Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = hydrocarbon heating curve

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3615 KB  
Article
Increasing the Reactivity of Solid Fuel with Liquid Hydrocarbons from the Pyrolysis of Waste Tires
by Albina Misyukova, Askar Asilbekov, Aleksander Matveev, Kirill Larionov and Konstantin Slyusarskiy
Energies 2025, 18(20), 5494; https://doi.org/10.3390/en18205494 - 17 Oct 2025
Viewed by 453
Abstract
Utilization of waste tires via pyrolysis is a promising solution. The liquid hydrocarbons generated during this process could be used for enhancing low-reactivity coals for energy application. Current study investigates oxidation and combustion characteristics (including composition of gaseous combustion products) of low-reactivity coal [...] Read more.
Utilization of waste tires via pyrolysis is a promising solution. The liquid hydrocarbons generated during this process could be used for enhancing low-reactivity coals for energy application. Current study investigates oxidation and combustion characteristics (including composition of gaseous combustion products) of low-reactivity coal mixed with liquid hydrocarbons from pyrolysis of waste tires with a concentration up to 20%wt at 700 °C. The oxidation tests via TG-analyzer revealed that at heating rates up to 10 °C/min, the process had one stage, associated with combined oxidation of coal-liquid hydrocarbons mixture. Starting from 10 °C/min the second stage occurred at temperature ~400 °C due to evaporation of light components of the mixture. Combustion tests at experimental setup at 700 °C revealed almost linear increase in fuel reactivity, expressed into decline in ignition delay time of mixtures (up to 71.6%) with increasing concentration of liquid hydrocarbons, while flame and diffusion combustion times were, in contrast, increasing (by up to 69.5%). Increasing concentration of additives from 2.5 to 20%wt resulted not only in change in the form of obtained mixture but also changed the combustion mechanism from predominantly heterogeneous smoldering to majorly homogeneous gas-phase ignition and combustion. Gas-phase combustion products concentration curves generally complimented previously observed peculiarities of combustion. Increased CO and NOx concentrations in combustion products of coal mixed with liquid hydrocarbons revealed necessity in additional tailoring of burner characteristics for mitigating these effects. The compromise composition of mixture was found to include 10%wt of liquid hydrocarbons for enabling quick gas-phase ignition while maintaining moderate level of combustion products emissions. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

32 pages, 6938 KB  
Article
Modeling the Fire Response of Reactive Powder Concrete Columns with Due Consideration of Transient Thermal Strain
by Qin Rong, Zeyu Chang, Zhihao Lyu and Xiaomeng Hou
Buildings 2025, 15(18), 3287; https://doi.org/10.3390/buildings15183287 - 11 Sep 2025
Viewed by 467
Abstract
Transient thermal strain (TS) is a unique compressive strain that reactive powder concrete (RPC) experiences during temperature rise. RPC has a more rapid TS development than normal concrete (NC) during temperatures of 300 °C~800 °C, and under the same load level, the TS [...] Read more.
Transient thermal strain (TS) is a unique compressive strain that reactive powder concrete (RPC) experiences during temperature rise. RPC has a more rapid TS development than normal concrete (NC) during temperatures of 300 °C~800 °C, and under the same load level, the TS of RPC is 40% to 60% higher than that of NC. However, while TS is known to be significant in RPC, its quantitative influence on the structural fire response and ultimate fire resistance of RPC columns remains insufficiently understood and inadequately modeled, posing a potential risk to fire safety design. In this study, a method for modelling the fire response of RPC columns with due consideration to TS was developed using ABAQUS. The Drucker–Prager model was applied to assess the impact of TS on the fire resistance of RPC columns. The results indicate that ignoring the effect of TS could lead to unsafe fire resistance predictions for RPC columns. The influence of TS on the fire resistance performance of RPC columns increases with the increase in cross-sectional dimensions. When the cross-sectional dimension of RPC columns increases from 305 mm to 500 mm, the influence of TS on the fire resistance of RPC columns increases from 22% to 43%. Under the same load, the influence of TS on the fire resistance of RPC columns is 31.3%, which is greater than that on NC columns. When the hydrocarbon heating curve is used, if the influence of TS is not considered, the fire resistance will be overestimated by 18.2% and 37.7%. Under fire, the existence of TS will lead to a further increase in the compressive stress of the RPC element in the relatively low temperature region, resulting in a greater stress redistribution, and accelerating the RPC column to reach the fire resistance. Therefore, it is crucial to clearly consider TS for the accurate fire resistance prediction and safe fire protection design of RPC columns. Crucially, these findings have direct significance for the fire protection design of actual projects, such as liquefied petroleum stations. Full article
(This article belongs to the Special Issue Fire Science and Safety of Building Structure)
Show Figures

