Next Issue
Volume 44, August
Previous Issue
Volume 44, June
 
 
cimb-logo

Journal Browser

Journal Browser

Curr. Issues Mol. Biol., Volume 44, Issue 7 (July 2022) – 35 articles

Cover Story (view full-size image): Obesity and type 2 diabetes are worldwide health problems affecting an increasing number of people. Thermogenic fat tissue consists of thermogenic adipocytes, i.e., brown adipocytes and beige adipocytes. There is evidence that thermogenic fat tissue contributes to energy consumption in humans. The central protein in thermogenesis is uncoupling protein 1 (UCP1). Recent studies have revealed the presence of UCP1-independent thermogenesis. In this review, we discuss the roles that brown and beige adipocytes play in energy consumption and offer insight into the possibility and challenges associated with its application in treating obesity and type 2 diabetes. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
14 pages, 3983 KiB  
Hypothesis
Identification of Gut Microbiome Metabolites via Network Pharmacology Analysis in Treating Alcoholic Liver Disease
by Ki-Kwang Oh, Ye-Rin Choi, Haripriya Gupta, Raja Ganesan, Satya Priya Sharma, Sung-Min Won, Jin-Ju Jeong, Su-Been Lee, Min-Gi Cha, Goo-Hyun Kwon, Dong-Joon Kim and Ki-Tae Suk
Curr. Issues Mol. Biol. 2022, 44(7), 3253-3266; https://doi.org/10.3390/cimb44070224 - 19 Jul 2022
Cited by 2 | Viewed by 2766
Abstract
Alcoholic liver disease (ALD) is linked to a broad spectrum of diseases, including diabetes, hypertension, atherosclerosis, and even liver carcinoma. The ALD spectrum includes alcoholic fatty liver disease (AFLD), alcoholic hepatitis, and cirrhosis. Most recently, some reports demonstrated that the pathogenesis of ALD [...] Read more.
Alcoholic liver disease (ALD) is linked to a broad spectrum of diseases, including diabetes, hypertension, atherosclerosis, and even liver carcinoma. The ALD spectrum includes alcoholic fatty liver disease (AFLD), alcoholic hepatitis, and cirrhosis. Most recently, some reports demonstrated that the pathogenesis of ALD is strongly associated with metabolites of human microbiota. AFLD was the onset of disease among ALDs, the initial cause of which is alcohol consumption. Thus, we analyzed the significant metabolites of microbiota against AFLD via the network pharmacology concept. The metabolites from microbiota were retrieved by the gutMGene database; sequentially, AFLD targets were identified by public databases (DisGeNET, OMIM). The final targets were utilized for protein–protein interaction (PPI) networks and signaling pathway analyses. Then, we performed a molecular docking test (MDT) to verify the affinity between metabolite(s) and target(s) utilizing the Autodock 1.5.6 tool. From a holistic viewpoint, we integrated the relationships of microbiota-signaling pathways-targets-metabolites (MSTM) using the R Package. We identified the uppermost six key targets (TLR4, RELA, IL6, PPARG, COX-2, and CYP1A2) against AFLD. The PPI network analysis revealed that TLR4, RELA, IL6, PPARG, and COX-2 had equivalent degrees of value (4); however, CYP1A2 had no associations with the other targets. The bubble chart showed that the PI3K-Akt signaling pathway in nine signaling pathways might be the most significant mechanism with antagonistic functions in the treatment of AFLD. The MDT confirmed that Icaritin is a promising agent to bind stably to RELA (known as NF-Κb). In parallel, Bacterium MRG-PMF-1, the PI3K-Akt signaling pathway, RELA, and Icaritin were the most significant components against AFLD in MSTM networks. In conclusion, we showed that the Icaritin–RELA complex on the PI3K-Akt signaling pathway by bacterial MRG-PMF-1 might have promising therapeutic effects against AFLD, providing crucial evidence for further research. Full article
Show Figures

Figure 1

15 pages, 2304 KiB  
Article
How Different Dietary Methionine Sources Could Modulate the Hepatic Metabolism in Rainbow Trout?
by Chiara Ceccotti, Ilaria Biasato, Laura Gasco, Christian Caimi, Sara Bellezza Oddon, Simona Rimoldi, Fabio Brambilla and Genciana Terova
Curr. Issues Mol. Biol. 2022, 44(7), 3238-3252; https://doi.org/10.3390/cimb44070223 - 19 Jul 2022
Cited by 5 | Viewed by 1662
Abstract
In aquafeeds in which plant proteins are used to replace fishmeal, exogenous methionine (Met) sources are demanded to balance the amino acid composition of diets and meet the metabolic fish requirements. Nonetheless, since different synthetic Met sources are commercially available, it is important [...] Read more.
In aquafeeds in which plant proteins are used to replace fishmeal, exogenous methionine (Met) sources are demanded to balance the amino acid composition of diets and meet the metabolic fish requirements. Nonetheless, since different synthetic Met sources are commercially available, it is important to determine their bioavailability and efficacy. To address this issue, we conducted a two-month feeding trial with rainbow trout (Oncorhynchus mykiss), which were fed diets supplemented with five different forms of Met: Met-Met, L-Met, HMTBa, DL-Met, and Co DL-Met. No differences in growth performance were found in trout fed with different Met forms, but changes in the whole-body composition were found. In particular, Met-Met and L-Met promoted a significant body lipid reduction, whereas the protein retention was significantly increased in fish fed with HMTBa and Co DL-Met. The latter affected the hepatic Met metabolism promoting the trans-sulfuration pathway through the upregulation of CBS gene expression. Similarly, the L-Met enhanced the remethylation pathway through an increase in BHMT gene expression to maintain the cellular demand for Met. Altogether, our findings suggest an optimal dietary intake of all tested Met sources with similar promoting effects on fish growth and hepatic Met metabolism. Nevertheless, the mechanisms underlying these effects warrant further investigation. Full article
Show Figures

Figure 1

30 pages, 1795 KiB  
Review
Developmental Cues and Molecular Drivers in Myelinogenesis: Revisiting Early Life to Re-Evaluate the Integrity of CNS Myelin
by Iasonas Dermitzakis, Maria Eleni Manthou, Soultana Meditskou, Dimosthenis Miliaras, Evangelia Kesidou, Marina Boziki, Steven Petratos, Nikolaos Grigoriadis and Paschalis Theotokis
Curr. Issues Mol. Biol. 2022, 44(7), 3208-3237; https://doi.org/10.3390/cimb44070222 - 19 Jul 2022
Cited by 8 | Viewed by 3645
Abstract
The mammalian central nervous system (CNS) coordinates its communication through saltatory conduction, facilitated by myelin-forming oligodendrocytes (OLs). Despite the fact that neurogenesis from stem cell niches has caught the majority of attention in recent years, oligodendrogenesis and, more specifically, the molecular underpinnings behind [...] Read more.
The mammalian central nervous system (CNS) coordinates its communication through saltatory conduction, facilitated by myelin-forming oligodendrocytes (OLs). Despite the fact that neurogenesis from stem cell niches has caught the majority of attention in recent years, oligodendrogenesis and, more specifically, the molecular underpinnings behind OL-dependent myelinogenesis, remain largely unknown. In this comprehensive review, we determine the developmental cues and molecular drivers which regulate normal myelination both at the prenatal and postnatal periods. We have indexed the individual stages of myelinogenesis sequentially; from the initiation of oligodendrocyte precursor cells, including migration and proliferation, to first contact with the axon that enlists positive and negative regulators for myelination, until the ultimate maintenance of the axon ensheathment and myelin growth. Here, we highlight multiple developmental pathways that are key to successful myelin formation and define the molecular pathways that can potentially be targets for pharmacological interventions in a variety of neurological disorders that exhibit demyelination. Full article
Show Figures

