You are currently viewing a new version of our website. To view the old version click .

Fire

Fire is an international, peer-reviewed, open access journal about the science, policy, and technology of fires and how they interact with communities and the environment, published monthly online by MDPI. 

Quartile Ranking JCR - Q1 (Forestry)

All Articles (1,941)

Against the backdrop of intensifying global climate change and human activities, the increasing frequency and evolution of major wildfire events pose severe challenges to global disaster prevention and mitigation systems. Systematically understanding their disaster characteristics, spatiotemporal patterns, and societal response efficacy is an urgent scientific requirement for formulating effective coping strategies. This study constructed a comprehensive database covering 137 major global wildfire events from 2018 to 2024, with data sourced from GFED, EM-DAT, and official national reports. Utilizing a synthesis of methods including descriptive statistics, spatiotemporal clustering analysis, K-means pattern recognition, and non-parametric tests, a multi-dimensional quantitative analysis was conducted on disaster characteristics, evolutionary trends, casualty patterns, and policy effectiveness. Despite potential reporting biases and heterogeneous data standards across countries, the analysis reveals the following: (1) All key wildfire metrics (e.g., burned area, casualties, evacuation scale) exhibited extreme right-skewed distributions, indicating that a minority of catastrophic events dominate the overall risk profile; (2) Global wildfire hotspots demonstrated dynamic expansion, spreading from traditional regions in North America and Australia to emerging areas such as Mediterranean Europe, Chile, and the Russian Far East, forming three significant spatiotemporal clusters; (3) Four distinct casualty patterns were identified: “High-Lethality”, “Large-Scale Evacuation”, “Routine-Control”, and “Ecological-Destruction”, revealing the differentiated formation mechanisms under various disaster scenarios; (4) A substantial gap of nearly 65 times in emergency evacuation efficiency—defined as the ratio of evacuated individuals to total casualties—was observed between developed and developing countries, highlighting a significant “development gap” in emergency management capabilities. This study finds evidence of increasing extremization, expansion, and polarization in global wildfire risk within the 2018–2024 event sample. The conclusions emphasize that future risk management must shift from addressing “normal” events to prioritizing preparedness for “catastrophic” scenarios and adopt refined strategies based on casualty patterns. Simultaneously, the international community needs to focus on bridging the emergency response capability gap between nations to collectively build a more resilient global wildfire governance system.

15 December 2025

Temporal Trends in Annual Mean Casualties and Burned Area from Major Global Wildfires (2018–2024).

This study investigates the effect of the flame tube convergent segment wall configuration on the performance of a High-Temperature-Rise (HTR) triple-swirler main combustor. Three configurations were evaluated: the Vitosinski principle (Scheme A), the equal velocity gradient criterion (Scheme B), and a novel convex-arc flow-facing method (Scheme C). Three-dimensional numerical simulations were conducted using validated RANS equations with the Realizable k-ε turbulence model and a non-premixed PDF combustion model. The results demonstrate that the proposed Scheme C, characterized by an inflection-free convex contour, successfully avoids the localized high-velocity region and achieves a more uniform flow field. A systematic comparison reveals that Scheme C achieves the highest outlet temperature distribution quality (lowest OTDF and RTDF), the highest combustion efficiency, and the lowest total pressure loss (TPL) in the convergent segment among the three designs. In conclusion, the comprehensive analysis confirms that the convex-arc design (Scheme C), by eliminating the geometric discontinuity of an inflection point, provides the best overall performance for the HTR combustor under takeoff conditions.

12 December 2025

Single-dome HTR combustor model.

Wildfires are a recurring dry-season hazard in northern Thailand, contributing to severe air pollution and trans-boundary haze. However, the region lacks the ground-based measurements necessary for monitoring Live Fuel Moisture Content (LFMC), a key variable influencing vegetation flammability. This study presents a preliminary framework for near-real-time (NRT) LFMC estimation using Sentinel-2 multispectral imagery. The system integrates normalized vegetation and moisture-related indices, including the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Infrared Index (NDII), and the Moisture Stress Index (MSI) with an NDVI-derived evapotranspiration fraction (ETf) within a heuristic modeling approach. The workflow includes cloud and shadow masking, weekly to biweekly compositing, and pixel-wise normalization to address the persistent cloud cover and heterogeneous land surfaces. Although currently unvalidated, the LFMC estimates capture the relative spatial and temporal variations in vegetation moisture across northern Thailand during the 2024 dry season (January–April). Evergreen forests maintained higher moisture levels, whereas deciduous forests and agricultural landscapes exhibited pronounced drying from January to March. Short-lag responses to rainfall suggest modest moisture recovery following precipitation, although the relationship is influenced by additional climatic and ecological factors not represented in the heuristic model. LFMC-derived moisture classes reflect broad seasonal dryness patterns but should not be interpreted as direct fire danger indicators. This study demonstrates the feasibility of generating regional LFMC indicators in a data-scarce tropical environment and outlines a clear pathway for future calibration and validation, including field sampling, statistical optimization, and benchmarking against global LFMC products. Until validated, the proposed NRT LFMC estimation product should be used to assess relative vegetation dryness and to support the refinement and development of future operational fire management tools, including early warnings, burn-permit regulation, and resource allocation.

11 December 2025

Study area in northern Thailand showing the analysis domain (97.0–101.5° E, 17.0–21.0° N). Maps illustrate (a) land-use/land-cover distribution, (b) population density, and (c) topographic elevation. Insets highlight spatial zones used for LFMC estimation pattern assessment across contrasting landscape types: green (zoom A) for hill evergreen forest, blue (zoom B) for agricultural valley systems, and orange (zoom C) for mixed forest–agriculture mosaics.

Lightning-ignited wildfires represent a dominant natural disturbance agent in the Greater Khingan Mountains of northeastern China; however, the relationship between their occurrence and lightning characteristics remains insufficiently quantified. This study analyzed cloud-to-ground (CG) lightning data (2019–2024) and 417 lightning-ignited wildfires (2019–2024) using a full-waveform lightning detection network and spatial matching based on the Minimum Distance Method. Lightning activity shows pronounced spatiotemporal clustering, with more than 93% of flashes occurring in summer and a diurnal peak at 15:00. About 74.6% of wildfires ignited within 1 km of a lightning strike, and the holdover time exhibited clear seasonality, peaking in August (≈317 h). Negative CG (−CG) flashes dominated ignition events (56.5% multiple-stroke, average multiplicity = 2.60), and igniting flashes were concentrated within the −10 to −30 kA peak-current range, suggesting a key threshold for ignition. Vegetation type strongly influenced ignition efficiency: cold temperate and temperate coniferous forests recorded the highest lightning and fire counts, while alpine grasslands and sedge meadows showed the highest lightning ignition efficiency (LIE). These findings clarify how lightning electrical properties and vegetation conditions jointly determine ignition probability and provide a scientific basis for improving lightning-ignited wildfire risk monitoring and early-warning systems in boreal forest regions.

11 December 2025

Study area map showing the major vegetation groups and the distribution of lightning sensors.

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Cable and Electrical Fires
Reprint

Cable and Electrical Fires

Editors: Ying Zhang, Xiaoyu Ju, Xianjia Huang, Fuchao Tian

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Fire - ISSN 2571-6255