Figure 1

23 pages, 9661 KB  
Article
Oil and Gas Structures: Forecasting the Fire Resistance of Steel Structures with Fire Protection under Hydrocarbon Fire Conditions
by Marina Gravit, Ivan Dmitriev, Nikita Shcheglov and Anton Radaev
Fire 2024, 7(6), 173; https://doi.org/10.3390/fire7060173 - 21 May 2024
Cited by 4 | Viewed by 2847
Abstract
The hydrocarbon temperature–time curve is widely used instead of the standard curve to describe the temperature in the environment of structural surfaces exposed to fire in oil and gas chemical facilities and tunnels. This paper presents calculations of the ratio of time to [...] Read more.
The hydrocarbon temperature–time curve is widely used instead of the standard curve to describe the temperature in the environment of structural surfaces exposed to fire in oil and gas chemical facilities and tunnels. This paper presents calculations of the ratio of time to reach critical temperatures at different nominal fire curves for steel structures such as bulkheads and columns with different types of fireproofing. The thermophysical properties of the fireproofing materials were obtained by solving the inverse heat conduction problem using computer simulation. It was found that the time interval for reaching critical temperatures in structures with different types of fireproofing in a hydrocarbon fire decreased, on average, by a factor of 1.2–1.7 compared to the results of standard fire tests. For example, for decks and bulkheads with mineral wool fireproofing, the K-factor of the ratio of the time for reaching the critical temperature of steel under the standard curve to the hydrocarbon curve was 1.30–1.62; for plaster, it was 1.56; for cement boards, it was 1.34; for non-combustible coatings, it was 1.38–2.0; and, for epoxy paints, it was 1.71. The recommended values of the K-factor for fire resistance up to 180 min (incl.) were 1.7 and, after 180 min, 1.2. The obtained dependencies would allow fireproofing manufacturers to predict the insulation thickness for expensive hydrocarbon fire experiments if the results of fire tests under standard (cellulosic) conditions are known. Full article
(This article belongs to the Special Issue Advances in New Energy Materials and Fire Safety)
Show Figures

Figure 1

20 pages, 5080 KB  
Article
A Study on the Pyrolysis Behavior and Product Evolution of Typical Wood Biomass to Hydrogen-Rich Gas Catalyzed by the Ni-Fe/HZSM-5 Catalyst
by Xueqin Li, Yan Lu, Peng Liu, Zhiwei Wang, Taoli Huhe, Zhuo Chen, Youqing Wu and Tingzhou Lei
Catalysts 2024, 14(3), 200; https://doi.org/10.3390/catal14030200 - 19 Mar 2024
Cited by 10 | Viewed by 3106
Abstract
The thermo-chemical conversion of biomass wastes is a practical approach for the value-added reclamation of bioenergy in large quantities, and pyrolysis plays a core role in this process. In this work, poplar (PR) and cedar (CR) were used as staple wood biomasses to [...] Read more.
The thermo-chemical conversion of biomass wastes is a practical approach for the value-added reclamation of bioenergy in large quantities, and pyrolysis plays a core role in this process. In this work, poplar (PR) and cedar (CR) were used as staple wood biomasses to investigate the apparent kinetics of TG/DTG at different heating rates. Secondly, miscellaneous wood chips (MWC), in which PR and CR were mixed in equal proportion, were subjected to comprehensive investigations on their pyrolysis behavior and product evolution in a fixed bed reactor with pyrolysis temperature, catalyst, and the flow rate H2O steam as influencing factors. The results demonstrated that both PR and CR underwent three consecutive pyrolysis stages, the TG/DTG curves shifted to higher temperatures, and the peak temperature intervals also enhanced as the heating rate increased. The kinetic compensation effect expression and apparent reaction kinetic model of CR and PR pyrolysis were obtained based on the law of mass action and the Arrhenius equation; the reaction kinetic parameter averages of Ea and A of its were almost the same, which were about 72.38 kJ/mol and 72.36 kJ/mol and 1147.11 min−1 and 1144.39 min−1, respectively. The high temperature was beneficial for the promotion of the pyrolysis of biomass, increased pyrolysis gas yield, and reduced tar yield. This process was strengthened in the presence of the catalyst, thus significantly increasing the yield of hydrogen-rich gas to 117.9 mL/g-biomass. It was observed that H2O steam was the most effective activator for providing a hydrogen source for the whole reaction process, promoted the reaction to proceed in the opposite direction of H2O steam participation, and was beneficial to the production of H2 and other hydrocarbons. In particular, when the flow rate of H2O steam was 1 mL/min, the gas yield and hydrogen conversion were 76.94% and 15.90%, and the H2/CO was 2.07. The yields of H2, CO, and CO2 in the gas formation were significantly increased to 107.35 mL/g-biomass, 53.70 mL/g-biomass, and 99.31 mL/g-biomass, respectively. Therefore, H2 was the most dominant species among gas products, followed by C-O bond-containing species, which provides a method for the production of hydrogen-rich gas and also provides ideas for compensating or partially replacing the fossil raw material for hydrogen production. Full article
(This article belongs to the Section Biomass Catalysis)
Show Figures

Graphical abstract

22 pages, 6790 KB  
Article
Thermal Characteristics of Epoxy Fire-Retardant Coatings under Different Fire Regimes
by Marina Gravit, Daria Shabunina and Nikita Shcheglov
Fire 2023, 6(11), 420; https://doi.org/10.3390/fire6110420 - 2 Nov 2023
Cited by 4 | Viewed by 4164
Abstract
Different systems of fire protection coatings are used to protect the metal structures of stories and trestles at oil and gas facilities from low (when filling cryogenic liquids) and high temperatures (in case of the possible development of a hydrocarbon fire regime). This [...] Read more.
Different systems of fire protection coatings are used to protect the metal structures of stories and trestles at oil and gas facilities from low (when filling cryogenic liquids) and high temperatures (in case of the possible development of a hydrocarbon fire regime). This paper presents the results of experiments of fireproof coatings on an epoxy binder after the simulation of a liquefied hydrocarbons spill and subsequent development of a hydrocarbon fire regime at the object of protection and exposure of structures to a standard fire regime. According to the experimental results, the temperatures on the samples at the end of the cryogenic exposure were determined and the time from the beginning of the thermal exposure to the limit state of the samples at a hydrocarbon and standard temperature fire regime was determined. As a result, temperature–time curves in the hydrocarbon and standard fire regimes were obtained, showing good convergence with the simulation results. The solution of the inverse task of heat conduction using finite element modeling made it possible to determine the thermophysical properties of the formed foam coke at the end of the fire tests of steel structures with intumescent coatings. It was determined that an average of 12 mm of intumescent coating thickness is required to achieve a fire protection efficiency of 120 min and for the expected impact of the hydrocarbon fire regime, the coating consumption should be increased by 1.5–2 times compared to the coating consumption for the standard regime. Full article
Show Figures

Figure 1

22 pages, 11836 KB  
Article
Effects of High Temperatures on the Performance of Carbon Fiber Reinforced Polymer (CFRP) Composite Cables Protected with Fire-Retardant Materials
by Ping Zhuge, Guocheng Tao, Bing Wang, Zhiyu Jie and Zihua Zhang
Materials 2022, 15(13), 4696; https://doi.org/10.3390/ma15134696 - 4 Jul 2022
Cited by 13 | Viewed by 3647
Abstract
In this study, the safe critical temperature that can be tolerated by CFRP tendons under normal working conditions was derived through tensile tests at room and high temperatures. Next, the times required to reach a safe critical temperature for CFRP cables protected with [...] Read more.
In this study, the safe critical temperature that can be tolerated by CFRP tendons under normal working conditions was derived through tensile tests at room and high temperatures. Next, the times required to reach a safe critical temperature for CFRP cables protected with different types of fire-retardant materials of various thicknesses were determined through fire resistance tests, Finally, fitting the surface of the finite element simulation results allowed the establishment of the temperature rise calculation model of CFRP tendons under the protection of fire-retardant materials. The results showed that 300 °C can be regarded as the safe critical temperature. Both high-silica needled felt and ceramic fiber felt exhibited high fireproof performance. With an increase in the thickness of the fire-retardant material, the time for the CFRP tendon to reach the inflection point of the heating rate increased, and the safe fire resistance time increased exponentially. According to the HC temperature rise curve, the fire resistance time of CFRP tendons protected by 24 mm thick high-silica needled felt was 45 min, and that for CFRP tendons protected by 24 mm thick ceramic fiber felt was 39.5 min. Under the action of fire corresponding to the hydrocarbon temperature rise model, the safe fire resistance time of CFRP tendons protected by 45 mm high-silica needled felt or 50 mm ceramic fiber felt was more than 2 h, sufficient to meet the specification. The proposed model of fire resistance performance enables the determination of the thickness of the fire resistance material required to obtain different degrees of fire resistance for CFRP cables for structural use. Full article
(This article belongs to the Special Issue Novel Fiber Reinforced Polymer (FRP) Technologies for Structures)
Show Figures

Figure 1

16 pages, 15422 KB  
Article
Numerical Study on Flow and Heat Transfer of Supercritical Hydrocarbon Fuel in Curved Cooling Channel
by Ying Zhang, Yong Cao, Keyu Gong, Shuyuan Liu, Limin Wang and Zhengchun Chen
Appl. Sci. 2022, 12(5), 2356; https://doi.org/10.3390/app12052356 - 24 Feb 2022
Cited by 10 | Viewed by 3400
Abstract
The fluid flow and heat transfer of hydrocarbon fuel play a significant role in developing regenerative cooling technology for advanced aeroengines. Numerical simulations have been conducted to investigate the flow and heat transfer characteristics of China RP-3 aviation kerosene with pyrolysis in a [...] Read more.
The fluid flow and heat transfer of hydrocarbon fuel play a significant role in developing regenerative cooling technology for advanced aeroengines. Numerical simulations have been conducted to investigate the flow and heat transfer characteristics of China RP-3 aviation kerosene with pyrolysis in a 3D, 90° bend, square cooling channel around the cavity flame-holder of a scramjet. A chemical kinetic model, composed of 18 species and 24 reactions, was adopted to simulate the fuel pyrolysis process. Results indicate that the secondary flow enhances the mixing of the fluid, thus, the transports of heat and components are improved between the near-wall region and main flow field in the curved channel. Compared with a straight cooling channel, fuel conversion and heat-absorbing capacity are higher, and the heat transfer is effectively enhanced in a curved cooling channel. In addition, with the increasing inlet mass flow rate and the decreasing radius of curvature, the velocity of the secondary flow increases. The heat and components are easily transferred from the near-wall region to the main flow. The non-uniformities of fuel temperature and conversion at the cross section decreases, which is helpful for improving the utilization of the level of fuel heat-absorbing capacity, and beneficial for enhancing the heat transfer. Full article
(This article belongs to the Special Issue Heat Exchangers: Latest Advances and Prospects)
Show Figures

Figure 1

28 pages, 10949 KB  
Article
Finite Element Modelling to Predict the Fire Performance of Bio-Inspired 3D-Printed Concrete Wall Panels Exposed to Realistic Fire
by Thadshajini Suntharalingam, Irindu Upasiri, Brabha Nagaratnam, Keerthan Poologanathan, Perampalam Gatheeshgar, Konstantinos Daniel Tsavdaridis and Dilini Nuwanthika
Buildings 2022, 12(2), 111; https://doi.org/10.3390/buildings12020111 - 24 Jan 2022
Cited by 17 | Viewed by 7095
Abstract
Large-scale additive manufacturing (AM), also known as 3D concrete printing, is becoming well-recognized and, therefore, has gained intensive research attention. However, this technology requires appropriate specifications and standard guidelines. Furthermore, the performance of printable concrete in elevated temperature circumstances has not yet been [...] Read more.
Large-scale additive manufacturing (AM), also known as 3D concrete printing, is becoming well-recognized and, therefore, has gained intensive research attention. However, this technology requires appropriate specifications and standard guidelines. Furthermore, the performance of printable concrete in elevated temperature circumstances has not yet been explored extensively. Hence, the authors believe that there is a demand for a set of standardized findings obtained with the support of experiments and numerical modelling of the fire performance of 3D-printed concrete structural elements. In general, fire experiments and simulations focus on ISO 834 standard fire. However, this may not simulate the real fire behaviour of 3D-printed concrete walls. With the aim of bridging this knowledge disparity, this article presents an analysis of the fire performance of 3D-printed concrete walls with biomimetic hollow cross sections exposed to realistic individual fire circumstances. The fire performance of the non-load-bearing 3D-printed concrete wall was identified by developing a suitable numerical heat transfer model. The legitimacy of the developed numerical model was proved by comparing the time–temperature changes with existing results derived from fire experiments on 3D-printed concrete walls. A parametric study of 96 numerical models was consequently performed and included different 3D-printed concrete wall configurations under four fire curves (standard, prolonged, rapid, and hydrocarbon fire). Moreover, 3D-printed concrete walls and mineral wool cavity infilled wall panels showed enhanced fire performance. Moreover, the cellular structures demonstrated superior insulation fire ratings compared to the other configurations. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

12 pages, 1498 KB  
Article
Primary Energy Use and Environmental Effects of Electric Vehicles
by Efstathios E. Michaelides
World Electr. Veh. J. 2021, 12(3), 138; https://doi.org/10.3390/wevj12030138 - 30 Aug 2021
Cited by 21 | Viewed by 11194
Abstract
The global market of electric vehicles has become one of the prime growth industries of the 21st century fueled by marketing efforts, which frequently assert that electric vehicles are “very efficient” and “produce no pollution.” This article uses thermodynamic analysis to determine the [...] Read more.
The global market of electric vehicles has become one of the prime growth industries of the 21st century fueled by marketing efforts, which frequently assert that electric vehicles are “very efficient” and “produce no pollution.” This article uses thermodynamic analysis to determine the primary energy needs for the propulsion of electric vehicles and applies the energy/exergy trade-offs between hydrocarbons and electricity propulsion of road vehicles. The well-to-wheels efficiency of electric vehicles is comparable to that of vehicles with internal combustion engines. Heat transfer to or from the cabin of the vehicle is calculated to determine the additional energy for heating and air-conditioning needs, which must be supplied by the battery, and the reduction of the range of the vehicle. The article also determines the advantages of using fleets of electric vehicles to offset the problems of the “duck curve” that are caused by the higher utilization of wind and solar energy sources. The effects of the substitution of internal combustion road vehicles with electric vehicles on carbon dioxide emission avoidance are also examined for several national electricity grids. It is determined that grids, which use a high fraction of coal as their primary energy source, will actually increase the carbon dioxide emissions; while grids that use a high fraction of renewables and nuclear energy will significantly decrease their carbon dioxide emissions. Globally, the carbon dioxide emissions will decrease by approximately 16% with the introduction of electric vehicles. Full article
(This article belongs to the Special Issue Feature Papers in World Electric Vehicle Journal in 2021)
Show Figures

Figure 1

15 pages, 5025 KB  
Article
Analytical Equations Applied to the Study of Steel Profiles under Fire According to Different Nominal Temperature-Time Curves
by Pedro N. Oliveira, Elza M. M. Fonseca, Raul D. S. G. Campilho and Paulo A. G. Piloto
Math. Comput. Appl. 2021, 26(2), 48; https://doi.org/10.3390/mca26020048 - 18 Jun 2021
Cited by 13 | Viewed by 4890
Abstract
Some analytical methods are available for temperature evaluation in solid bodies. These methods can be used due to their simplicity and good results. The main goal of this work is to present the temperature calculation in different cross-sections of structural hot-rolled steel profiles [...] Read more.
Some analytical methods are available for temperature evaluation in solid bodies. These methods can be used due to their simplicity and good results. The main goal of this work is to present the temperature calculation in different cross-sections of structural hot-rolled steel profiles (IPE, HEM, L, and UAP) using the lumped capacitance method and the simplified equation from Eurocode 3. The basis of the lumped capacitance method is that the temperature of the solid body is uniform at any given time instant during a heat transient process. The profiles were studied, subjected to the fire action according to the nominal temperature–time curves (standard temperature-time curve ISO 834, external fire curve, and hydrocarbon fire curve). The obtained results allow verifying the agreement between the two methodologies and the influence in the temperature field due to the use of different nominal fire curves. This finding enables us to conclude that the lumped capacitance method is accurate and could be easily applied. Full article
Show Figures

Figure 1

11 pages, 1808 KB  
Article
Chromatographic Method for Evaluation of Polymeric GC Stationary Phases Ageing Using the Novel Non-Cross-Linked Poly(3-(Tributoxysilyl)Tricyclononene-7) as the Model Stationary Phase
by Anastasiia Kanateva, Maxim Bermeshev, Dmitrii Alentiev, Alexander A. Korolev and Alexander Kurganov
Polymers 2021, 13(11), 1899; https://doi.org/10.3390/polym13111899 - 7 Jun 2021
Cited by 1 | Viewed by 2781
Abstract
The chromatographic properties and thermal stability are investigated for the polymeric stationary phase based on the norbornene polymer. It was shown that without additional cross-linking, poly(3-(tributoxysilyl)tricyclononene-7) demonstrates properties similar to liquid chromatographic stationary phases. It was also found to be more thermally stable [...] Read more.
The chromatographic properties and thermal stability are investigated for the polymeric stationary phase based on the norbornene polymer. It was shown that without additional cross-linking, poly(3-(tributoxysilyl)tricyclononene-7) demonstrates properties similar to liquid chromatographic stationary phases. It was also found to be more thermally stable than previously studied trimethylsilyl- and trimethoxysilyl- derivatives. The long-term heating at 170 °C resulted in an increase of mass transfer rate between stationary and mobile phases which could be observed as a decrease of parameter C of Van Deemter equation. This effect is rather unusual, as the polymeric stationary phases tend in decrease of the layer volume and porosity while ageing. Additionally, the values of thermodynamic parameters of sorption are calculated for the polymeric stationary phase: enthalpy of sorption varied −28 to −37 kJ/mol, entropy change was −41 to −51 J/mol K. The compensation curves were plotted for the alkanes, arenes, and alcohols, and the parameters of compensation plot were calculated, demonstrating the different sorption mechanisms both for hydrocarbons and oxygen-containing compounds, and different classes of organic compounds. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Graphical abstract

22 pages, 4349 KB  
Communication
Numerical Analysis of High-Pressure Direct Injection Dual-Fuel Diesel-Liquefied Natural Gas (LNG) Engines
by Alberto Boretti
Processes 2020, 8(3), 261; https://doi.org/10.3390/pr8030261 - 25 Feb 2020
Cited by 17 | Viewed by 7756
Abstract
Dual fuel engines using diesel and fuels that are gaseous at normal conditions are receiving increasing attention. They permit to achieve the same (or better) than diesel power density and efficiency, steady-state, and substantially similar transient performances. They also permit to deliver better [...] Read more.
Dual fuel engines using diesel and fuels that are gaseous at normal conditions are receiving increasing attention. They permit to achieve the same (or better) than diesel power density and efficiency, steady-state, and substantially similar transient performances. They also permit to deliver better than diesel engine-out emissions for CO2, as well as particulate matter, unburned hydrocarbons, and nitrous oxides. The adoption of injection in the liquid phase permits to further improve the power density as well as the fuel conversion efficiency. Here, a model is developed to study a high-pressure, 1600 bar, liquid phase injector for liquefied natural gas (LNG) in a high compression ratio, high boost engine. The engine features two direct injectors per cylinder, one for the diesel and one for the LNG. The engine also uses mechanically assisted turbocharging (super-turbocharging) to improve the steady-state and transient performances of the engine, decoupling the power supply at the turbine from the power demand at the compressor. Results of steady-state simulations show the ability of the engine to deliver top fuel conversion efficiency, above 48%, and high efficiencies, above 40% over the most part of the engine load and speed range. The novelty of this work is the opportunity to use very high pressure (1600 bar) LNG injection in a dual fuel diesel-LNG engine. It is shown that this high pressure permits to increase the flow rate per unit area; thus, permitting smaller and lighter injectors, of faster actuation, for enhanced injector-shaping capabilities. Without fully exploring the many opportunities to shape the heat release rate curve, simulations suggest two-point improvements in fuel conversion efficiency by increasing the injection pressure. Full article
Show Figures

Figure 1

19 pages, 3563 KB  
Article
Enthalpies of Hydrate Formation from Hydrate Formers Dissolved in Water
by Bjørn Kvamme
Energies 2019, 12(6), 1039; https://doi.org/10.3390/en12061039 - 18 Mar 2019
Cited by 33 | Viewed by 3427
Abstract
The international interest in the energy potential related to the huge amounts of methane trapped in the form of hydrates is rapidly increasing. Unlike conventional hydrocarbon sources these natural gas hydrate deposits are widely spread around the world. This includes countries which have [...] Read more.
The international interest in the energy potential related to the huge amounts of methane trapped in the form of hydrates is rapidly increasing. Unlike conventional hydrocarbon sources these natural gas hydrate deposits are widely spread around the world. This includes countries which have limited or no conventional hydrocarbon sources, like for instance Japan. A variety of possible production methods have been proposed during the latest four decades. The pressure reduction method has been dominant in terms of research efforts and associated investments in large scale pilot test studies. Common to any feasible method for producing methane from hydrates is the need for transfer of heat. In the pressure reduction method necessary heat is normally expected to be supplied from the surrounding formation. It still remain, however, unverified whether the capacity, and heat transport capabilities of surrounding formation, will be sufficient to supply enough heat for a commercial production based on reduction in pressure. Adding heat is very costly. Addition of limited heat in critical areas (regions of potential freezing down) might be economically feasible. This requires knowledge about enthalpies of hydrate dissociation under various conditions of temperature and pressure. When hydrate is present in the pores then it is the most stable phase for water. Hydrate can then grow in the concentration range in between liquid controlled solubility concentrations, and the minimum concentration of hydrate in water needed to keep the hydrate stable. Every concentration in that range off concentrations results unique free energy and enthalpy of the formed hydrate. Similarly for hydrate dissociation towards water containing less hydrate former than the stability limit. Every outside liquid water concentration results in unique enthalpy changes for hydrate dissociation. There are presently no other available calculation approaches for enthalpy changes related to these hydrate phase transitions. The interest of using CO2 for safe storage in the form of hydrate, and associated CH4 release, is also increasing. The only feasible mechanism in this method involves the formation of new CO2 hydrate, and associated release of heat which assist in dissociating the in situ CH4 hydrate. Very limited experimental data is available for heats of formation (and dissociation), even for CH4. And most experimental data are incomplete in the sense that associated water/hydrate former rate are often missing or guessed. Thermodynamic conditions are frequently not precisely defined. Although measured hydrate equilibrium pressure versus temperature curves can be used there is still a need for additional models for volume changes, and ways to find other information needed. In this work we propose a simple and fairly direct scheme of calculating enthalpies of formation and dissociation using residual thermodynamics. This is feasible since also hydrate can be described by residual thermodynamics though molecular dynamics simulations. The concept is derived and explained in detail and also compared to experimental data. For enthalpy changes related to hydrate formation from water and dissolved hydrate formers we have not found experimental data to compare with. To our knowledge there are no other alternative methods available for calculating enthalpy changes for these types of hydrate phase transitions. And there are no limits in the theory for which hydrate phase transitions that can be described as long as chemical potentials for water and hydrate formers in the relevant phases are available from theoretical modeling and/or experimental information. Full article
Show Figures

Graphical abstract

Back to TopTop