Figure 1

14 pages, 5507 KiB  
Article
Genome-Wide Association Study of Partial Resistance to P. sojae in Wild Soybeans from Heilongjiang Province, China
by Wei Li, Miao Liu, Yong-Cai Lai, Jian-Xin Liu, Chao Fan, Guang Yang, Ling Wang, Wen-Wei Liang, Shu-Feng Di, De-Yue Yu and Ying-Dong Bi
Curr. Issues Mol. Biol. 2022, 44(7), 3194-3207; https://doi.org/10.3390/cimb44070221 - 17 Jul 2022
Cited by 3 | Viewed by 1986
Abstract
Phytophthora root rot (PRR) is a destructive disease of soybeans (Glycine max (L.) Merr) caused by Phytophthora sojae (P. sojae). The most effective way to prevent the disease is growing resistant or tolerant varieties. Partial resistance provides a more durable [...] Read more.
Phytophthora root rot (PRR) is a destructive disease of soybeans (Glycine max (L.) Merr) caused by Phytophthora sojae (P. sojae). The most effective way to prevent the disease is growing resistant or tolerant varieties. Partial resistance provides a more durable resistance against the pathogen compared to complete resistance. Wild soybean (Glycine soja Sieb. & Zucc.) seems to be an extraordinarily important gene pool for soybean improvement due to its high level of genetic variation. In this study, 242 wild soybean germplasms originating from different regions of Heilongjiang province were used to identify resistance genes to P. sojae race 1 using a genome-wide association study (GWAS). A total of nine significant SNPs were detected, repeatedly associated with P. sojae resistance and located on chromosomes 1, 10, 12, 15, 17, 19 and 20. Among them, seven favorable allelic variations associated with P. sojae resistance were evaluated by a t-test. Eight candidate genes were predicted to explore the mechanistic hypotheses of partial resistance, including Glysoja.19G051583, which encodes an LRR receptor-like serine/threonine protein kinase protein, Glysoja.19G051581, which encodes a receptor-like cytosolic serine/threonine protein kinase protein. These findings will provide additional insights into the genetic architecture of P. sojae resistance in a large sample of wild soybeans and P. sojae-resistant breeding through marker-assisted selection. Full article
(This article belongs to the Special Issue Functional Genomics and Comparative Genomics Analysis in Plants)
Show Figures

Figure 1

14 pages, 2379 KiB  
Article
Juglone from Walnut Produces Cardioprotective Effects against Isoproterenol-Induced Myocardial Injury in SD Rats
by Taseer Ahmad, Taous Khan, Tahira Tabassum, Yahya S. Alqahtani, Mater H. Mahnashi, Bandar A. Alyami, Ali O. Alqarni, Mohammed Y. Alasmary, Sultan A. Almedhesh and Abdul Jabbar Shah
Curr. Issues Mol. Biol. 2022, 44(7), 3180-3193; https://doi.org/10.3390/cimb44070220 - 16 Jul 2022
Cited by 3 | Viewed by 2295
Abstract
Therapeutic and/or preventive interventions using phytochemical constituents for ischemic heart disease have gained considerable attention worldwide, mainly due to their antioxidant activity. This study investigated the cardioprotective effect and possible mechanism of juglone, a major constituent of the walnut tree, using an isoproterenol [...] Read more.
Therapeutic and/or preventive interventions using phytochemical constituents for ischemic heart disease have gained considerable attention worldwide, mainly due to their antioxidant activity. This study investigated the cardioprotective effect and possible mechanism of juglone, a major constituent of the walnut tree, using an isoproterenol (ISO)-induced myocardial infarction (MI) model in rats. Rats were pretreated for five (5) days with juglone (1, 3 mg/kg, i.p) and atenolol (1 mg/kg, i.p) in separate experiments before inducing myocardial injury by administration of ISO (80 mg/kg, s.c) at an interval of 24 h for 2 consecutive days (4th and 5th day). The cardioprotective effect of juglone was confirmed through a lead II electrocardiograph (ECG), cardiac biomarkers (cTnI, CPK, CK-MB, LDH, ALT and AST) and histopathological study. The results of our present study suggest that prior administration of juglone (1 and 3 mg/kg) proved to be effective as a cardioprotective therapeutic agent in reducing the extent of myocardial damage (induced by ISO) by fortifying the myocardial cell membrane, preventing elevated T-waves, deep Q-waves in the ECG, heart to body weight ratio, infarction and also by normalizing cardiac marker enzymes (cTnI, CPK, CK-MB, LDH, ALT and AST) and histopathological changes, such as inflammation, edema and necrosis. In conclusion, this study has identified phytochemical constituents, in particular juglone, as a potential cardioprotective agent. Full article
(This article belongs to the Special Issue Advanced Research in Plant Metabolomics)
Show Figures

Figure 1

14 pages, 1319 KiB  
Review
The Role of Thermogenic Fat Tissue in Energy Consumption
by Masato Horino, Kenji Ikeda and Tetsuya Yamada
Curr. Issues Mol. Biol. 2022, 44(7), 3166-3179; https://doi.org/10.3390/cimb44070219 - 11 Jul 2022
Cited by 2 | Viewed by 3301
Abstract
Mammalian adipose tissues are broadly divided into white adipose tissue (WAT) and thermogenic fat tissue (brown adipose tissue and beige adipose tissue). Uncoupling protein 1 (UCP1) is the central protein in thermogenesis, and cells that exhibit induced UCP1 expression and appear scattered throughout [...] Read more.
Mammalian adipose tissues are broadly divided into white adipose tissue (WAT) and thermogenic fat tissue (brown adipose tissue and beige adipose tissue). Uncoupling protein 1 (UCP1) is the central protein in thermogenesis, and cells that exhibit induced UCP1 expression and appear scattered throughout WAT are called beige adipocytes, and their induction in WAT is referred to as “beiging”. Beige adipocytes can differentiate from preadipocytes or convert from mature adipocytes. UCP1 was thought to contribute to non-shivering thermogenesis; however, recent studies demonstrated the presence of UCP1-independent thermogenic mechanisms. There is evidence that thermogenic fat tissue contributes to systemic energy expenditure even in human beings. This review discusses the roles that thermogenic fat tissue plays in energy consumption and offers insight into the possibility and challenges associated with its application in the treatment of obesity and type 2 diabetes. Full article
(This article belongs to the Collection Feature Papers in Current Issues in Molecular Biology)
Show Figures

Figure 1

10 pages, 860 KiB  
Review
Mitochondrial Dysfunction and Chronic Liver Disease
by Chunyan Zhang, Yabin Zhao, Mengli Yu, Jianru Qin, Bingyu Ye and Qiwen Wang
Curr. Issues Mol. Biol. 2022, 44(7), 3156-3165; https://doi.org/10.3390/cimb44070218 - 9 Jul 2022
Cited by 17 | Viewed by 3838
Abstract
Mitochondria are generally considered the powerhouse of the cell, a small subcellular organelle that produces most of the cellular energy in the form of adenosine triphosphate (ATP). In addition, mitochondria are involved in various biological functions, such as biosynthesis, lipid metabolism, oxidative phosphorylation, [...] Read more.
Mitochondria are generally considered the powerhouse of the cell, a small subcellular organelle that produces most of the cellular energy in the form of adenosine triphosphate (ATP). In addition, mitochondria are involved in various biological functions, such as biosynthesis, lipid metabolism, oxidative phosphorylation, cell signal transduction, and apoptosis. Mitochondrial dysfunction is manifested in different aspects, like increased mitochondrial reactive oxygen species (ROS), mitochondrial DNA (mtDNA) damage, adenosine triphosphate (ATP) synthesis disorder, abnormal mitophagy, as well as changes in mitochondrial morphology and structure. Mitochondrial dysfunction is related to the occurrence and development of various chronic liver diseases, including hepatocellular carcinoma (HCC), viral hepatitis, drug-induced liver injury (DILI), alcoholic fatty liver (AFL), and non-alcoholic fatty liver (NAFL). In this review, we summarize and discuss the role and mechanisms of mitochondrial dysfunction in chronic liver disease, focusing on and discussing some of the latest studies on mitochondria and chronic liver disease. Full article
Show Figures

Figure 1

10 pages, 1437 KiB  
Article
TNF-α Suppresses Apelin Receptor Expression in Mouse Quadriceps Femoris-Derived Cells
by Tomohisa Koyama, Kentaro Uchida, Makoto Itakura, Masayuki Miyagi, Ryo Tazawa, Gen Inoue, Kensuke Fukushima, Yoshihisa Ohashi, Ayumi Tsukada and Masashi Takaso
Curr. Issues Mol. Biol. 2022, 44(7), 3146-3155; https://doi.org/10.3390/cimb44070217 - 8 Jul 2022
Viewed by 1626
Abstract
Expression of the apelin receptor, APJ, in skeletal muscle (SM) is known to decrease with age, but the underlying mechanism remains unclear. Increased tumor necrosis factor (TNF)-α levels are observed in SM with age and are associated with muscle atrophy. To investigate the [...] Read more.
Expression of the apelin receptor, APJ, in skeletal muscle (SM) is known to decrease with age, but the underlying mechanism remains unclear. Increased tumor necrosis factor (TNF)-α levels are observed in SM with age and are associated with muscle atrophy. To investigate the possible interconnection between TNF-α elevation and APJ reduction with aging, we investigated the effect of TNF-α on APJ expression in cells derived from the quadriceps femoris of C57BL/6J mice. Expression of Tnfa and Apj in the quadriceps femoris was compared between 4- (young) and 24-month-old (old) C57BL/6J mice (n = 10 each) using qPCR. Additionally, APJ-positive cells and TNF-α protein were analyzed by flow cytometry and Western blotting, respectively. Further, quadricep-derived cells were exposed to 0 (control) or 25 ng/mL TNF-α, and the effect on Apj expression was examined by qRT-PCR. Apj expression and the ratio of APJ-positive cells among quadricep cells were significantly lower in old compared to young mice. In contrast, levels of Tnfa mRNA and TNF-α protein were significantly elevated in old compared to young mice. Exposing young and old derived quadricep cells to TNF-α for 8 and 24 h caused Apj levels to significantly decrease. TNF-α suppresses APJ expression in muscle cells in vitro. The increase in TNF-α observed in SM with age may induce a decrease in APJ expression. Full article
Show Figures

Figure 1

15 pages, 2370 KiB  
Article
Antioxidant Activity of New Sulphur- and Selenium-Containing Analogues of Potassium Phenosan against H2O2-Induced Cytotoxicity in Tumour Cells
by Lyubov S. Klyushova, Natalya V. Kandalintseva and Alevtina Y. Grishanova
Curr. Issues Mol. Biol. 2022, 44(7), 3131-3145; https://doi.org/10.3390/cimb44070216 - 7 Jul 2022
Cited by 2 | Viewed by 1515
Abstract
Among known phenolic antioxidants, the overwhelming majority of compounds have lipophilic properties and the number of known water-soluble compounds is very small. The list of hydrophilic phenolic antioxidants can be expanded via the synthesis of a structurally related series of polyfunctional compounds for [...] Read more.
Among known phenolic antioxidants, the overwhelming majority of compounds have lipophilic properties and the number of known water-soluble compounds is very small. The list of hydrophilic phenolic antioxidants can be expanded via the synthesis of a structurally related series of polyfunctional compounds for further research on their biological activity in vitro. New sulphur- and selenium-containing analogues of antioxidant potassium phenosan were synthesised. In vitro cytotoxicity and cytostaticity as well as antioxidant activity against H2O2-induced cytotoxicity to human cell lines (HepG2, Hep-2 and MCF-7) were investigated by high-content analysis. A selenium-containing analogue showed higher biological activity than did a sulphur-containing one. As compared to the activity of potassium phenosan, the selenium-containing analogue had a cell line-dependent antioxidant effect against H2O2-induced cytotoxicity: comparable in HepG2 cells and greater in Hep-2 cells. The selenium-containing analogue significantly increased the death of MCF-7 cells at concentrations above 50 µM. The sulphur-containing analogue has lower biological activity as compared to potassium phenosan and the selenium-containing analogue. Full article
(This article belongs to the Special Issue Polyphenols as Cellular Metabolic Regulators)
Show Figures

Figure 1

13 pages, 2175 KiB  
Review
Probiotic Potential of Clostridium spp.—Advantages and Doubts
by Tomasz Grenda, Anna Grenda, Piotr Domaradzki, Paweł Krawczyk and Krzysztof Kwiatek
Curr. Issues Mol. Biol. 2022, 44(7), 3118-3130; https://doi.org/10.3390/cimb44070215 - 7 Jul 2022
Cited by 12 | Viewed by 3414
Abstract
Clostridium spp. is a large genus of obligate anaerobes and is an extremely heterogeneous group of bacteria that can be classified into 19 clusters. Genetic analyses based on the next-generation sequencing of 16S rRNA genes and metagenome analyses conducted on human feces, mucosal [...] Read more.
Clostridium spp. is a large genus of obligate anaerobes and is an extremely heterogeneous group of bacteria that can be classified into 19 clusters. Genetic analyses based on the next-generation sequencing of 16S rRNA genes and metagenome analyses conducted on human feces, mucosal biopsies, and luminal content have shown that the three main groups of strict extremophile anaerobes present in the intestines are Clostridium cluster IV (also known as the Clostridium leptum group), Clostridium cluster XIVa (also known as the Clostridium coccoides group) and Bacteroides. In addition to the mentioned clusters, some C. butyricum strains are also considered beneficial for human health. Moreover, this bacterium has been widely used as a probiotic in Asia (particularly in Japan, Korea, and China). The mentioned commensal Clostridia are involved in the regulation and maintenance of all intestinal functions. In the literature, the development processes of new therapies are described based on commensal Clostridia activity. In addition, some Clostridia are associated with pathogenic processes. Some C. butyricum strains detected in stool samples are involved in botulism cases and have also been implicated in severe diseases such as infant botulism and necrotizing enterocolitis in preterm neonates. The aim of this study is to review reports on the possibility of using Clostridium strains as probiotics, consider their positive impact on human health, and identify the risks associated with the expression of their pathogenic properties. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

18 pages, 4505 KiB  
Article
Quantitative In Silico Evaluation of Allergenic Proteins from Anacardium occidentale, Carya illinoinensis, Juglans regia and Pistacia vera and Their Epitopes as Precursors of Bioactive Peptides
by Piotr Minkiewicz, Christopher P. Mattison and Małgorzata Darewicz
Curr. Issues Mol. Biol. 2022, 44(7), 3100-3117; https://doi.org/10.3390/cimb44070214 - 6 Jul 2022
Cited by 4 | Viewed by 1984
Abstract
The aim of the study presented here was to determine if there is a correlation between the presence of specific protein domains within tree nut allergens or tree nut allergen epitopes and the frequency of bioactive fragments and the predicted susceptibility to enzymatic [...] Read more.
The aim of the study presented here was to determine if there is a correlation between the presence of specific protein domains within tree nut allergens or tree nut allergen epitopes and the frequency of bioactive fragments and the predicted susceptibility to enzymatic digestion in allergenic proteins from tree nuts of cashew (Anacardium occidentale), pecan (Carya illinoinensis), English walnut (Juglans regia) and pistachio (Pistacia vera) plants. These bioactive peptides are distributed along the length of the protein and are not enriched in IgE epitope sequences. Classification of proteins as bioactive peptide precursors based on the presence of specific protein domains may be a promising approach. Proteins possessing a vicilin, N-terminal family domain, or napin domain contain a relatively low occurrence of bioactive fragments. In contrast, proteins possessing the cupin 1 domain without the vicilin N-terminal family domain contain a relatively high total frequency of bioactive fragments and predicted release of bioactive fragments by the joint action of pepsin, trypsin, and chymotrypsin. This approach could be utilized in food science to simplify the selection of protein domains enriched for bioactive peptides. Full article
(This article belongs to the Collection Feature Papers in Current Issues in Molecular Biology)
Show Figures

