers a viable approach to easing SBM reliance in poultry nutrition while enhancing resource efficiency. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

18 pages, 5085 KB  
Article
Developments in Microbial Communities and Interaction Networks in Sludge Treatment Ecosystems During the Transition from Anaerobic to Aerobic Conditions
by Xiaoli Pan, Lijun Luo, Hui Wang, Xinyu Chen, Yongjiang Zhang, Yan Dai and Feng Luo
Microorganisms 2025, 13(9), 2178; https://doi.org/10.3390/microorganisms13092178 - 18 Sep 2025
Abstract
The transition between anaerobic and aerobic conditions represents a fundamental ecological process occurring ubiquitously in both natural ecosystems and engineered wastewater treatment systems. This study investigated the microbial community succession and co-occurrence network dynamics during the transition from anaerobic sludge to aerobic cultivation. [...] Read more.
The transition between anaerobic and aerobic conditions represents a fundamental ecological process occurring ubiquitously in both natural ecosystems and engineered wastewater treatment systems. This study investigated the microbial community succession and co-occurrence network dynamics during the transition from anaerobic sludge to aerobic cultivation. High-throughput 16S and 18S rDNA sequencing revealed two distinct succession phases: an initial “aerobic adaptation period” (Day 1) and a subsequent “aerobic stable period” (Day 15). Eukaryotic communities shifted from Cryptomycota to the unassigned eukaryotes dominance, while prokaryotic communities maintained Firmicutes and Proteobacteria as core phyla, with persistent low-abundance archaea indicating functional adaptation. Network analysis highlighted predominant co-occurrence patterns between eukaryotic and prokaryotic communities, suggesting synergistic interactions. These findings provide insights into microbial ecological dynamics during anaerobic-to-aerobic transitions, offering potential applications for optimizing wastewater treatment processes. Full article
(This article belongs to the Special Issue Advances in Genomics and Ecology of Environmental Microorganisms)
Show Figures

Figure 1

20 pages, 4894 KB  
Article
Transcriptome Analysis of Chenopodium album in Response to Infection by Botrytis Strain HZ-011
by Haixia Zhu, Le Zhang, Yongqiang Ma and Lu Hou
Microorganisms 2025, 13(9), 2177; https://doi.org/10.3390/microorganisms13092177 - 18 Sep 2025
Abstract
This study conducted a transcriptome sequencing analysis of the interaction between Chenopodium album and Botrytis strain HZ-011 to identify genes involved in the response to fungal infections and elucidate the molecular mechanisms underlying the interaction. High-throughput RNA-seq technology was employed to analyze the [...] Read more.
This study conducted a transcriptome sequencing analysis of the interaction between Chenopodium album and Botrytis strain HZ-011 to identify genes involved in the response to fungal infections and elucidate the molecular mechanisms underlying the interaction. High-throughput RNA-seq technology was employed to analyze the transcriptomes of C. album leaves at 1, 4, and 5 days post-inoculation (dpi) with Botrytis strain HZ-011. The results revealed 11,645 differentially expressed genes (DEGs) at 1 dpi, including 7399 upregulated and 4246 downregulated genes; 11,285 DEGs at 4 dpi (7801 upregulated and 3484 downregulated); and 9976 DEGs at 5 dpi (7723 upregulated and 2253 downregulated). GO functional analysis indicated that downregulated DEGs were significantly enriched in chloroplast and plastid functional expression at 1, 4, and 5 dpi. Following infection by Botrytis strain HZ-011, downregulated genes were significantly enriched in pathways related to photosynthesis, including photosynthetic pathways, light-harvesting antenna proteins, and carotenoid biosynthesis. This suggests that the photosynthetic process in C. album was markedly inhibited, disrupting nutrient supply and leading to herbicidal effects. Notably, genes such as PSB28, PSBP, CAP10A, and CRTL-E-1 were significantly enriched in these pathways, indicating their potential roles in the herbicidal mechanism. These findings provide a foundation for understanding the herbicidal activity of strain HZ-011 and identifying potential targets for developing novel microbial herbicides. Full article
Show Figures

Figure 1

34 pages, 1750 KB  
Review
Pattern Recognition Receptors (PRRs) Expression and Activation in COVID-19 and Long COVID: From SARS-CoV-2 Escape Mechanisms to Emerging PRR-Targeted Immunotherapies
by Luca Maddaloni, Ginevra Bugani, Matteo Fracella, Camilla Bitossi, Alessandra D’Auria, Francesca Aloisi, Abir Azri, Letizia Santinelli, Manel Ben M’Hadheb, Alessandra Pierangeli, Federica Frasca and Carolina Scagnolari
Microorganisms 2025, 13(9), 2176; https://doi.org/10.3390/microorganisms13092176 - 17 Sep 2025
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is recognized by pattern recognition receptors (PRRs), which play a vital role in triggering innate immune responses such as the production of type I and III interferons (IFNs). While modest PRR activation helps to defend against [...] Read more.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is recognized by pattern recognition receptors (PRRs), which play a vital role in triggering innate immune responses such as the production of type I and III interferons (IFNs). While modest PRR activation helps to defend against SARS-CoV-2, excessive or sustained activation can cause harmful inflammation and contribute to severe Coronavirus Disease 2019 (COVID-19). Altered expression of Toll-like receptors (TLRs), which are among the most important members of the PRR family members, particularly TLRs 2, 3, 4, 7, 8 and 9, has been strongly linked to COVID-19 severity. Furthermore, retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5), collectively known as RLRs (RIG-I-like receptors), act as sensors that detect SARS-CoV-2 RNA. The expression of these receptors, as well as that of different DNA sensors, varies in patients infected with SARS-CoV-2. Changes in PRR expression, particularly that of TLRs, cyclic GMP-AMP synthase (cGAS), and the stimulator of interferon genes (STING), have also been shown to play a role in the development and persistence of long COVID (LC). However, SARS-CoV-2 has evolved strategies to evade PRR recognition and subsequent signaling pathway activation, contributing to the IFN response dysregulation observed in SARS-CoV-2-infected patients. Nevertheless, PRR agonists and antagonists remain promising therapeutic targets for SARS-CoV-2 infection. This review aims to describe the PRRs involved in recognizing SARS-CoV-2, explore their expression during SARS-CoV-2 infection, and examine their role in determining the severity of both COVID-19 and long-term manifestations of the disease. It also describes the strategies developed by SARS-CoV-2 to evade PRR recognition and activation. Moreover, given the considerable interest in modulating PRR activity as a novel immunotherapy approach, this review will provide a description of PRR agonists and antagonists that have been investigated as antiviral strategies against SARS-CoV-2. This review aims to explore the complex interplay between PRRs and SARS-CoV-2 in depth, considering its implications for prognostic biomarkers, targeted therapeutic strategies and the mechanistic understanding of long LC. Additionally, it outlines future perspectives that could help to address knowledge gaps in PRR-mediated responses during SARS-CoV-2 infection. Full article
(This article belongs to the Special Issue Immunity and Viral Immune Evasion Strategies: Recent Insights)
Show Figures

Figure 1

21 pages, 6074 KB  
Article
Therapeutic Potential of Probiotic-Derived P8 Protein as an Anti-Metastatic Agent in Colorectal Cancer
by Byung Chull An, Seungwoo Kim, Jaewon Ha, Sang-Hyuk Seok, Jun Won Park, Yongku Ryu and Myung Jun Chung
Microorganisms 2025, 13(9), 2175; https://doi.org/10.3390/microorganisms13092175 - 17 Sep 2025
Abstract
We previously described the use of probiotics to deliver a Lactobacillus rhamnosus-derived therapeutic protein, P8, which has been identified as a candidate colorectal cancer (CRC) suppressor protein with anti-proliferation and anti-migration activities. P8 was found to penetrate cell membranes by endocytosis, suppressing [...] Read more.
We previously described the use of probiotics to deliver a Lactobacillus rhamnosus-derived therapeutic protein, P8, which has been identified as a candidate colorectal cancer (CRC) suppressor protein with anti-proliferation and anti-migration activities. P8 was found to penetrate cell membranes by endocytosis, suppressing cell proliferation through G2 cell cycle arrest. Despite the ability of P8 to suppress cell migration in vitro, its mechanism of action in CRC is unclear. We profiled the P8-interacting partner proteins using the pull-down method with His-tagged bait P8 and then identified them by LC-MS/MS. Among the interacting targets, we focused on the mothers against decapentaplegic homolog 1 (Smad1), which is well known as one of the important modulators of the bone morphogenetic protein (BMP)-derived migration pathway in CRC. The present study discovers that P8 prevents the phosphorylation of Smad1 or heterologous complexes within the Smad family, interfering with the importation of Smad1 or its complexes into the nucleus. Thus, P8 significantly inhibits the up-regulation of epithelial–mesenchymal transition (EMT)-related genes mediated by Smad1. P8 also inhibits the morphological changes required for cell migration or adhesion. P8 induces morphologic changes in DLD-1 cells, and their spheroid surfaces, resulting in a significant reduction of the number and length of filopodia, as well as the down-regulation of the expression of myosin X and its accumulation in filopodia tips. This phenomenon seems to be a major negative regulator of cell motility that could be of key importance in metastasis. Use of a mouse model of human CRC metastasis confirmed that P8 significantly suppresses the liver metastatic rate. Probiotic-derived protein P8 significantly suppresses CRC metastasis through inhibition of the Smad1-EMT signal pathway and cell–cell adhesion. Full article
(This article belongs to the Topic News and Updates on Probiotics)
Show Figures

Figure 1

15 pages, 1351 KB  
Article
A Comparative Study of Extended Gentamicin and Tobramycin Release and Antibacterial Efficacy from Palacos and Simplex Acrylic Cements
by Débora Coraça-Huber, Martina Humez and Klaus-Dieter Kühn
Microorganisms 2025, 13(9), 2174; https://doi.org/10.3390/microorganisms13092174 - 17 Sep 2025
Abstract
Antibiotic-loaded bone cements (ALBCs) are used to prevent and treat periprosthetic joint infections (PJI). This study compares the in vitro release and antibacterial effectiveness of gentamicin from Palacos® R+G and tobramycin from Simplex® T. Standardized cylindrical specimens of Palacos® R+G [...] Read more.
Antibiotic-loaded bone cements (ALBCs) are used to prevent and treat periprosthetic joint infections (PJI). This study compares the in vitro release and antibacterial effectiveness of gentamicin from Palacos® R+G and tobramycin from Simplex® T. Standardized cylindrical specimens of Palacos® R+G and Simplex® T were incubated in phosphate-buffered saline. Antibiotic release was quantified using high-performance liquid chromatography (HPLC) over 14 and 42 days. Antibacterial efficacy was assessed using inhibition zone tests (IZT) against Staphylococcus aureus, Staphylococcus epidermidis, and Escherichia coli over 42 days. Palacos® R+G exhibited a significantly higher and more sustained antibiotic release of gentamicin compared to tobramycin from Simplex® T. The cumulative release of gentamicin from Palacos® R+G was 1.148 µg/cm2, while Simplex® T released 198.87 µg/cm2 tobramycin over 14 days. Inhibition zone tests showed that Palacos® R+G maintained antibacterial activity for 42 days, while Simplex® T’s activity diminished after 14 days. Statistical analysis confirmed significant differences in antibacterial efficacy between the two cements. Palacos® R+G demonstrated superior gentamicin release and sustained antibacterial activity compared to tobramycin from Simplex® T. These findings suggest that Palacos® R+G may offer better clinical outcomes in preventing and treating PJIs. Full article
(This article belongs to the Special Issue Challenges of Biofilm-Associated Bone and Joint Infections)
Show Figures

Figure 1

19 pages, 2244 KB  
Article
Analysis of Microbial Community Structure and Diversity in Different Soil Use Types in the Luo River Basin
by Li Dai, Xiaolong Hao, Tong Niu, Zhen Liu, Yanmei Wang, Xiaodong Geng, Qifei Cai, Juan Wang, Yongyu Ren, Fangming Liu, Hongen Liu and Zhi Li
Microorganisms 2025, 13(9), 2173; https://doi.org/10.3390/microorganisms13092173 - 17 Sep 2025
Abstract
The Luohe River boasts a profound historical heritage. Due to long-term impacts of human activities along its banks, significant variations in soil environmental conditions may exist across different land use types within the region. This study focused on four land use types (farmland, [...] Read more.
The Luohe River boasts a profound historical heritage. Due to long-term impacts of human activities along its banks, significant variations in soil environmental conditions may exist across different land use types within the region. This study focused on four land use types (farmland, bamboo forest, grassland, and abandoned land) in Luoning County of the Luohe River Basin and employed high-throughput sequencing technology to analyze the characteristics of soil microbial communities and differences in soil nutrients. The results showed the following: There were significant differences in soil nutrients and microbial diversity among different land use types. Specifically, the organic matter content in farmland was significantly higher than that in bamboo forests (p < 0.05), and the available phosphorus content in farmland was significantly higher than that in abandoned land (p < 0.05); the abandoned land had a significant advantage in alkali-hydrolyzable nitrogen and available potassium contents (p < 0.05) but the lowest soil water content (p < 0.05). Microbial diversity indices indicated that Pielou’s evenness index (Pieloue) in farmland was significantly higher than that in grassland. The bacterial community was dominated by Acidobacteria, Proteobacteria, and Actinobacteria. At the genus level, available potassium was the key factor affecting the top 20 dominant bacterial genera. Redundancy Analysis (RDA) showed that pH was the core environmental variable driving the variation of bacterial community structure. Metabolic pathway analysis revealed that biosynthetic metabolism was the main pathway, and grassland exhibited outstanding performance in the secondary metabolite synthesis pathway. The results of this study fill the gap in soil microbial ecology research in this region and provide a theoretical basis for the sustainable utilization of land resources and agricultural ecological management in the Luohe River Basin. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop