Critical Mineral Exploration: Innovations, Challenges and Future Directions

A special issue of Minerals (ISSN 2075-163X). This special issue belongs to the section "Mineral Deposits".

Deadline for manuscript submissions: 30 April 2026 | Viewed by 2983

Special Issue Editor


E-Mail Website
Guest Editor
Department of Geological/Mining Engineering & Sciences, Michigan Technological University, Houghton, MI 49931, USA
Interests: geochemistry; mineralogy; magmatology; volcanology; igneous petrology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We are pleased to invite you to contribute to a Special Issue of Minerals, dedicated to “Critical Mineral Exploration: Innovations, Challenges and Future Directions”. As global demand for critical minerals continues to increase, advancing exploration strategies and sustainable extraction practices is essential for meeting economic, technological, and environmental needs.

This Special Issue aims to bring together leading researchers and industry experts to share insights into the latest advancements in mineral exploration, including but not limited to:

  • Novel geophysical, geochemical, and remote sensing techniques, including hyperspectral remote sensing, drone-based geophysics, fiber-optic seismic sensing, and automated core scanning.
  • Advances in AI and machine learning applications for mineral exploration using predictive modeling and data integration for mineral prospecting and deep learning for geophysical inversions that improve subsurface modeling and target identification.
  • Geochemical and geological frameworks for critical mineral deposits such as systematic mineral exploration approaches that improve our understanding of crustal architectures that control the location of mineral deposits.
  • Sustainable and environmentally responsible exploration practices.

We welcome original research articles, reviews, and case studies that contribute to a deeper understanding of critical mineral exploration. Submissions will undergo a rigorous peer-review process to ensure the highest quality of scientific contributions.

Dr. Chad D. Deering
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Minerals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • critical minerals
  • mineral exploration
  • economic geology
  • strategic resource assessment

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

34 pages, 10510 KB  
Article
Evolutionary Model of the Sepid-Sarve Manto-Type Copper Mineralization, Doruneh Fault Volcanic-Plutonic Belt (Central Iran Domain, NE Iran): An Integrated Geological, Geochemical, Fluid-Inclusion and Stable O–S Isotope Study
by Morteza Esform, Hasan Zamanian, Urs Klötzli, Alireza Zarasvandi, Alireza Almasi and Mohammad Goudarzi
Minerals 2025, 15(12), 1246; https://doi.org/10.3390/min15121246 - 25 Nov 2025
Viewed by 178
Abstract
The Sepid-Sarve copper deposit is part of an Eocene volcano-sedimentary sequence located in the southern Sabzevar Zone. The copper mineralization occurs at the contact between pyroclastic and lava units with various limestone layers (including marly, Nummulitic, sandy, and clastic limestones). The ore minerals [...] Read more.
The Sepid-Sarve copper deposit is part of an Eocene volcano-sedimentary sequence located in the southern Sabzevar Zone. The copper mineralization occurs at the contact between pyroclastic and lava units with various limestone layers (including marly, Nummulitic, sandy, and clastic limestones). The ore minerals consist of malachite, azurite, chalcocite, digenite, cuprite, tenorite, covellite, and occasionally native copper. The associated hydrothermal fluids show moderate to high salinities, ranging from 3.08 to 13.38 wt.% NaCl equivalent, with homogenization temperatures between 90 and 356 °C, indicating fluid mixing during ore formation. Chalcocite is rarely accompanied by quartz, suggesting low silica content in the ore-forming fluids. The δ34S values of sulfide samples from the Sepid-Sarve deposit range from −23.9 ± 0.3‰ to −2.9 ± 0.2‰, while δ34S values of hydrothermal H2S range from −24.1 ± 0.3‰ to −21.0 ± 0.3‰. The δ18O values of hydrothermal fluids associated with mineralization fall within the range of basaltic rocks, meteoric waters, and sedimentary rocks. Geochemical variations in major and trace elements suggest the involvement of continental crustal contamination in the magmatic evolution. The studied volcanic rocks fall within the calc-alkaline to shoshonitic fields, formed in a continental arc setting, and are derived from an enriched mantle source influenced by subduction-related fluids. These rocks are characterized by HREE depletion, moderate LREE enrichment, and a weak negative Eu anomaly. Based on the results, the Sepid-Sarve deposit is classified as a stratabound (Manto-type) copper sulfide deposit, formed in a volcano-sedimentary setting associated with a subduction-related magmatic arc environment. Full article
Show Figures

Figure 1

29 pages, 9237 KB  
Article
Estimating Content of Rare Earth Elements in Marine Sediments Using Hyperspectral Technology: Experiment and Method Series
by Dalong Liu, Shijuan Yan, Gang Yang, Jun Ye, Chunhui Yuan, Mu Huang, Yiping Luo, Yue Hao, Yuxue Zhang, Xiaofeng Liu, Xiangwen Ren, Zhihua Chen and Dewen Du
Minerals 2025, 15(11), 1102; https://doi.org/10.3390/min15111102 - 23 Oct 2025
Viewed by 402
Abstract
Marine sediments enriched with rare earth elements (REEs) serve as a significant reservoir, particularly for heavy REEs. Conventional lab-based REE exploration restricts rapid and large-scale assessment, whereas hyperspectral imaging provides a promising approach for quantitative evaluation. This study evaluates the capacity of hyperspectral [...] Read more.
Marine sediments enriched with rare earth elements (REEs) serve as a significant reservoir, particularly for heavy REEs. Conventional lab-based REE exploration restricts rapid and large-scale assessment, whereas hyperspectral imaging provides a promising approach for quantitative evaluation. This study evaluates the capacity of hyperspectral data for the quantitative determination of REEs in marine sediments. A total of 53 samples from various locations were analyzed to determine their chemical composition and spectral characteristics within the 380–1000 nm range under natural light. The influence of surface conditions on spectral integrity was evaluated, and multiple preprocessing and spectral feature extraction methods were applied to enhance data reliability. This study proposes a novel approach, termed Feature Importance within Pearson Correlation Coefficient-Based High-Correlation Spectral Range (PCCR-FI), designed for the identification of characteristic spectral bands associated with REEs. Machine learning models were subsequently constructed to estimate REE concentrations, and the following key findings were observed: (a) technical adjustments effectively addressed variations in sediment surface conditions, ensuring data reliability. (b) The PCCR-FI technique identified characteristic REEs spectral bands, enhancing processing efficiency and prediction accuracy. (c) The integration of the reciprocal logarithmic first derivative (TLOG-FD) technique with a multilayer perceptron (MLP) model, termed TLOG-FD-MLP, efficiently captured critical spectral features, resulting in improved prediction accuracy. For light REEs, the model achieved coefficient of determination (R2) values exceeding 0.60 and relative performance deviation (RPD) values exceeding 1.60, with some elements demonstrating R2 values as high as 0.81 with RPD values surpassing 2.00. Furthermore, several heavy REEs exhibited moderate prediction performance, with R2 values consistently exceeding 0.60. When considering the total REE content, an R2 of 0.73 and an RPD of 1.97 were achieved. These findings demonstrate the use of hyperspectral imaging as a viable tool for quantitative evaluation of REE concentrations in marine sediments, providing valuable guidance for resource mapping and the exploration of seafloor polymetallic deposits. Full article
Show Figures

Figure 1

15 pages, 10364 KB  
Article
Reconstruction of Ancient Carboniferous Zhibo Volcanic Edifices in Western China Using Magnetotelluric Observations and Comparisons with Active Volcanoes
by Lanfang He, Ping Shen, Zhongxing Wang, Xi Zhang and Song Huang
Minerals 2025, 15(10), 1089; https://doi.org/10.3390/min15101089 - 19 Oct 2025
Viewed by 511
Abstract
Volcanoes serve as the primary pathways for heat and material transfer from Earth’s interior to its surface, providing valuable insights into subsurface processes. Active and potentially active volcanoes have influenced human history and are closely related to current tectonic activity. Consequently, many active [...] Read more.
Volcanoes serve as the primary pathways for heat and material transfer from Earth’s interior to its surface, providing valuable insights into subsurface processes. Active and potentially active volcanoes have influenced human history and are closely related to current tectonic activity. Consequently, many active volcanoes have been studied using geophysical methods. However, the internal structure of ancient volcano complexes remains poorly understood. We investigated ancient volcano complexes by comparing magnetotelluric (MT) observations from Zhibo (ZB) ancient volcano with active mid-oceanic ridge volcanoes from Iceland and intracontinental volcanoes from north China. The MT responses of magma chambers in these active volcanoes showed similar low-resistivity values ranging from several to tens of Ω·m, indicating a comparable resistivity of the active magma. Assuming that the ancient active volcano chambers had a similar resistivity to that of current active volcanoes, we reconstructed the ancient Carboniferous volcano complex in ZB using the ratio of the lower portion of the MT responses from ZB ancient volcanic edifices and active volcanoes. The results implied the existence of fossil magma chambers at a depth of 5 to 7 km marking the site of a former volcanic center. This finding supports the magmatic origin of the ZB volcanic rock-hosted iron deposits. Full article
Show Figures

Graphical abstract

33 pages, 8120 KB  
Article
Origin of the World-Class Eagle, Eagle East, and Tamarack Ni-Cu-PGE Deposits
by Robert Nowak, Chad Deering and Espree Essig
Minerals 2025, 15(8), 871; https://doi.org/10.3390/min15080871 - 18 Aug 2025
Viewed by 1273
Abstract
The 1.1 Ga Mesoproterozoic Midcontinent rift hosts the Eagle, Eagle East, and Tamarack Ni-Cu-PGE deposits and Embayment Prospect. These deposits are hosted by ultramafic igneous rocks and have some of the highest Ni-Cu grades on Earth. We use new bulk-rock data and published [...] Read more.
The 1.1 Ga Mesoproterozoic Midcontinent rift hosts the Eagle, Eagle East, and Tamarack Ni-Cu-PGE deposits and Embayment Prospect. These deposits are hosted by ultramafic igneous rocks and have some of the highest Ni-Cu grades on Earth. We use new bulk-rock data and published datasets (bulk-rock, mineral chemistry, and isotopic analyses) to examine major, minor, and trace element trends of both Midcontinent rift-related alkaline and tholeiitic intrusions. In addition, we compare the geochemical data to local kimberlite-hosted lower-crustal xenoliths and local igneous (Archean) and sedimentary (Paleoproterozoic) country rocks. We found the peridotite magma compositions dominantly consist of primitive mantle compositions with varying abundances of subduction-related components, alkaline-transitional melts, and local country rock contaminates (e.g., Baraga and Animikie Basin sediments). The subduction-related components are interpreted to be derived from previous Archean and Paleoproterozoic subduction events and likely hosted within the sub-continental lithospheric mantle. Importantly, these subduction-related components are also interpreted to have acted as oxidizing agents within the melt, stabilizing sulfate (+2 FMQ (fayalite–magnetite–quartz) to FMQ) while inhibiting sulfide crystallization as the magma ascended through ~50 km of the Superior craton. This study largely corroborates the previous findings with respect to the contribution of local country rock contamination to the Eagle–Tamarack peridotite host rocks, which is estimated to be minimal (<5%). However, the incorporation of <5% reductive pelitic siltstone contamination results in strong shifts in the oxygen fugacity of the peridotite melt, from +2 FMQ to slightly below FMQ, as determined from spinel Fe3+/∑Fe ratios. This shift in oxygen fugacity resulted in the transition from total sulfate (+2 FMQ) to sulfate + sulfide (<+2 FMQ to FMQ) to total sulfide (<FMQ). This shift in oxygen fugacity is a key contributor to the formation of Ni-Cu-PGE-rich massive sulfides within the Eagle peridotite. This study presents an expanded geochemical interpretation for the exploration of Midcontinent rift-related Ni-Cu-PGE deposits to include peridotites with subduction-like signatures and contaminated via <5% reductive sedimentary country rocks. Full article
Show Figures

Graphical abstract

Back to TopTop