Figure 1

11 pages, 2364 KiB  
Article
Sonicated Bordetella bronchiseptica Bacterin Can Protect Dendritic Cells from Differential Cytotoxicity Caused by Doxorubicin and Vincristine and Enhance Their Antigen-Presenting Capability
by Ji Yun Sung and Hong-Gu Joo
Curr. Issues Mol. Biol. 2022, 44(7), 3089-3099; https://doi.org/10.3390/cimb44070213 - 6 Jul 2022
Viewed by 1348
Abstract
Doxorubicin (DOX) and vincristine (VC) are anti-cancer drugs commonly used for lymphoma in veterinary and human medicine. However, there are several side effects caused by these drugs. In this study, the protective effects of sonicated Bordetella bronchiseptica bacterin (sBb) on dendritic cells (DCs) [...] Read more.
Doxorubicin (DOX) and vincristine (VC) are anti-cancer drugs commonly used for lymphoma in veterinary and human medicine. However, there are several side effects caused by these drugs. In this study, the protective effects of sonicated Bordetella bronchiseptica bacterin (sBb) on dendritic cells (DCs) damaged by two anti-cancer drugs were investigated. DCs play important roles in the innate and adaptive immunity of hosts, especially activating T cells that can suppress tumor growth. The metabolic activity of DCs significantly increased after the treatment with sBb compared to that of control DCs. In addition, there was a marked change in mitochondrial integrity between DOX-treated DC and DOX + sBb-treated DCs. Flow cytometric analysis also demonstrated that sBb upregulated the expression of the surface markers of DCs, particularly CD54. In mixed lymphocyte responses, sBb significantly increased the antigen-presenting capability of DCs. In particular, sBb increased the capability of control DCs by approximately 150% and that of VC-treated DCs by 221%. These results suggest that sBb can be used as a potential immunostimulatory agent to protect DCs from anti-cancer drug-induced damage and provide fundamental information about using a combination of DCs and vincristine in immunotherapy. Full article
(This article belongs to the Special Issue Targeting Tumor Microenvironment for Cancer Therapy)
Show Figures

Figure 1

14 pages, 6654 KiB  
Article
The Expression and Prognostic Significance of VEGF and CXCR4 in Gastric Cancer: Correlation with Angiogenesis, Lymphangiogenesis and Progression
by Łukasz Kruszyna, Dawid Murawa, Paweł Piotr Jagodziński, Grzegorz Oszkinis and Zbigniew Krasiński
Curr. Issues Mol. Biol. 2022, 44(7), 3075-3088; https://doi.org/10.3390/cimb44070212 - 6 Jul 2022
Cited by 5 | Viewed by 1943
Abstract
The cellular response to hypoxia includes the expression of hypoxia-inducible factor-1 (HIF-1) and its target genes: vascular endothelial growth factor (VEGF) and CXC chemokine receptor 4 (CXCR4). The aim of this study was to investigate the expression and prognostic significance of VEGF and [...] Read more.
The cellular response to hypoxia includes the expression of hypoxia-inducible factor-1 (HIF-1) and its target genes: vascular endothelial growth factor (VEGF) and CXC chemokine receptor 4 (CXCR4). The aim of this study was to investigate the expression and prognostic significance of VEGF and CXCR4, which are responsible for angiogenesis and progression in gastric cancer. Twenty-eight gastric cancer patients were analyzed. The mRNA expression was examined in primary tumors and corresponding normal gastric mucosa by RT-PCR. The protein level was examined by immunohistochemistry staining. The high expression of VEGF and CXCR4 was found in 71.0 and 64.0% of tumors, respectively. The mean levels of VEGF and CXCR4 were upregulated in primary tumors compared to normal mucosa (p = 0.0007, p = 0.0052). A correlation between VEGF expression and tumor invasion (p = 0.0216) and stage (p = 0.0181) was found. CXCR4 expression correlated with lymph node metastases (p = 0.0237) and stage (p = 0.0054). The VEGF expression correlated with microvessel density (MVD) (p = 0.0491). The overall 3-year survival rate was 46.4% and correlated negatively with high CXCR4 mRNA expression (p = 0.0089). VEGF and CXCR4 play an important role in tumor progression. Their overexpression correlates with a bad prognosis and may improve high-risk patient selection, and these patients may obtain additional survival benefits if treated more aggressively. Full article
(This article belongs to the Special Issue Molecular-Based Approaches in Therapy for Gastrointestinal Cancers)
Show Figures

Figure 1

22 pages, 2656 KiB  
Article
«Salivaomics» of Different Molecular Biological Subtypes of Breast Cancer
by Lyudmila V. Bel’skaya and Elena A. Sarf
Curr. Issues Mol. Biol. 2022, 44(7), 3053-3074; https://doi.org/10.3390/cimb44070211 - 5 Jul 2022
Cited by 5 | Viewed by 1759
Abstract
The aim of the study was to determine the metabolic characteristics of saliva depending on the molecular biological subtype of breast cancer, as well as depending on the expression levels of HER2, estrogen receptors (ER), and progesterone receptors (PR). The study included 487 [...] Read more.
The aim of the study was to determine the metabolic characteristics of saliva depending on the molecular biological subtype of breast cancer, as well as depending on the expression levels of HER2, estrogen receptors (ER), and progesterone receptors (PR). The study included 487 patients with morphologically verified breast cancer and 298 volunteers without breast pathologies. Saliva samples were obtained from all patients strictly before the start of treatment and the values of 42 biochemical indicators were determined. It has been established that the saliva of healthy volunteers and patients with various molecular biological subtypes of breast cancer differs in 12 biochemical indicators: concentrations of protein, urea, nitric oxide, malondialdehyde, total amino acid content, and activity of lactate dehydrogenase, alkaline phosphatase, gamma-glutamyltransferase, catalase, amylase, superoxide dismutase, and peroxidases. The saliva composition of patients with basal-like breast cancer differs from other subtypes in terms of the maximum number of indicators. Changes in biochemical indicators indicated an increase in the processes of lipid peroxidation and endogenous intoxication and a weakening of antioxidant protection, which correlates with the severity of the disease and the least favorable prognosis for this subtype of breast cancer. An analysis was made of the individual contribution of the expression level of HER2, estrogen, and progesterone receptors to changes in the biochemical composition of saliva. The HER2 (−)/HER2 (+) group, which should be considered as a single group, as well as ER-positive breast cancer, differ statistically significantly from the control group. For ER/PR-positive breast cancer, a more favorable ratio of saliva biochemical indicators was also noted compared to ER/PR-negative breast cancer. Full article
(This article belongs to the Special Issue Molecules at Play in Cancer)
Show Figures

Figure 1

14 pages, 328 KiB  
Review
Bioactive Compounds and Adipocyte Browning Phenomenon
by Josué Manríquez-Núñez and Minerva Ramos-Gómez
Curr. Issues Mol. Biol. 2022, 44(7), 3039-3052; https://doi.org/10.3390/cimb44070210 - 5 Jul 2022
Cited by 6 | Viewed by 2691
Abstract
Overweight and obesity have become worldwide health issues in most countries. Current strategies aimed to prevent or reduce overweight and obesity have mainly focused on the genes and molecular mechanisms that give the functional characteristics to different types of adipose tissue. The Browning [...] Read more.
Overweight and obesity have become worldwide health issues in most countries. Current strategies aimed to prevent or reduce overweight and obesity have mainly focused on the genes and molecular mechanisms that give the functional characteristics to different types of adipose tissue. The Browning phenomenon in adipocytes consists of phenotypic and metabolic changes within white adipose tissue (WAT) activated by thermogenic mechanisms similar to that occurring in brown adipose tissue (BAT); this phenomenon has assumed great relevance due to its therapeutic potential against overweight and obesity. In addition, the study of inflammation in the development of overweight and obesity has also been included as a relevant factor, such as the pro-inflammatory mechanisms promoted by M1-type macrophages in adipose tissue. Studies carried out in this area are mainly performed by using the 3T3-L1 pre-adipocyte cell line, testing different bioactive compound sources such as plants and foods; nevertheless, it is necessary to standardize protocols used in vitro as well to properly scale them to animal models and clinical tests in order to have a better understanding of the mechanisms involved in overweight and obesity. Full article
(This article belongs to the Collection Feature Papers in Current Issues in Molecular Biology)
9 pages, 676 KiB  
Article
Effect of High-Intensity Interval Training on Cardiac Apoptosis Markers in Methamphetamine-Dependent Rats
by Hadi Shahrabadi, Amir Hossein Haghighi, Roya Askari, Majid Asadi-Shekaari, Daniel Costa Souza and Paulo Gentil
Curr. Issues Mol. Biol. 2022, 44(7), 3030-3038; https://doi.org/10.3390/cimb44070209 - 4 Jul 2022
Cited by 3 | Viewed by 1539
Abstract
Chronic methamphetamine use increases apoptosis, leading to heart failure and sudden cardiac death. Previous studies have shown the importance of high-intensity interval training (HIIT) in reducing indices of cardiac tissue apoptosis in different patients, but in the field of sports science, the molecular [...] Read more.
Chronic methamphetamine use increases apoptosis, leading to heart failure and sudden cardiac death. Previous studies have shown the importance of high-intensity interval training (HIIT) in reducing indices of cardiac tissue apoptosis in different patients, but in the field of sports science, the molecular mechanisms of apoptosis in methamphetamine-dependent rats are still unclear. The present article aimed to investigate the changes in cardiac apoptosis markers in methamphetamine-dependent rats in response to HIIT. Left ventricular tissue was used to evaluate caspase-3, melusin, FAK, and IQGAP1 gene expression. Rats were divided into four groups: sham, methamphetamine (METH), METH-control, and METH-HIIT. METH was injected for 21 days and then the METH-HIIT group performed HIIT for 8 weeks at 5 sessions per week. The METH groups showed increased caspase-3 gene expression and decreased melusin, FAK, and IQGAP1 when compared to the sham group. METH-HIIT showed decreased caspase-3 and increased melusin and FAK gene expression compared with the METH and METH-control groups. The IQGAP1 gene was higher in METH-HIIT when compared with METH, while no difference was observed between METH-HIIT and METH-control. Twenty-one days of METH exposure increased apoptosis markers in rat cardiac tissue; however, HIIT might have a protective effect, as shown by the apoptosis markers. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

12 pages, 964 KiB  
Article
Virtual Screening of Repurposed Drugs as Potential Spike Protein Inhibitors of Different SARS-CoV-2 Variants: Molecular Docking Study
by Ahmad F. Eweas, Hosam-Eldin H. Osman, Ibrahim A. Naguib, Mohammed A. S. Abourehab and Ahmed S. Abdel-Moneim
Curr. Issues Mol. Biol. 2022, 44(7), 3018-3029; https://doi.org/10.3390/cimb44070208 - 4 Jul 2022
Cited by 6 | Viewed by 2293
Abstract
Like most of the RNA viruses, SARS-CoV-2 continuously mutates. Although many mutations have an insignificant impact on the virus properties, mutations in the surface protein, especially those in the receptor-binding domain, may lead to immune or vaccine escape variants, or altered binding activities [...] Read more.
Like most of the RNA viruses, SARS-CoV-2 continuously mutates. Although many mutations have an insignificant impact on the virus properties, mutations in the surface protein, especially those in the receptor-binding domain, may lead to immune or vaccine escape variants, or altered binding activities to both the cell receptor and the drugs targeting such a protein. The current study intended to assess the ability of different variants of interest (VOIs) and variants of concern (VOCs) of SARS-CoV-2 for their affinities of binding to different repurposed drugs. Seven FDA approved drugs, namely, camostat, nafamostat mesylate, fenofibrate, umifenovir, nelfinavir, cefoperazone and ceftazidime, were selected based on their reported in vitro and clinical activities against SARA-CoV-2. The S1 protein subunit from eleven different variants, including the latest highly contiguous omicron variant, were used as targets for the docking study. The docking results revealed that all tested drugs possess moderate to high binding energies to the receptor-binding domain (RBD) of the S1 protein for all different variants. Cefoperazone was found to possess the highest binding energy to the RBD of the S1 protein of all the eleven variants. Ceftazidime was the second-best drug in terms of binding affinity towards the S1 RBD of the investigated variants. On the other hand, fenofibrate showed the least binding affinity towards the RBD of the S1 protein of all eleven variants. The binding affinities of anti-spike drugs varied among different variants. Most of the interacting amino acid residues of the receptor fall within the RBD (438–506). Full article
(This article belongs to the Special Issue Drug Development and Repositioning Methodology on COVID-19)
Show Figures

Figure 1

17 pages, 6376 KiB  
Article
The Aminoacyl-tRNA Synthetase and tRNA Expression Levels Are Deregulated in Cancer and Correlate Independently with Patient Survival
by Anmolpreet Kaur Sangha and Theodoros Kantidakis
Curr. Issues Mol. Biol. 2022, 44(7), 3001-3017; https://doi.org/10.3390/cimb44070207 - 2 Jul 2022
Cited by 6 | Viewed by 3624
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes that load amino acids to their cognate tRNA molecules. The expression of certain ARSs and tRNAs has been shown to be deregulated in cancer, presumably to accommodate elevated protein synthesis requirements. In this work, the expression of [...] Read more.
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes that load amino acids to their cognate tRNA molecules. The expression of certain ARSs and tRNAs has been shown to be deregulated in cancer, presumably to accommodate elevated protein synthesis requirements. In this work, the expression of cytoplasmic ARSs and tRNAs in ten TCGA cancers has been systematically examined. ARSs were found to be mostly upregulated in tumours and their upregulation often correlated with worse patient survival. tRNAs were found to be either upregulated or downregulated in tumours and their expression sometimes correlated to worse survival outcomes. However, although the expression of most ARSs and tRNAs was deregulated in tumours when compared to healthy adjacent tissues, only in a few cases, and independently, did it correlate to patient survival. These data point to the general uncoupling of concomitant ARS and tRNA expression deregulation and patient survival, highlighting the different ARS and tRNA requirements in cancers. Full article
(This article belongs to the Special Issue Advances in Molecular Pathogenesis Regulation in Cancer)
Show Figures

Figure 1

19 pages, 2510 KiB  
Article
Using AI-Based Evolutionary Algorithms to Elucidate Adult Brain Tumor (Glioma) Etiology Associated with IDH1 for Therapeutic Target Identification
by Caitríona E. McInerney, Joanna A. Lynn, Alan R. Gilmore, Tom Flannery and Kevin M. Prise
Curr. Issues Mol. Biol. 2022, 44(7), 2982-3000; https://doi.org/10.3390/cimb44070206 - 2 Jul 2022
Cited by 2 | Viewed by 2834
Abstract
Adult brain tumors (glioma) represent a cancer of unmet need where standard-of-care is non-curative; thus, new therapies are urgently needed. It is unclear whether isocitrate dehydrogenases (IDH1/2) when not mutated have any role in gliomagenesis or tumor growth. Nevertheless, IDH1 is overexpressed in [...] Read more.
Adult brain tumors (glioma) represent a cancer of unmet need where standard-of-care is non-curative; thus, new therapies are urgently needed. It is unclear whether isocitrate dehydrogenases (IDH1/2) when not mutated have any role in gliomagenesis or tumor growth. Nevertheless, IDH1 is overexpressed in glioblastoma (GBM), which could impact upon cellular metabolism and epigenetic reprogramming. This study characterizes IDH1 expression and associated genes and pathways. A novel biomarker discovery pipeline using artificial intelligence (evolutionary algorithms) was employed to analyze IDH-wildtype adult gliomas from the TCGA LGG-GBM cohort. Ninety genes whose expression correlated with IDH1 expression were identified from: (1) All gliomas, (2) primary GBM, and (3) recurrent GBM tumors. Genes were overrepresented in ubiquitin-mediated proteolysis, focal adhesion, mTOR signaling, and pyruvate metabolism pathways. Other non-enriched pathways included O-glycan biosynthesis, notch signaling, and signaling regulating stem cell pluripotency (PCGF3). Potential prognostic (TSPYL2, JAKMIP1, CIT, TMTC1) and two diagnostic (MINK1, PLEKHM3) biomarkers were downregulated in GBM. Their gene expression and methylation were negatively and positively correlated with IDH1 expression, respectively. Two diagnostic biomarkers (BZW1, RCF2) showed the opposite trend. Prognostic genes were not impacted by high frequencies of molecular alterations and only one (TMTC1) could be validated in another cohort. Genes with mechanistic links to IDH1 were involved in brain neuronal development, cell proliferation, cytokinesis, and O-mannosylation as well as tumor suppression and anaplerosis. Results highlight metabolic vulnerabilities and therapeutic targets for use in future clinical trials. Full article
(This article belongs to the Special Issue Advances in Molecular Pathogenesis Regulation in Cancer)
Show Figures

Figure 1

15 pages, 3380 KiB  
Article
A New EGFR Inhibitor from Ficus benghalensis Exerted Potential Anti-Inflammatory Activity via Akt/PI3K Pathway Inhibition
by Rania Alaaeldin, Heba Ali Hassan, Islam M. Abdel-Rahman, Reham H. Mohyeldin, Nancy Youssef, Ahmed E. Allam, Sayed F. Abdelwahab, Qing-Li Zhao and Moustafa Fathy
Curr. Issues Mol. Biol. 2022, 44(7), 2967-2981; https://doi.org/10.3390/cimb44070205 - 2 Jul 2022
Cited by 17 | Viewed by 2652
Abstract
Inflammation is a critical defensive mechanism mainly arising due to the production of prostaglandins via cyclooxygenase enzymes. This study aimed to examine the anti-inflammatory activity of fatty acid glucoside (FAG), which is isolated from Ficus benghalensis against lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The [...] Read more.
Inflammation is a critical defensive mechanism mainly arising due to the production of prostaglandins via cyclooxygenase enzymes. This study aimed to examine the anti-inflammatory activity of fatty acid glucoside (FAG), which is isolated from Ficus benghalensis against lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The cytotoxic activity of the FAG on RAW 264.7 macrophages was evaluated with an MTT assay. The levels of PGE2 and NO and the activity of iNOS, COX-1, and COX-2 enzymes in LPS-stimulated RAW 264.7 cells were evaluated. The gene expression of IL-6, TNF-α, and PGE2 was investigated by qRT-PCR. The expression of epidermal growth factor receptor (EGFR), Akt, and PI3K proteins was examined using Western blotting analysis. Furthermore, molecular docking of the new FAG against EGFR was investigated. A non-cytotoxic concentration of FAG increased NO release and iNOS activity, inhibited COX-1 and COX-2 activities, and reduced PGE2 levels in LPS-stimulated RAW 264.7 cells. It diminished the expression of TNF-α, IL-6PGE2, EGFR, Akt, and PI3K. Furthermore, the molecular docking study proposed the potential direct binding of FAG with EGFR with a high affinity. This study showed that FAG is a natural EGFR inhibitor, NO-releasing, and COX-inhibiting anti-inflammatory agent via EGFR/Akt/PI3K pathway inhibition. Full article
(This article belongs to the Special Issue Bioactives and Inflammation)
Show Figures

Figure 1

11 pages, 3280 KiB  
Article
Design, Synthesis, and Biological Evaluations of Novel Azothiazoles Based on Thioamide
by Abdelwahed R. Sayed, Hany Elsawy, Saad Shaaban, Sobhi M. Gomha and Yasair S. Al-Faiyz
Curr. Issues Mol. Biol. 2022, 44(7), 2956-2966; https://doi.org/10.3390/cimb44070204 - 1 Jul 2022
Cited by 3 | Viewed by 1672
Abstract
Herein we studied the preparation of different thiazoles via the reaction of 2-(3,4-dimethoxybenzylidene)hydrazine-1-carbothioamide (1) with hydrazonoyl halides under base-catalyzed conditions. The reactions proceed through nucleophilic substitution attack at the halogen atom of the hydrazonoyl halides by the thiol nucleophile to form [...] Read more.
Herein we studied the preparation of different thiazoles via the reaction of 2-(3,4-dimethoxybenzylidene)hydrazine-1-carbothioamide (1) with hydrazonoyl halides under base-catalyzed conditions. The reactions proceed through nucleophilic substitution attack at the halogen atom of the hydrazonoyl halides by the thiol nucleophile to form an S-alkylated intermediate. The latter intermediate undergoes cyclization by the loss of water to afford the final products. The structures of the azo compounds were confirmed by FTIR, MS, NMR, and elemental analyses. Indeed, the newly synthesized azo compounds were estimated for their potential anticancer activities by an MTT assay against different human cancer cells, such as lung adenocarcinoma (A549) and colorectal adenocarcinoma (DLD-1). The caspase-3 levels were also estimated using Western blotting and the dual staining technique to evaluate the potency of the titled compounds to promote apoptosis. Full article
Show Figures

Figure 1

17 pages, 799 KiB  
Article
Association of Single Nucleotide Polymorphisms from Angiogenesis-Related Genes, ANGPT2, TLR2 and TLR9, with Spontaneous Preterm Labor
by Wioletta Izabela Wujcicka, Marian Kacerovsky, Adrian Krygier, Michał Krekora, Piotr Kaczmarek and Mariusz Grzesiak
Curr. Issues Mol. Biol. 2022, 44(7), 2939-2955; https://doi.org/10.3390/cimb44070203 - 30 Jun 2022
Cited by 2 | Viewed by 2063
Abstract
In this study, we hypothesized that the changes localized at angiopoietin-2 (ANGPT2), granulocyte-macrophage colony-stimulating factor (CSF2), fms-related tyrosine kinase 1 (FLT1) and toll-like receptor (TLR) 2, TLR6 and TLR9 genes were associated with spontaneous [...] Read more.
In this study, we hypothesized that the changes localized at angiopoietin-2 (ANGPT2), granulocyte-macrophage colony-stimulating factor (CSF2), fms-related tyrosine kinase 1 (FLT1) and toll-like receptor (TLR) 2, TLR6 and TLR9 genes were associated with spontaneous preterm labor (PTL), as well as with possible genetic alterations on PTL-related coagulation. This case-control genetic association study aimed to identify single nucleotide polymorphisms (SNPs) for the aforementioned genes, which are correlated with genetic risk or protection against PTL in Polish women. The study was conducted in 320 patients treated between 2016 and 2020, including 160 women with PTL and 160 term controls in labor. We found that ANGPT2 rs3020221 AA homozygotes were significantly less common in PTL cases than in controls, especially after adjusting for activated partial thromboplastin time (APTT) and platelet (PLT) parameters. TC heterozygotes for TLR2 rs3804099 were associated with PTL after correcting for anemia, vaginal bleeding, and history of threatened miscarriage or PTL. TC and CC genotypes in TLR9 rs187084 were significantly less common in women with PTL, compared to the controls, after adjusting for bleeding and gestational diabetes. For the first time, it was shown that three polymorphisms—ANGPT2 rs3020221, TLR2 rs3804099 and TLR9 rs187084 —were significantly associated with PTL, adjusted by pregnancy development influencing factors. Full article
Show Figures

Figure 1

16 pages, 3626 KiB  
Article
Hepatoprotective Effect of Silver Nanoparticles at Two Different Particle Sizes: Comparative Study with and without Silymarin
by Mahmoud A. Elfaky, Alaa Sirwi, Sameh H. Ismail, Heba H. Awad and Sameh S. Gad
Curr. Issues Mol. Biol. 2022, 44(7), 2923-2938; https://doi.org/10.3390/cimb44070202 - 30 Jun 2022
Cited by 10 | Viewed by 2389
Abstract
Silver nanoparticles have been used for numerous therapeutic purposes because of their increased biodegradability and bioavailability, yet their toxicity remains questionable as they are known to interact easily with biological systems because of their small size. This study aimed to investigate and compare [...] Read more.
Silver nanoparticles have been used for numerous therapeutic purposes because of their increased biodegradability and bioavailability, yet their toxicity remains questionable as they are known to interact easily with biological systems because of their small size. This study aimed to investigate and compare the effect of silver nanoparticles’ particle size in terms of their potential hazard, as well as their potential protective effect in an LPS-induced hepatotoxicity model. Liver slices were obtained from Sprague Dawley adult male rats, and the thickness of the slices was optimized to 150 μm. Under regulated physiological circumstances, freshly cut liver slices were divided into six different groups; GP1: normal, GP2: LPS (control), GP3: LPS + AgNpL (positive control), GP4: LPS + silymarin (standard treatment), GP5: LPS + AgNpS + silymarin (treatment I), GP6: LPS + AgNpL + silymarin (treatment II). After 24 h of incubation, the plates were gently removed, and the supernatant and tissue homogenate were all collected and then subjected to the following biochemical parameters: Cox2, NO, IL-6, and TNF-α. The LPS elicited marked hepatic tissue injury manifested by elevated cytokines and proinflammatory markers. Both small silver nanoparticles and large silver nanoparticles efficiently attenuated LPS hepatotoxicity, mainly via preserving the cytokines’ level and diminishing the inflammatory pathways. In conclusion, large silver nanoparticles exhibited effective hepatoprotective capabilities over small silver nanoparticles. Full article
(This article belongs to the Special Issue Effects of Nanoparticles on Living Organisms)
Show Figures

Figure 1

8 pages, 1483 KiB  
Article
6-(Methylsulfinyl) Hexyl Isothiocyanate Inhibits IL-6 and CXCL10 Production in TNF-α-Stimulated Human Oral Epithelial Cells
by Masahiro Shimoyama, Yoshitaka Hosokawa, Ikuko Hosokawa, Kazumi Ozaki and Keiichi Hosaka
Curr. Issues Mol. Biol. 2022, 44(7), 2915-2922; https://doi.org/10.3390/cimb44070201 - 29 Jun 2022
Cited by 5 | Viewed by 1926
Abstract
6-(Methylsulfinyl) hexyl isothiocyanate (6-MSITC) is a bioactive substance found in wasabi (Wasabia japonica) and has been reported to have some bioactive effects including anticancer and antioxidant effects. However, there are no reports on its effects on periodontal resident cells, and many points remain [...] Read more.
6-(Methylsulfinyl) hexyl isothiocyanate (6-MSITC) is a bioactive substance found in wasabi (Wasabia japonica) and has been reported to have some bioactive effects including anticancer and antioxidant effects. However, there are no reports on its effects on periodontal resident cells, and many points remain unclear. In this study, we aimed to investigate whether 6-MSITC exerts anti-inflammatory effects on human oral epithelial cells, including effects on signal transduction pathway activation. 6-MSITC inhibited interleukin (IL)-6 and C-X-C motif chemokine ligand 10 (CXCL10) production in TNF-α-stimulated TR146 cells, which are a human oral epithelial cell line. Moreover, we found that 6-MSITC could suppress signal transducer and activator of transcription (STAT)3, nuclear factor (NF)-κB, and p70S6 kinase (p70S6K)-S6 ribosomal protein (S6) pathways activation in TNF-α-stimulated TR146 cells. Furthermore, STAT3 and NF-κB inhibitors could suppress IL-6 and CXCL10 production in TNF-α-treated TR146 cells. In summary, 6-MSITC could decrease IL-6 and CXCL10 production in human oral epithelial cell by inhibiting STAT3 and NF-κB activation. Full article
(This article belongs to the Special Issue Bioactives and Inflammation)
Show Figures

Figure 1

12 pages, 3582 KiB  
Article
Patients with Infections of The Central Nervous System Have Lowered Gut Microbiota Alpha Diversity
by Marta Grochowska, Tomasz Laskus, Marcin Paciorek, Agnieszka Pollak, Urszula Lechowicz, Michał Makowiecki, Andrzej Horban, Marek Radkowski and Karol Perlejewski
Curr. Issues Mol. Biol. 2022, 44(7), 2903-2914; https://doi.org/10.3390/cimb44070200 - 29 Jun 2022
Cited by 4 | Viewed by 1837
Abstract
There are multiple lines of evidence for the existence of communication between the central nervous system (CNS), gut, and intestinal microbiome. Despite extensive analysis conducted on various neurological disorders, the gut microbiome was not yet analyzed in neuroinfections. In the current study, we [...] Read more.
There are multiple lines of evidence for the existence of communication between the central nervous system (CNS), gut, and intestinal microbiome. Despite extensive analysis conducted on various neurological disorders, the gut microbiome was not yet analyzed in neuroinfections. In the current study, we analyzed the gut microbiome in 47 consecutive patients hospitalized with neuroinfection (26 patients had viral encephalitis/meningitis; 8 patients had bacterial meningitis) and in 20 matched for age and gender health controls. Using the QIIME pipeline, 16S rRNA sequencing and classification into operational taxonomic units (OTUs) were performed on the earliest stool sample available. Bacterial taxa such as Clostridium, Anaerostipes, Lachnobacterium, Lachnospira, and Roseburia were decreased in patients with neuroinfection when compared to controls. Alpha diversity metrics showed lower within-sample diversity in patients with neuroinfections, though there were no differences in beta diversity. Furthermore, there was no significant change by short-term (1–3 days) antibiotic treatment on the gut microbiota, although alpha diversity metrics, such as Chao1 and Shannon’s index, were close to being statistically significant. The cause of differences between patients with neuroinfections and controls is unclear and could be due to inflammation accompanying the disease; however, the effect of diet modification and/or hospitalization cannot be excluded. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

16 pages, 538 KiB  
Review
Insights into the Uses of Traditional Plants for Diabetes Nephropathy: A Review
by Haleema Shahin D. H., Rokeya Sultana, Juveriya Farooq, Tahreen Taj, Umaima Farheen Khaiser, Nader Sulaiman Ayyt Alanazi, Mohammed Kanan Alshammari, Mohammad Nazal Alshammari, Firas Hamdan Alsubaie, Syed Mohammed Basheeruddin Asdaq, Abdulmueen A. Alotaibi, Abdulrhman ahmed Alamir, Mohd. Imran and Shahamah Jomah
Curr. Issues Mol. Biol. 2022, 44(7), 2887-2902; https://doi.org/10.3390/cimb44070199 - 29 Jun 2022
Cited by 17 | Viewed by 2840
Abstract
Diabetic nephropathy (DN) is a serious kidney illness characterized by proteinuria, glomerular enlargement, reduced glomerular filtration, and renal fibrosis. DN is the most common cause of end-stage kidney disease, accounting for nearly one-third of all cases of diabetes worldwide. Hyperglycemia is a major [...] Read more.
Diabetic nephropathy (DN) is a serious kidney illness characterized by proteinuria, glomerular enlargement, reduced glomerular filtration, and renal fibrosis. DN is the most common cause of end-stage kidney disease, accounting for nearly one-third of all cases of diabetes worldwide. Hyperglycemia is a major factor in the onset and progression of diabetic nephropathy. Many contemporary medicines are derived from plants since they have therapeutic properties and are relatively free of adverse effects. Glycosides, alkaloids, terpenoids, and flavonoids are among the few chemical compounds found in plants that are utilized to treat diabetic nephropathy. The purpose of this review was to consolidate information on the clinical and pharmacological evidence supporting the use of a variety of medicinal plants to treat diabetic nephropathy. Full article
Show Figures

Figure 1

8 pages, 32209 KiB  
Article
Correlation between Cancer Stem Cells, Inflammation and Malignant Transformation in a DEN-Induced Model of Hepatic Carcinogenesis
by Chun-Chieh Wu, Chien-Ju Lin, Kong-Kai Kuo, Wan-Tzu Chen, Chen-Guo Ker, Chee-Yin Chai, Hung-Pei Tsai and Sheau-Fang Yang
Curr. Issues Mol. Biol. 2022, 44(7), 2879-2886; https://doi.org/10.3390/cimb44070198 - 29 Jun 2022
Cited by 1 | Viewed by 2766
Abstract
Chronic inflammation and cancer stem cells are known risk factors for tumorigenesis. The aetiology of hepatocellular carcinoma (HCC) involves a multistep pathological process that is characterised by chronic inflammation and hepatocyte damage, but the correlation between HCC, inflammation and cancer stem cells remains [...] Read more.
Chronic inflammation and cancer stem cells are known risk factors for tumorigenesis. The aetiology of hepatocellular carcinoma (HCC) involves a multistep pathological process that is characterised by chronic inflammation and hepatocyte damage, but the correlation between HCC, inflammation and cancer stem cells remains unclear. In this study, we examined the role of hepatic progenitor cells in a mouse model of chemical-induced hepatocarcinogenesis to elucidate the relationship between inflammation, malignant transformation and cancer stem cells. We used diethylnitrosamine (DEN) to induce liver tumour and scored for H&E and reticulin staining. We also scored for immunohistochemistry staining for OV-6 expression and analysed the statistical correlation between them. DEN progressively induced inflammation at week 7 (40%, 2/5); week 27 (75%, 6/8); week 33 (62.5%, 5/8); and week 50 (100%, 12/12). DEN progressively induced malignant transformation at week 7 (0%, 0/5); week 27 (87.5%, 7/8); week 33 (100%, 8/8); and week 50 (100%, 12/12). The obtained data showed that DEN progressively induced high-levels of OV-6 expression at week 7 (20%, 1/5); week 27 (37.5%, 3/8); week 33 (50%, 4/8); and week 50 (100%, 12/12). DEN-induced inflammation, malignant transformation and high-level OV-6 expression in hamster liver, as shown above, as well as applying Spearman’s correlation to the data showed that the expression of OV-6 was significantly correlated to inflammation (p = 0.001) and malignant transformation (p < 0.001). There was a significant correlation between the number of cancer stem cells, inflammation and malignant transformation in a DEN-induced model of hepatic carcinogenesis in the hamster. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

11 pages, 1617 KiB  
Article
Is Aberrant DNA Methylation a Key Factor in Molar Incisor Hypomineralization?
by Wojciech Tynior, Danuta Ilczuk-Rypuła, Dorota Hudy and Joanna Katarzyna Strzelczyk
Curr. Issues Mol. Biol. 2022, 44(7), 2868-2878; https://doi.org/10.3390/cimb44070197 - 29 Jun 2022
Cited by 3 | Viewed by 1692
Abstract
Molar incisor hypomineralization (MIH) is a qualitative disturbance of the enamel of the permanent molars and/or incisors. Its etiology is not clearly defined but is connected with different factors occurring before and after birth. It remains difficult to identify a single factor or [...] Read more.
Molar incisor hypomineralization (MIH) is a qualitative disturbance of the enamel of the permanent molars and/or incisors. Its etiology is not clearly defined but is connected with different factors occurring before and after birth. It remains difficult to identify a single factor or group of factors, and the problem is further complicated by various overlapping mechanisms. In this study, we attempted to determine whether DNA methylation—an epigenetic mechanism—plays a key role in the etiology of MIH. We collected the epithelium of the oral mucosa from children with MIH and healthy individuals and analyzed its global DNA methylation level in each child using a 5-mC DNA ELISA kit after DNA isolation. There was no statistically significant difference between the global DNA methylation levels in the study and control groups. Then, we also analyzed the associations of the DNA methylation levels with different prenatal, perinatal, and postnatal factors, using appropriate statistical methods. Factors such as number of pregnancies, number of births, type of delivery, varicella infection (under 3 years old), and high fever (under 3 years old) were significantly important. This work can be seen as the first step towards further studies of the epigenetic background of the MIH etiology. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

12 pages, 2698 KiB  
Article
Amorphigenin from Amorpha fruticosa L. Root Extract Induces Autophagy-Mediated Melanosome Degradation in mTOR-Independent- and AMPK-Dependent Manner
by Ki Won Lee, Dang Thi Nguyen, Minju Kim, Si Hyeon Lee, Seyeon Lim, Jisu Kim, Ki Hun Park, Jeong Yoon Kim, Jiyun Yoo, Cheol Hwangbo and Kwang Dong Kim
Curr. Issues Mol. Biol. 2022, 44(7), 2856-2867; https://doi.org/10.3390/cimb44070196 - 29 Jun 2022
Viewed by 1911
Abstract
In this study, we investigated the depigmentation effect of Amorpha fruticosa L. root extract (RE), an herbal medicine. A. fruticosa RE significantly induced depigmentation in α-MSH-treated B16F10 cells at noncytotoxic concentrations. Further, the RE decreased the protein levels of the melanosomal proteins Tyr [...] Read more.
In this study, we investigated the depigmentation effect of Amorpha fruticosa L. root extract (RE), an herbal medicine. A. fruticosa RE significantly induced depigmentation in α-MSH-treated B16F10 cells at noncytotoxic concentrations. Further, the RE decreased the protein levels of the melanosomal proteins Tyr and Pmel without decreasing their transcript levels. We found that MG132, a proteasome complex inhibitor, was unable to rescue the protein levels, but PepA/E-64D (a lysosomal enzyme inhibitor), 3-MA (a representative autophagy inhibitor), and ATG5 knockdown effectively rescued the protein levels and inhibited the depigmentation effect following RE treatment. Among rotenoids, amorphigenin composed in the RE was identified as a functional chemical that could induce depigmentation; whereas rapamycin, an mTOR inhibitor and a nonselective autophagy inducer, could not induce depigmentation, and amorphigenin effectively induced depigmentation through the degradation of melanosomal proteins. Amorphigenin activated AMPK without affecting mTOR, and knockdown of AMPK offset the whitening effect through degradation of melanosome proteins by amorphigenin. Results from this study suggested that amorphigenin can induce degradation of the melanosome through an AMPK-dependent autophagy process, and has the potential to be used as a depigmentation agent for the treatment of hyperpigmentation. Full article
(This article belongs to the Special Issue Food-Derived Bioactive Compounds in Health and Disease)
Show Figures

Figure 1

14 pages, 5202 KiB  
Article
The Occluded Epitope Residing in Spike Receptor-Binding Motif Is Essential for Cross-Neutralization of SARS-CoV-2 Delta Variant
by Weeraya Thongkum, Kanyarat Thongheang and Chatchai Tayapiwatana
Curr. Issues Mol. Biol. 2022, 44(7), 2842-2855; https://doi.org/10.3390/cimb44070195 - 29 Jun 2022
Cited by 1 | Viewed by 1461
Abstract
Concerns over vaccine efficacy after the emergence of the SARS-CoV-2 Delta variant prompted revisiting the vaccine design concepts. Monoclonal antibodies (mAbs) have been developed to identify the neutralizing epitopes on spike protein. It has been confirmed that the key amino acid residues in [...] Read more.
Concerns over vaccine efficacy after the emergence of the SARS-CoV-2 Delta variant prompted revisiting the vaccine design concepts. Monoclonal antibodies (mAbs) have been developed to identify the neutralizing epitopes on spike protein. It has been confirmed that the key amino acid residues in epitopes that induce the formation of neutralizing antibodies do not have to be on the receptor-binding domain (RBD)- angiotensin-converting enzyme 2 (ACE2) contact surface, and may be conformationally hidden. In addition, this epitope is tolerant to amino acid mutations of the Delta variant. The antibody titers against RBD in health care workers in Thailand receiving two doses of CoronaVac, followed by a booster dose of BNT162b2, were significantly increased. The neutralizing antibodies against the Delta variant suggest that the overall neutralizing antibody level against the Wuhan strain, using the NeutraLISA, was consistent with the levels of anti-RBD antibodies. However, individuals with moderate anti-RBD antibody responses have different levels of a unique antibody population competing with a cross-neutralizing mAb clone, 40591-MM43, determined by in-house competitive ELISA. Since 40591-MM43 mAb indicates cross-neutralizing activity against the Delta variant, this evidence implies that the efficiency of the vaccination regimen should be improved to facilitate cross-protective antibodies against Delta variant infections. The RBD epitope recognized by 40591-MM43 mAb is hidden in the close state. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop