Selected Papers from the 7th National Youth Geological Congress

A special issue of Minerals (ISSN 2075-163X).

Deadline for manuscript submissions: 31 December 2025 | Viewed by 912

Special Issue Editors

School of Resources and Civil Engineering, Northeastern University, Shenyang, China
Interests: tectonics; igneous rocks; geochemistry; regional metallogeny; Central Asian Orogenic Belt; North China Craton
Shenyang Center of China Geological Survey, Shengyang, China
Interests: magmatism and mineralization; enrichment and mineralization of rare metal elements

E-Mail Website
Guest Editor
School of Earth Sciences, Northeast Petroleum University, Daqing, China
Interests: enrichment mechanism and mineralization prediction of sandstone-type uranium deposits

E-Mail Website
Guest Editor
School of Resources and Civil Engineering, Northeastern University, Shenyang, China
Interests: genetic mineralogy and metallogeny

Special Issue Information

Dear Colleagues,

This Special Issue will publish selected papers from the 7th National Youth Geological Congress that took place on 25–29 April, 2025, in Shenyang, China. The key objective of the 7th National Youth Geological Congress was to share the latest developments in regional geology and mineralization, natural mineral systems, strategic mineral resources, new mineral exploration strategies and technological progress, mining engineering geological environments and disasters, deep engineering, and the efficient utilization of resources. We are cordially inviting you to submit your manuscript to this Special Issue.

Dr. Bo Liu
Dr. Lu Shi
Dr. Hu Peng
Dr. Wenyuan Gao
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Minerals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • regional geology
  • mineralization
  • strategic mineral resources
  • mineral exploration
  • deep engineering
  • mineral and ore genesis
  • environmental impact of mineral resources
  • environmental geochemistry
  • geo-environment and mineral resources

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

32 pages, 7693 KiB  
Article
Genesis and Evolution of the Qieliekeqi Siderite Deposit in the West Kunlun Orogen: Constraints from Geochemistry, Zircon U–Pb Geochronology, and Carbon–Oxygen Isotopes
by Yue Song, Liang Li, Yuan Gao and Yang Luo
Minerals 2025, 15(7), 699; https://doi.org/10.3390/min15070699 - 30 Jun 2025
Abstract
The Qieliekeqi siderite deposit, located in the Tashkurgan block of western Kunlun, is a carbonate-hosted iron deposit with hydrothermal sedimentary features. This study integrates whole-rock geochemistry, stable isotopes, and zircon U–Pb–Hf data to investigate its metallogenic evolution. Coarse-grained siderite samples, formed in deeper [...] Read more.
The Qieliekeqi siderite deposit, located in the Tashkurgan block of western Kunlun, is a carbonate-hosted iron deposit with hydrothermal sedimentary features. This study integrates whole-rock geochemistry, stable isotopes, and zircon U–Pb–Hf data to investigate its metallogenic evolution. Coarse-grained siderite samples, formed in deeper water, exhibit average Al2O3/TiO2 ratios of 29.14, δEu of 2.69, and δCe of 0.83, indicating hydrothermal fluid dominance with limited seawater mixing. Banded samples from shallower settings show an average Al2O3/TiO2 of 17.07, δEu of 3.18, and δCe of 0.94, suggesting stronger seawater interaction under oxidizing conditions. Both types are enriched in Mn, Co, and Ba, with low Ti and Al contents. Stable isotope results (δ13CPDB = −6.0‰ to −4.6‰; δ18OSMOW = 16.0‰ to 16.9‰) point to seawater-dominated fluids with minor magmatic and meteoric contributions, formed under open-system conditions at avg. temperatures of 53 to 58 °C. Zircon U–Pb dating yields an age of 211.01 ± 0.82 Ma, with an average εHf(t) of −3.94, indicating derivation from the partially melted ancient crust. These results support a two-stage model involving Late Cambrian hydrothermal sedimentation and Late Triassic magmatic overprinting. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

30 pages, 11512 KiB  
Article
Petrogenesis of Late Jurassic–Early Cretaceous Granitoids in the Central Great Xing’ an Range, NE China
by Cheng Qian, Lu Lu, Yan Wang, Junyu Fu, Xiaoping Yang, Yujin Zhang and Sizhe Ni
Minerals 2025, 15(7), 693; https://doi.org/10.3390/min15070693 - 28 Jun 2025
Viewed by 125
Abstract
The Great Xing’ an Range is located in the eastern part of the Xing’ an-Mongolian Orogenic Belt, which is an important component of the Central Asian Orogenic Belt. To determine the emplacement age and petrogenesis of the granitoids in the Gegenmiao and Taonan [...] Read more.
The Great Xing’ an Range is located in the eastern part of the Xing’ an-Mongolian Orogenic Belt, which is an important component of the Central Asian Orogenic Belt. To determine the emplacement age and petrogenesis of the granitoids in the Gegenmiao and Taonan areas of the central Great Xing’an Range, and to investigate its tectonic setting, petrographic studies, zircon U-Pb geochronology, whole-rock Sr-Nd isotopic analysis, zircon Hf isotopic analysis, and detailed geochemical investigations of this intrusion were carried out. The results indicate the following, in relation to the granitoids in the study areas: (1) The zircon U-Pb dating of the granitic rocks in the study areas yields ages ranging from 141.4 ± 2.0 Ma to 158.7 ± 1.9 Ma, indicating their formation during the Late Jurassic to Early Cretaceous; (2) the geochemical characteristics indicate that these rocks belong to the calc-alkaline series and peraluminous, classified as highly fractionated I-type granites with adakite features; (3) the Sr-Nd isotopic data show that the εNd(t) values of Gegenmiao granitic rocks are 2.8 and 2.1, while those of Taonan granitic rocks range from −1.5 to 0.7; (4) the Zircon εHf(t) values of the granitic rocks from Gegenmiao and Taonan vary from 2.11 to 6.48 and 0.90 to 8.25, respectively. They are interpreted to have formed through partial melting of thickened lower crustal material during the Meso-Neoproterozoic. The Gegenmiao and Taonan granitic rocks were formed in a transitional environment from post-orogenic compression to extension, which is closely associated with the Mongolia–Okhotsk tectonic system. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

29 pages, 8189 KiB  
Article
The Key Controlling Factors and Mechanisms for the Formation of Sandstone-Type Uranium Deposits in the Central Part of the Ulanqab Depression, Erlian Basin
by Yang Liu, Hu Peng, Ning Luo, Xiaolin Yu, Ming Li and Bo Ji
Minerals 2025, 15(7), 688; https://doi.org/10.3390/min15070688 - 27 Jun 2025
Viewed by 152
Abstract
The characteristics of interlayer oxidation zones constrain sandstone-type uranium mineralization. This study conducted a quantitative characterization of the interlayer oxidation zones in the uranium-bearing reservoir of the Saihan Formation in the central Wulanchabu Subbasin of the Erlian Basin through sand dispersion system mapping, [...] Read more.
The characteristics of interlayer oxidation zones constrain sandstone-type uranium mineralization. This study conducted a quantitative characterization of the interlayer oxidation zones in the uranium-bearing reservoir of the Saihan Formation in the central Wulanchabu Subbasin of the Erlian Basin through sand dispersion system mapping, the analysis of sedimentary debris components, environmentally sensitive parameters, and elemental geochemical characteristics. The formation mechanisms and controlling factors of interlayer oxidation zones were investigated, along with uranium mineralization patterns. Research findings reveal that the sandbodies in the study area primarily consist of red sandstone, yellow sandstone, gray ore-bearing sandstone, and primary gray sandstone, representing strong oxidation zones, weak oxidation zones, transitional zones, and reduction zones, respectively. Although the mineral debris content shows minimal variation among different zones, feldspar dissolution is more prevalent in oxidized zones. During interlayer oxidation, environmentally sensitive parameters exhibit an ascending trend from strong oxidation zones through weak oxidation zones and reduction zones to mineralized transitional zones. Four transition metal elements (Co, Ni, Zn, and Mo) demonstrate enrichment in mineralized transitional zones. The development of interlayer oxidation zones is directly controlled by reservoir heterogeneity and sedimentary environments. Oxidation subzones primarily occur in sandbodies with moderate thickness (40–80 m), sand content ratios of 40%–80%, and 2–10 or 10–18 mudstone barriers (approximately 20 m thick), mainly in braided river channels and channel margin deposits. Reduction zones develop in thicker sandbodies (~100 m) with higher sand contents (~80%), fewer mudstone barriers (2–8 layers), greater thickness (40–80 m), and predominantly channel margin deposits. Transitional zones mainly occur in braided distributary channels and floodplain deposits. When oxygen-bearing uranium fluids infiltrate reservoirs, oxygen reacts with reductants like organic matter, whereFe2+ oxidizes to Fe3+, S2− reacts with oxygen, and U4+ oxidizes to U6+, migrating as uranyl complexes. As oxygen depletes, Fe3+ reduces to Fe2+, combining with S2− to form pyrite between mineral grains. Uranyl complexes reduce to precipitate as pitchblende, while some U4+ reacts with SiO44−, forming coffinite, occurring as colloids around quartz debris or pyrite. The concurrent enrichment of certain transition metal elements occurs during this process. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

25 pages, 9142 KiB  
Article
Petrogenesis and Tectonic Significance of Middle Jurassic Mafic–Ultramafic Cumulate Rocks in Weiyuanpu, Northern Liaoning, China: Insights from Zircon Geochronology and Isotope Geochemistry
by Yifan Zhang, Xu Ma, Jiafu Chen, Yuqi Liu, Yi Zhang and Yongwei Ma
Minerals 2025, 15(6), 651; https://doi.org/10.3390/min15060651 - 17 Jun 2025
Viewed by 300
Abstract
The tectonic evolution of the Paleo-Pacific Ocean and the destruction mechanism of the North China Craton (NCC) are still controversial. In this study, we conducted zircon U-Pb dating, whole-rock geochemistry, and Sr-Nd-Hf isotope analyses on the Weiyuanpu mafic–ultramafic intrusions in the eastern segment [...] Read more.
The tectonic evolution of the Paleo-Pacific Ocean and the destruction mechanism of the North China Craton (NCC) are still controversial. In this study, we conducted zircon U-Pb dating, whole-rock geochemistry, and Sr-Nd-Hf isotope analyses on the Weiyuanpu mafic–ultramafic intrusions in the eastern segment of the northern margin of the NCC to discuss their petrogenesis and tectonic implications. The Weiyuanpu mafic–ultramafic intrusions consist of troctolite, hornblendite, hornblende gabbro, gabbro, and minor diorite, anorthosite, characterized by cumulate structure. The main crystallization sequence of minerals is olivine → pyroxene → magnetite → hornblende. The zircon U-Pb ages of hornblendite, hornblende grabbro, and diorite are ~170Ma. Geochemical characteristics exhibit low-K tholeiitic to calc-alkaline series, enriched in light rare-earth elements (LREE) and significant large-ion lithophile elements (LILE), and depleted in high-field-strength elements (HFSE). Sr-Nd isotopic compositions are ISr = 0.7043–0.7055, εNd(t) = −0.7 to +0.9, and zircon εHf (t) values range from +3.4 to +8.7. These results suggest that the source region was a phlogopite-bearing garnet lherzolite mantle metasomatized by subduction fluids. The study reveals that the northeastern margin of the NCC was in a back-arc extensional setting due to the subduction of the Paleo-Pacific Ocean during the Middle Jurassic, which caused lithosphere thinning and mantle melting in this region. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

Back to TopTop