The Sepid-Sarve copper deposit is part of an Eocene volcano-sedimentary sequence located in the southern Sabzevar Zone. The copper mineralization occurs at the contact between pyroclastic and lava units with various limestone layers (including marly, Nummulitic, sandy, and clastic limestones). The ore minerals
[...] Read more.
The Sepid-Sarve copper deposit is part of an Eocene volcano-sedimentary sequence located in the southern Sabzevar Zone. The copper mineralization occurs at the contact between pyroclastic and lava units with various limestone layers (including marly, Nummulitic, sandy, and clastic limestones). The ore minerals consist of malachite, azurite, chalcocite, digenite, cuprite, tenorite, covellite, and occasionally native copper. The associated hydrothermal fluids show moderate to high salinities, ranging from 3.08 to 13.38 wt.% NaCl equivalent, with homogenization temperatures between 90 and 356 °C, indicating fluid mixing during ore formation. Chalcocite is rarely accompanied by quartz, suggesting low silica content in the ore-forming fluids. The δ
34S values of sulfide samples from the Sepid-Sarve deposit range from −23.9 ± 0.3‰ to −2.9 ± 0.2‰, while δ
34S values of hydrothermal H
2S range from −24.1 ± 0.3‰ to −21.0 ± 0.3‰. The δ
18O values of hydrothermal fluids associated with mineralization fall within the range of basaltic rocks, meteoric waters, and sedimentary rocks. Geochemical variations in major and trace elements suggest the involvement of continental crustal contamination in the magmatic evolution. The studied volcanic rocks fall within the calc-alkaline to shoshonitic fields, formed in a continental arc setting, and are derived from an enriched mantle source influenced by subduction-related fluids. These rocks are characterized by HREE depletion, moderate LREE enrichment, and a weak negative Eu anomaly. Based on the results, the Sepid-Sarve deposit is classified as a stratabound (Manto-type) copper sulfide deposit, formed in a volcano-sedimentary setting associated with a subduction-related magmatic arc environment.
Full article