Population Dynamics of Plasmodium vivax in Mexico Determined by CSP, Pvs25, and SSU 18S rRNA S-Type Polymorphism Analyses
Abstract
1. Introduction
2. Materials and Methods
2.1. P. vivax Samples and Geographic Origin
2.2. Sample Preparation and DNA Extraction
2.3. Molecular Markers
2.4. PCR Amplification and Genotyping
2.5. Sanger Sequencing
2.6. Data Analysis
3. Results
3.1. Circumsporozoite Gene Polymorphism
3.1.1. PCR-RFLP of Pvcsp
3.1.2. Pvcsp Sequence Polymorphism
3.2. Pvs25 Polymorphism and Genetic Structure
3.3. Frequencies of 18S rRNA S-Type Variants
3.4. P. vivax Multilocus Haplotype Analyses
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
P. vivax | Plasmodium vivax |
CSP | Circumsporozoite protein |
rRNA | Ribosomal RNA |
PRM | Peptide repeat motif |
CRR | Central repeat region |
pvcsp | Circumsporozoite gene of P. vivax |
RACCN | Autonomous Region of the North Caribbean Coast |
PCR | Polymerase chain reaction |
RFLP | Restriction fragment length polymorphism |
AMOVA | Analysis of molecular variance |
NWa | Far northwestern foci (Chihuahua, Sinaloa), Mexico |
NWb | Northwestern foci (Nayarit, Durango, Jalisco), Mexico |
OAX | Pochutla, Oaxaca, Mexico |
SMP | Southernmost Pacific region in Chiapas, Mexico |
LR | Lacandon region (Palenque, Ocosingo in Chiapas), Mexico |
References
- World Health Organization. World Malaria Report. 2024. Available online: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2024 (accessed on 3 July 2025).
- Secretaria de Salud. Boletin Epidemiologico. Available online: https://www.gob.mx/salud/acciones-y-programas/direccion-general-de-epidemiologia-boletin-epidemiologico (accessed on 3 June 2025).
- World Health Organization. World Malaria Report 2009; World Health Organization: Geneva, Switzerland, 2009; Available online: https://www.who.int/publications/i/item/9789241563901 (accessed on 20 August 2025).
- Gonzalez-Ceron, L.; Rodriguez, M.H.; Sandoval, M.A.; Santillan, F.; Galindo-Virgen, S.; Betanzos, A.F.; Rosales, A.F.; Palomeque, O.L. Effectiveness of Combined Chloroquine and Primaquine Treatment in 14 Days versus Intermittent Single Dose Regimen, in an Open, Non-Randomized, Clinical Trial, to Eliminate Plasmodium vivax in Southern Mexico. Malar. J. 2015, 14, 426. [Google Scholar] [CrossRef][Green Version]
- Gonzalez-Ceron, L.; Mu, J.; Santillan, F.; Joy, D.; Sandoval, M.A.; Camas, G.; Su, X.; Choy, E.V.; Torreblanca, R. Molecular and Epidemiological Characterization of Plasmodium vivax Recurrent Infections in Southern Mexico. Parasites Vectors 2013, 6, 109. [Google Scholar] [CrossRef] [PubMed]
- Secretaria de Salud/Cenaprece. Manual De Tratamientos Médicos Para La Atención De Casos Confirmados De Paludismo En México. Available online: https://www.gob.mx/cms/uploads/attachment/file/805562/Manual_de_Tratamientos_para_Paludismo_Definitivo.pdf (accessed on 3 July 2025).
- Alicia, A.; Barry, A.E.; Reeder, J.C. Understanding the Population Genetics of Plamodium vivax Is Essential for Malaria Control and Elimination. Malar. J. 2012, 11, 1–10. [Google Scholar] [CrossRef]
- Gonzalez-Ceron, L.; Cerritos, R.; Corzo-Mancilla, J.; Santillan, F. Diversity and Evolutionary Genetics of the Three Major Plasmodium vivax Merozoite Genes Participating in Reticulocyte Invasion in Southern Mexico. Parasites Vectors 2015, 8, 651. [Google Scholar] [CrossRef][Green Version]
- Gonzalez-Ceron, L.; Montoya, A.; Corzo-Gomez, J.C.; Cerritos, R.; Santillan, F.; Sandoval, M.A. Genetic Diversity and Natural Selection of Plasmodium vivax Multi-Drug Resistant Gene (Pvmdr1) in Mesoamerica. Malar. J. 2017, 16, 261. [Google Scholar] [CrossRef]
- Gonzalez-Ceron, L.; Rodriguez, M.H.; Montoya, A.; Santillan-Valenzuela, F.; Corzo-Gomez, J.C. Molecular Variation of Plasmodium vivax Dihydrofolate Reductase in Mexico and Nicaragua Contrasts with That Occurring in South America. Salud Publica Mex. 2020, 62, 364–371. [Google Scholar] [CrossRef]
- Gonzalez-Ceron, L.; Cebrian-Carmona, J.; Mesa-Valle, C.M.; Garcia-Maroto, F.; Santillan-Valenzuela, F.; Garrido-Cardenas, J.A. Plasmodium vivax Cysteine-Rich Protective Antigen Polymorphism at Exon-1 Shows Recombination and Signatures of Balancing Selection. Genes 2020, 12, 29. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Ceron, L.; Martinez-Barnetche, J.; Montero-Solis, C.; Santillan, F.; Soto, A.M.; Rodriguez, M.H.; Espinosa, B.J.; Chavez, O.A. Molecular Epidemiology of Plasmodium vivax in Latin America: Polymorphism and Evolutionary Relationships of the Circumsporozoite Gene. Malar. J. 2013, 12, 243. [Google Scholar] [CrossRef]
- Gonzalez-Ceron, L.; Alvarado-Delgado, A.; Martinez-Barnetche, J.; Rodriguez, M.H.; Ovilla-Munoz, M.; Perez, F.; Hernandez-Avila, J.E.; Sandoval, M.A.; Rodriguez Mdel, C.; Villarreal-Trevino, C. Sequence Variation of Ookinete Surface Proteins Pvs25 and Pvs28 of Plasmodium vivax Isolates from Southern Mexico and Their Association to Local Anophelines Infectivity. Infect. Genet. Evol. 2010, 10, 645–654. [Google Scholar] [CrossRef]
- Flores-Alanis, A.; Gonzalez-Ceron, L.; Santillan, F.; Ximenez, C.; Sandoval, M.A.; Cerritos, R. Temporal Genetic Changes in Plasmodium vivax Apical Membrane Antigen 1 over 19 Years of Transmission in Southern Mexico. Parasites Vectors 2017, 10, 217. [Google Scholar] [CrossRef] [PubMed]
- Flores-Alanis, A.; Gonzalez-Ceron, L.; Santillan-Valenzuela, F.; Ximenez, C.; Sandoval-Bautista, M.A.; Cerritos, R. Spatiotemporal Changes in Plasmodium vivax Msp142 Haplotypes in Southern Mexico: From the Control to the Pre-Elimination Phase. Microorganisms 2022, 10, 186. [Google Scholar] [CrossRef]
- González-Cerón, L.; Rodríguez, M.H.; Ovilla-Muñoz, M.T.; Santillán-Valenzuela, F.; Hernández-Ávila, J.E.; Rodríguez, M.C.; Martínez- Barnetche, J.; Villarreal-Treviño, C. Ookinete-Specific Genes and 18S SSU RRNA Evidenced in Plasmodium vivax Selection and Adaptation by Sympatric Vectors. Front. Genet. 2020, 10, 1362. [Google Scholar] [CrossRef]
- Gonzalez-Ceron, L.; Rodriguez, M.H.; Nettel, J.C.; Villarreal, C.; Kain, K.C.; Hernandez, J.E. Differential Susceptibilities of Anopheles albimanus and Anopheles pseudopunctipennis to Infections with Coindigenous Plasmodium vivax Variants VK210 and VK247 in Southern Mexico. Infect. Immun. 1999, 67, 410–412. [Google Scholar] [CrossRef]
- Rodriguez, M.H.; Gonzalez-Ceron, L.; Hernandez, J.E.; Nettel, J.A.; Villarreal, C.; Kain, K.C.; Wirtz, R.A. Different Prevalences of Plasmodium vivax Phenotypes VK210 and VK247 Associated with the Distribution of Anopheles albimanus and Anopheles pseudopunctipennis in Mexico. Am. J. Trop. Med. Hyg. 2000, 62, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Ceron, L.; Rodriguez, M.H.; Betanzos, A.F.; Abadia, A. Efficacy of a rapid test to diagnose Plasmodium vivax in symptomatic patients of Chiapas, Mexico. Salud Publica Mex. 2005, 47, 282–287. [Google Scholar] [PubMed][Green Version]
- Gutierrez, S.; Gonzalez-Ceron, L.; Montoya, A.; Sandoval, M.A.; Torres, M.E.; Cerritos, R. Genetic Structure of Plasmodium vivax in Nicaragua, a Country in the Control Phase, Based on the Carboxyl Terminal Region of the Merozoite Surface Protein-1. Infect. Genet. Evol. 2016, 40, 324–330. [Google Scholar] [CrossRef]
- Gonzalez Ceron, L.; Piedra-Arevalo, F.O.; Casanova-Hernandez, D.; Santillan-Valenzuela, F.; Montoya Perez, A. Plasmodium vivax apical membrane antigen 1 I-II from Nicaragua (2012–2013): Genetic and antigenic polymorphism. Salud Publica Mex. 2023, 65, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Joy, D.A.; Gonzalez-Ceron, L.; Carlton, J.M.; Gueye, A.; Fay, M.; McCutchan, T.F.; Su, X.Z. Local Adaptation and Vector-Mediated Population Structure in Plasmodium vivax Malaria. Mol. Biol. Evol. 2008, 25, 1245–1252. [Google Scholar] [CrossRef]
- Sinka, M.E.; Bangs, M.J.; Manguin, S.; Rubio-Palis, Y.; Chareonviriyaphap, T.; Coetzee, M.; Mbogo, C.M.; Hemingway, J.; Patil, A.P.; Temperley, W.H.; et al. A Global Map of Dominant Malaria Vectors. Parasites Vectors 2012, 5, 69. [Google Scholar] [CrossRef]
- Villarreal-Treviño, C.; Ríos-Delgado, J.C.; Penilla-Navarro, R.P.; Rodríguez, A.D.; López, J.H.; Nettel-Cruz, J.A.; Moo-Llanes, D.A.; Fuentes-Maldonado, G. Composition and Abundance of Anopheline Species According to Habitat Diversity in Mexico. Salud Publica Mex. 2020, 62, 388–401. [Google Scholar] [CrossRef]
- Semarnat/Conagua. Servicio Meteorológico Nacional. Available online: https://smn.conagua.gob.mx/es/index.php (accessed on 27 August 2025).
- Gonzalez-Ceron, L.; Rodriguez, M.H.; Nettel-Cruz, J.A.; Hernandez-Avila, J.E.; Malo-Garcia, I.R.; Santillan-Valenzuela, F.; Villarreal-Trevino, C. Plasmodium vivax CSP-Pvs25 Variants from Southern Mexico Produce Distinct Patterns of Infectivity for Anopheles albimanus versus An. pseudopunctipennis, in Each Case Independent of Geographical Origin. Parasites Vectors 2019, 12, 86. [Google Scholar] [CrossRef]
- Prajapati, S.K.; Joshi, H.; Shalini, S.; Patarroyo, M.A.; Suwanarusk, R.; Kumar, A.; Sharma, S.K.; Eapen, A.; Dev, V.; Bhatt, R.M.; et al. Plasmodium vivax Lineages: Geographical Distribution, Tandem Repeat Polymorphism, and Phylogenetic Relationship. Malar. J. 2011, 10, 374. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids. Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Hupalo, D.N.; Luo, Z.; Melnikov, A.; Sutton, P.L.; Rogov, P.; Escalante, A.; Vallejo, A.F.; Herrera, S.; Arevalo-Herrera, M.; Fan, Q.; et al. Population Genomics Studies Identify Signatures of Global Dispersal and Drug Resistance in Plasmodium vivax. Nat. Genet. 2016, 48, 953–958. [Google Scholar] [CrossRef]
- Librado, P.; Rozas, J. DnaSP v5: A Software for Comprehensive Analysis of DNA Polymorphism Data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H.E.L. Arlequin Suite Ver 3.5: A New Series of Programs to Perform Population Genetics Analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Weir, B.S. Genetic Data Analysis II. Methods for Discrete Population Genetic Data; Sinauer Associates, Inc.: Sunderland, MA, USA, 1996. [Google Scholar]
- Bohonak, A.J. Dispersal, Gene Flow, and Population Structure. Q. Rev. Biol. 1999, 74, 21–45. [Google Scholar] [CrossRef] [PubMed]
- Haubold, B.; Hudson, R.R. LIAN 3.0: Detecting Linkage Disequilibrium in Multilocus Data. Linkage Analysis. Bioinformatics 2000, 16, 847–848. [Google Scholar] [CrossRef] [PubMed]
- Võ, T.C.; Trinh, N.T.M.; Lê, H.G.; Kang, J.-M.; Yoo, W.G.; Quang, H.H.; Na, B.-K. Genetic Diversity of Circumsporozoite Surface Protein of Plasmodium vivax from the Central Highlands, Vietnam. Pathogens 2022, 11, 1158. [Google Scholar] [CrossRef] [PubMed]
- Khulmanee, T.; Thita, T.; Kritsiriwutinan, K.; Boonyuen, U.; Saai, A.; Inkabjan, K.; Chakrabarti, R.; Rathod, P.K.; Krudsood, S.; Mungthin, M.; et al. Low Genetic Diversity of Plasmodium vivax Circumsporozoite Surface Protein in Clinical Isolates from Southern Thailand. Trop. Med. Infect. Dis. 2024, 9, 94. [Google Scholar] [CrossRef] [PubMed]
- Rongnoparut, P.; Supsamran, N.; Sattabongkot, J.; Suwanabun, N.; Rosenberg, R. Phenotype and Genotype Diversity in the Circumsporozoite Proteins of Plasmodium vivax in Thailand. Mol. Biochem. Parasitol. 1995, 74, 201–210. [Google Scholar] [CrossRef]
- Võ, T.C.; Lê, H.G.; Kang, J.M.; Moe, M.; Naw, H.; Myint, M.K.; Lee, J.; Sohn, W.M.; Kim, T.S.; Na, B.K. Genetic Polymorphism and Natural Selection of Circumsporozoite Protein in Myanmar Plasmodium vivax. Malar. J. 2020, 19, 303. [Google Scholar] [CrossRef]
- Bibi, Z.; Fatima, A.; Rani, R.; Maqbool, A.; Khan, S.; Naz, S.; Waseem, S. Genetic Characterization of Plasmodium vivax Isolates from Pakistan Using Circumsporozoite Protein (Pvcsp) and Merozoite Surface Protein-1 (Pvmsp-1) Genes as Genetic Markers. Malar. J. 2021, 20, 112. [Google Scholar] [CrossRef]
- Zakeri, S.; Abouie Mehrizi, A.; Djadid, N.D.; Snounou, G. Circumsporozoite Protein Gene Diversity among Temperate and Tropical Plasmodium vivax Isolates from Iran. Trop. Med. Int. Health 2006, 11, 729–737. [Google Scholar] [CrossRef]
- Shabani, S.H.; Zakeri, S.; Mehrizi, A.A.; Mortazavi, Y.; Djadid, N.D. Population Genetics Structure of Plasmodium vivax Circumsporozoite Protein during the Elimination Process in Low and Unstable Malaria Transmission Areas, Southeast of Iran. Acta Trop. 2016, 160, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Chaves, L.B.; Perce-Da-Silva, D.d.S.; Totino, P.R.R.; Riccio, E.K.P.; Baptista, B.d.O.; de Souza, A.B.L.; Rodrigues-Da-Silva, R.N.; Machado, R.L.D.; de Souza, R.M.; Daniel-Ribeiro, C.T.; et al. Plasmodium vivax Ookinete Surface Protein (Pvs25) Is Highly Conserved among Field Isolates from Five Different Regions of the Brazilian Amazon. Infect. Genet. Evol. 2019, 73, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Chaurio, R.A.; Pacheco, M.A.; Cornejo, O.E.; Durrego, E.; Stanley, C.E., Jr.; Castillo, A.I.; Herrera, S.; Escalante, A.A. Evolution of the Transmission-Blocking Vaccine Candidates Pvs28 and Pvs25 in Plasmodium vivax: Geographic Differentiation and Evidence of Positive Selection. PLoS Neglected Trop. Dis. 2016, 10, e0004786. [Google Scholar] [CrossRef] [PubMed]
- Zakeri, S.; Razavi, S.; Djadid, N.D. Genetic Diversity of Transmission Blocking Vaccine Candidate (Pvs25 and Pvs28) Antigen in Plasmodium vivax Clinical Isolates from Iran. Acta Trop. 2009, 109, 176–180. [Google Scholar] [CrossRef]
- Escalante, A.A.; Cornejo, O.E.; Freeland, D.E.; Poe, A.C.; Durrego, E.; Collins, W.E.; Lal, A.A. A Monkey’s Tale: The Origin of Plasmodium vivax as a Human Malaria Parasite. Proc. Natl. Acad. Sci. USA 2005, 102, 1980–1985. [Google Scholar] [CrossRef]
- Wang, S.; Tian, P.; Li, S.; Liu, H.; Guo, X.; Huang, F. Genetic Diversity of Transmission-Blocking Vaccine Candidate Antigens Pvs25 and Pvs28 in Plasmodium vivax Isolates from China. BMC Infect. Dis. 2022, 22, 944. [Google Scholar] [CrossRef]
- Kuesap, J.; Suphakhonchuwong, N.; Rungsihirunrat, K. Genetic Polymorphisms of Plasmodium vivax Ookinete (Sexual Stage) Surface Proteins (Pvs25 and Pvs28) from Thailand. Infect. Genet. Evol. 2024, 118, 105558. [Google Scholar] [CrossRef] [PubMed]
- Lê, H.G.; Kang, J.M.; Jun, H.; Lee, J.; Moe, M.; Thái, T.L.; Lin, K.; Myint, M.K.; Yoo, W.G.; Sohn, W.M.; et al. Genetic Diversity and Natural Selection of Transmission-Blocking Vaccine Candidate Antigens Pvs25 and Pvs28 in Plasmodium vivax Myanmar Isolates. Acta Trop. 2019, 198, 105104. [Google Scholar] [CrossRef]
- Guled, B.A.; Na-Bangchang, K.; Chaijaroenkul, W. Exploring Genetic Polymorphisms among Plasmodium vivax Isolates from the Thai-Myanmar Borders Using Circumsporozoite Protein (Pvcsp) and Ookinete Surface Protein (Pvs25) Encoding Genes. Parasitol. Res. 2024, 123, 91. [Google Scholar] [CrossRef]
- Kaur, H.; Sehgal, R.; Kumar, A.; Sehgal, A.; Bharti, P.K.; Bansal, D.; Mohapatra, P.K.; Mahanta, J.; Sultan, A.A. Exploration of Genetic Diversity of Plasmodium vivax Circumsporozoite Protein (Pvcsp) and Plasmodium vivax Sexual Stage Antigen (Pvs25) among North Indian Isolates. Malar. J. 2019, 18, 308. [Google Scholar] [CrossRef]
- Kibria, M.G.; Elahi, R.; Mohon, A.N.; Khan, W.A.; Haque, R.; Alam, M.S. Genetic Diversity of Plasmodium vivax in Clinical Isolates from Bangladesh. Malar. J. 2015, 14, 267. [Google Scholar] [CrossRef]
- Han, E.T.; Lee, W.J.; Sattabongkot, J.; Jang, J.W.; Nam, M.H.; An, S.S.A.; Suh, I.; Lim, C.S. Sequence Polymorphisms of Plasmodium vivax Ookinete Surface Proteins (Pvs25 and Pvs28) from Clinical Isolates in Korea. Trop. Med. Int. Health 2010, 15, 1072–1076. [Google Scholar] [CrossRef] [PubMed]
- Ford, A.; Kepple, D.; Williams, J.; Kolesar, G.; Ford, C.T.; Abebe, A.; Golassa, L.; Janies, D.A.; Yewhalaw, D.; Lo, E. Gene Polymorphisms Among Plasmodium vivax Geographical Isolates and the Potential as New Biomarkers for Gametocyte Detection. Front. Cell. Infect. Microbiol. 2022, 11, 789417. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Collins, W.E.; Wirtz, R.A.; Rathore, D.; Lal, A.; McCutchan, T.F. Geographic Subdivision of the Range of the Malaria Parasite Plasmodium vivax. Emerg. Infect. Dis. 2001, 7, 35–42. [Google Scholar] [CrossRef]
- Bond, J.G.; Rojas, J.C.; Arredondo–Jiménez, J.I.; Quiroz-Martínez, H.; Valle, J.; Williams, T. Population Control of the Malaria Vector Anopheles pseudopunctipennis by Habitat Manipulation. Proc. R. Soc. B Biol. Sci. 2004, 271, 2161–2169. [Google Scholar] [CrossRef]
- Carlton, J.M.; Adams, J.H.; Silva, J.C.; Bidwell, S.L.; Lorenzi, H.; Caler, E.; Crabtree, J.; Angiuoli, S.V.; Merino, E.F.; Amedeo, P.; et al. Comparative Genomics of the Neglected Human Malaria Parasite Plasmodium vivax. Nature 2008, 455, 757–763. [Google Scholar] [CrossRef]
- Villarreal-Treviño, C.; Arredondo-Jiménez, J.I.; Rodriguez, M.H. Bionomía de Los Principales Vectores Del Paludismo En México. In A cien Años del Descubrimiento de Ross. El Paludismo en México; Kumate, J., Martínez-Palomo, A., Eds.; El Colegio Nacional: Mexico City, Mexico, 1998; pp. 149–165. [Google Scholar]
- Villarreal-Treviño, C.; Penilla-Navarro, R.P.; Vázquez-Martínez, M.G.; Moo-Llanes, D.A.; Ríos-Delgado, J.C.; Fernández-Salas, I.; Rodríguez, A.D. Larval Habitat Characterization of Anopheles darlingi from Its Northernmost Geographical Distribution in Chiapas, Mexico. Malar. J. 2015, 14, 517. [Google Scholar] [CrossRef]
- Almeida-De-Oliveira, N.K.; de Abreu-Fernandes, R.; Lima-Cury, L.; de Lavigne, A.R.; de Pina-Costa, A.; de Souza Perce-Da-Silva, D.; Catanho, M.; Rossi, A.D.; Brasil, P.; Daniel-Ribeiro, C.T.; et al. Balancing Selection and High Genetic Diversity of Plasmodium vivax Circumsporozoite Central Region in Parasites from Brazilian Amazon and Rio de Janeiro Atlantic Forest. PLoS ONE 2020, 15, e0241426. [Google Scholar] [CrossRef]
- de Abreu, F.V.S.; dos Santos, E.; Lavigne Mello, A.R.; Gomes, L.R.; de Alvarenga, D.A.M.; Gomes, M.Q.; Vargas, W.P.; Bianco-Júnior, C.; de Pina-Costa, A.; Teixeira, D.S.; et al. Howler Monkeys Are the Reservoir of Malarial Parasites Causing Zoonotic Infections in the Atlantic Forest of Rio de Janeiro. PLoS Neglected Trop. Dis. 2019, 13, e0007906. [Google Scholar] [CrossRef]
- Santos, E.d.A.; Sucupira, I.M.C.; de Oliveira Martins, B.M.; de Paula Souza e Guimarães, R.J.; Catete, C.P.; de Souza, R.T.L.; dos Santos, A.C.F.; Póvoa, M.M. VK210 and VK247 Genotypes of Plasmodium vivax in Anopheline Mosquitoes from Brazilian Amazon. Sci. Rep. 2019, 9, 9391. [Google Scholar] [CrossRef]
- Ool, T.T.; Storch, V.; Becker, N. Review of the Anopheline Mosquitoes of Myanmar. J. Vector Ecol. 2004, 29, 21–40. [Google Scholar] [PubMed]
- Villafuerte Solís, D.; Del Carmen García Aguilar, M. Tres Ciclos Migratorios En Chiapas: Interno, Regional e Internacional. Available online: https://www-scielo.org.mx/pdf/myd/v12n22/v12n22a1.pdf (accessed on 25 August 2025).
- Hernández-Avila, J.E.; Rodríguez, M.H.; Betanzos-Reyes, A.F.; Danis-Lozano, R.; Méndez-Galván, J.F.; Velázquez-Monroy, O.J.; Tapia-Conyer, R. Determinant Factors for Malaria Transmission on the Coast of Oaxaca State, the Main Residual Transmission Focus in Mexico. Salud Publica Mex. 2006, 48, 405–417. [Google Scholar] [CrossRef]
- Danis-Lozano, R.; Rodriguez, M.H.; Betanzos-Reyes, A.F.; Hernandez-Avila, J.E.; Gonzalez-Ceron, L.; Mendez-Galvan, J.F.; Velazquez-Monroy, O.J.; Tapia-Conyer, R. Individual Risk Factors for Plasmodium vivax Infection in the Residual Malaria Transmission Focus of Oaxaca, Mexico. Salud Publica Mex. 2007, 49, 199–209. [Google Scholar] [CrossRef]
- Betanzos, A.F. La Malaria En México. Progresos y Desafíos Hacia Su Eliminación Challenges and Progress in the Elimination of Malaria in Mexico [Challenges and Progress in the Elimination of Malaria in Mexico]. Bol. Med. Hosp. Infant Mex. 2011, 68, 159–168. [Google Scholar]
- Santos-Luna, R.; Román-Pérez, S.; Reyes-Cabrera, G.; Sánchez-Arcos, M.d.R.; Correa-Morales, F.; Pérez-Solano, M.A. Web Geographic Information System: A Support Tool for the Study, Evaluation, and Monitoring of Foci of Malaria Transmission in Mexico. Int. J. Environ. Res. Public Health 2023, 20, 3282. [Google Scholar] [CrossRef] [PubMed]
State | Year of Collection | ||
---|---|---|---|
2010 | 2011 | 2012 | |
Chihuahua | 10 | 0 | 6 |
Sinaloa | 20 | 20 | 19 |
Durango | 5 | 4 | 36 |
Nayarit | 5 | 16 | 23 |
Jalisco | 19 | 0 | 6 |
Pochutla, Oaxaca | 32 | 12 | 2 |
* Palenque and Ocosingo, Chiapas | 32 | 20 | 48 |
Total smears | 123 | 72 | 140 |
Malaria Foci: | Total (n) | Genotype by PCR-RFLP (n) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
VK247 | VK210 | Mixed | |||||||||
I | II | III | a | b | d | g | h | e | |||
NWa | 28 | 26 | - | - | 1 | - | - | - | 1 | - | - |
NWb | 64 | 62 | - | 1 | - | - | - | - | - | - | VK210a/VK247_I |
OAX | 28 | 28 | - | - | - | - | - | - | - | - | - |
LR | 63 | 28 | 6 | - | 20 | 5 | 2 | 1 | - | - | VK210a/b |
SMP ** | 39 | 18 | - | - | 15 | 6 | - | - | - | - | - |
Malaria Foci | n | k | Hd ± SD | π ± SD | θ ± SD | Fu’s Fs | Tajima’s D | Mismatch SSD | Raggedness Index |
---|---|---|---|---|---|---|---|---|---|
NWa | 23 | 0.504 | 0.467 ± 0.102 | 0.0021 ± 0.0005 | 0.0023 ± 0.002 | −0.0717 | −0.1312 | 0.014 | 0.1676 |
NWb | 41 | 0.491 | 0.413 ± 0.081 | 0.0021 ± 0.0005 | 0.0020 ± 0.002 | 0.1917 | 0.0731 | 0.0008 | 0.1356 |
OAX | 21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
LR | 44 | 0.433 | 0.414 ± 0.073 | 0.0018 ± 0.0004 | 0.0019 ± 0.001 | 0.0337 | 0.0889 | 0.0106 | 0.1779 |
SMP | 39 | 0.837 | 0.667 ± 0.001 | 0.0035 ± 0.0003 | 0.002 ± 0.002 | 1.3887 | 1.4614 | 0.0175 * | 0.1622 * |
Overall | 168 | 0.669 | 0.581 ± 0.026 | 0.0028 ± 0.0002 | 0.0015 ± 0.001 | 0.3085 | 1.2701 | 0.0086 | 0.1287 |
NWa | NWb | OAX | LR | SMP | |
---|---|---|---|---|---|
NWa | 0.279 | 1.833 | - | 3.43 | |
NWb | 0.472 *** | 0.151 | 0.227 | 1.019 | |
OAX | 0.120 * | 0.623 *** | 2.002 | 0.871 | |
LR | 0 | 0.524 *** | 0.111 ** | 1.816 | |
SMP | 0.068 | 0.197 *** | 0.223 *** | 0.121 ** |
Data Set | n | Diversity Indexes | IAS | Var (VD) | (H0:VD = Ve) | |
---|---|---|---|---|---|---|
VD | Ve | p Value | ||||
Countrywide, three loci | 159 | 0.8004 | 0.7315 | 0.047 | 0.002 | 0.0004 |
LR, three loci | 43 | 1.0721 | 0.7451 | 0.219 | 0.0017 | 0.0001 |
SMP, three loci | 39 | 1.1833 | 0.6865 | 0.362 | 0.001 | 0.0001 |
Countrywide, VK247 1 | 120 | 0.496 | 0.4982 | −0.002 | - | 0.583 |
NWb, VK247 1 | 37 | 0.4215 | 0.4812 | −0.062 | 0.0017 | 1.0 |
LR, VK247 1 | 27 | 0.4317 | 0.4139 | 0.022 | 0.0034 | 0.135 |
Countrywide, VK210 1 | 39 | 0.6506 | 0.4943 | 0.1594 | 0.0003 | 0.0004 |
LR, VK210 1 | 16 | 0.4997 | 0.4889 | 0.0111 | 0.0012 | 0.566 |
SMP, VK210 1 | 21 | 0.8937 | 0.4878 | 0.416 | 0.0011 | 0.0004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Cerón, L.; Gómez-Pérez, D.d.J.; Santillán-Valenzuela, F.; Ovilla-Muñoz, M.; Guzmán-Bracho, C.; Pech-May, A.; Amores, G.R.; Montoya-Pérez, A.; Villarreal-Treviño, C. Population Dynamics of Plasmodium vivax in Mexico Determined by CSP, Pvs25, and SSU 18S rRNA S-Type Polymorphism Analyses. Microorganisms 2025, 13, 2221. https://doi.org/10.3390/microorganisms13092221
González-Cerón L, Gómez-Pérez DdJ, Santillán-Valenzuela F, Ovilla-Muñoz M, Guzmán-Bracho C, Pech-May A, Amores GR, Montoya-Pérez A, Villarreal-Treviño C. Population Dynamics of Plasmodium vivax in Mexico Determined by CSP, Pvs25, and SSU 18S rRNA S-Type Polymorphism Analyses. Microorganisms. 2025; 13(9):2221. https://doi.org/10.3390/microorganisms13092221
Chicago/Turabian StyleGonzález-Cerón, Lilia, Delfino de Jesús Gómez-Pérez, Frida Santillán-Valenzuela, Marbella Ovilla-Muñoz, Carmen Guzmán-Bracho, Angélica Pech-May, Gerardo R. Amores, Alberto Montoya-Pérez, and Cuauhtémoc Villarreal-Treviño. 2025. "Population Dynamics of Plasmodium vivax in Mexico Determined by CSP, Pvs25, and SSU 18S rRNA S-Type Polymorphism Analyses" Microorganisms 13, no. 9: 2221. https://doi.org/10.3390/microorganisms13092221
APA StyleGonzález-Cerón, L., Gómez-Pérez, D. d. J., Santillán-Valenzuela, F., Ovilla-Muñoz, M., Guzmán-Bracho, C., Pech-May, A., Amores, G. R., Montoya-Pérez, A., & Villarreal-Treviño, C. (2025). Population Dynamics of Plasmodium vivax in Mexico Determined by CSP, Pvs25, and SSU 18S rRNA S-Type Polymorphism Analyses. Microorganisms, 13(9), 2221. https://doi.org/10.3390/microorganisms13092221