-
Parcel-Level Risk Affects Wildfire Outcomes: Insights from Pre-Fire Rapid Assessment Data for Homes Destroyed in 2020 East Troublesome Fire
-
Megafires in a Warming World: What Wildfire Risk Factors Led to California’s Largest Recorded Wildfire
-
Impact of Fires on Key Biodiversity Areas (KBAs) and Priority Bird Species for Conservation in Bolivia
-
Study on Coupled Combustion Behavior of Two Parallel Line Fires
Journal Description
Fire
Fire
is an international, peer-reviewed, open access journal about the science, policy, and technology of fires and how they interact with communities and the environment, published bimonthly online by MDPI. The Global Wildland Fire Network is affiliated with Fire.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), AGRIS, PubAg, and many other databases.
- Journal Rank: CiteScore - Q1 (Forestry)
- Rapid Publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 16.7 days after submission; acceptance to publication is undertaken in 3.5 days (median values for papers published in this journal in the second half of 2021).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Paper Types: in addition to regular articles we accept Perspectives, Case Studies, Data Descriptors, Technical Notes, and Monographs.
Latest Articles
Investigation of Spontaneous Combustion Zones and Index Gas Prediction System in Goaf of “Isolated Island” Working Face
Fire 2022, 5(3), 67; https://doi.org/10.3390/fire5030067 - 14 May 2022
Abstract
Studies show that accurate division of spontaneous combustion (SC) zones in the goaf and the determination of the prediction system of the SC index are of great significance to prevent spontaneous and unwanted combustions in the goaf. Aiming at resolving the problem of
[...] Read more.
Studies show that accurate division of spontaneous combustion (SC) zones in the goaf and the determination of the prediction system of the SC index are of great significance to prevent spontaneous and unwanted combustions in the goaf. Aiming at resolving the problem of coal SC in the goaf of an “isolated-island” fully mechanized caving face, a multiphysics model coupled with gas flow field and gas concentration field was established in the present study. Taking the 8824 working face of Nanzhuang coal mine as the research object and the oxygen concentration as the division index, coal SC was simulated in the goaf. The obtained results show that the ranges of heat dissipation zone, oxidation zone, and the asphyxia zone on the air inlet side are around 0–107 m, 107–239 m, and beyond 239 m, respectively. Moreover, the ranges of the three zones on the return air side are 0–13 m, 13–189 m, and beyond 189 m, respectively. The ranges of the three zones in the middle of goaf are 0–52 m, 52–213 m, and beyond 213 m, respectively. The performed analyses demonstrate that the obtained simulation results are consistent with the experimental data. Meanwhile, the coal programmed temperature rise experiment was carried out to improve the prediction index gas system of SC. It was found that CO and C2H4 can be used as early warning indices of SC in the goaf, while C2H6, C3H8, and C2H4/C2H6 are auxiliary indices to master the coal SC.
Full article
(This article belongs to the Special Issue Mine Fires and Explosions)
►
Show Figures
Open AccessArticle
Effects of the Severity of Wildfires on Some Physical-Chemical Soil Properties in a Humid Montane Scrublands Ecosystem in Southern Ecuador
by
, , , , and
Fire 2022, 5(3), 66; https://doi.org/10.3390/fire5030066 - 13 May 2022
Abstract
Humid montane scrublands (HMs) represent one of the least studied ecosystems in Ecuador, which in the last decade have been seriously threatened by the increase in wildfires. Our main objective was to evaluate the effects of wildfire severity on physicochemical soil properties in
[...] Read more.
Humid montane scrublands (HMs) represent one of the least studied ecosystems in Ecuador, which in the last decade have been seriously threatened by the increase in wildfires. Our main objective was to evaluate the effects of wildfire severity on physicochemical soil properties in the HMs of southern Ecuador. For this purpose, fire severity was measured using the Normalized Burn Ratio (NBR) and the difference between pre-fire and post-fire (NBR Pre-fire-NBR Post-fire) over three contrasted periods (years 2019, 2017, and 2015) was determined. Likewise, 72 soil samples from burned HMs and 72 soil samples from unburned HMs were collected at a depth of 0 to 10 cm, and some physical (bulk density and texture) and biochemical (pH, soil organic matter, and total nutrients) soil properties were analyzed and statistically processed by one-way ANOVA and principal component analysis (PCA). Results indicate that burned HMs showed mixed-severity burning patterns and that in the most recent wildfires that are of high severity, SOM, N, P, Cu, and Zn contents decreased drastically (PCA: component 1); in addition, there was an increase in soil compaction (PCA: component 2). However, in older wildfires, total SOM, N, P, K, and soil pH content increases with time compared even to HMs that never burned (p-value < 0.05). These results can help decision makers in the design of policies, regulations, and proposals for the environmental restoration of HMs in southern Ecuador affected by wildfires.
Full article
(This article belongs to the Special Issue Vegetation Fires in South America)
►▼
Show Figures

Figure 1
Open AccessArticle
Prevention Technology of Coal Spontaneous Combustion Induced by Gas Drainage in Deep Coal Seam Mining
Fire 2022, 5(3), 65; https://doi.org/10.3390/fire5030065 - 12 May 2022
Abstract
Due to high gas content and a low permeability coefficient in deep coal seam mining, the spontaneous combustion of coal around the wellbore can easily occur, leading to difficulties in extracting gas during the mining process. To determine the dangerous area around the
[...] Read more.
Due to high gas content and a low permeability coefficient in deep coal seam mining, the spontaneous combustion of coal around the wellbore can easily occur, leading to difficulties in extracting gas during the mining process. To determine the dangerous area around the borehole and conduct advanced prevention and control measures are the keys to preventing spontaneous combustion in boreholes. However, the dangerous area around the borehole is not clear, the sealing parameters lack scientific basis, and the key prevention and control measures are not clear, which have caused great harm to coal mines. This study took the 24,130 working face of Pingdingshan No. 10 Mine as an example, using numerical simulation, theoretical analysis, and field tests to classify the risks of studying the surrounding area of the wellbore. The dangerous area variations under different lengths of shotcrete in the roadway were analyzed, the optimal plugging parameters were studied, and the current “two plugs and one injection” plugging device was optimized. Based on the oxygen concentration and air leakage rate, a method was proposed to divide the dangerous area of fissure coal spontaneous combustion around the borehole induced by gas extraction. The dangerous area of spontaneous combustion around the borehole was defined as having an oxygen concentration larger than 7% and an air leakage rate less than 0.004 m/s. The comprehensive control measures of the grouting length at 2–4 m, hole-sealing parameter at 20-13 (hole-sealing depth 20 m, hole-sealing length 13 m) and the “two plugs, one injection and one row” device were determined.
Full article
(This article belongs to the Special Issue Mine Fires and Explosions)
►▼
Show Figures

Figure 1
Open AccessArticle
Combining Regulatory Instruments and Low-Cost Sensors to Quantify the Effects of 2020 California Wildfires on PM2.5 in San Joaquin Valley
Fire 2022, 5(3), 64; https://doi.org/10.3390/fire5030064 - 12 May 2022
Abstract
►▼
Show Figures
The San Joaquin Valley in California has some of the worst air quality conditions in the nation, affected by a variety of pollution sources including wildfires. Although wildfires are part of the regional ecology, recent increases in wildfire activity may pose increased risk
[...] Read more.
The San Joaquin Valley in California has some of the worst air quality conditions in the nation, affected by a variety of pollution sources including wildfires. Although wildfires are part of the regional ecology, recent increases in wildfire activity may pose increased risk to people and the environment. The 2020 wildfire season in California included the largest wildfires reported to date and resulted in poor air quality across the state. In this study, we looked at the air quality effects of these wildfires in the San Joaquin Valley area. We determined that four wildfires (LNU Lightning Complex, SCU Lightning Complex, Creek, and Castle) were primarily affecting the air quality in the area. The daily PM2.5 emissions from each one of these wildfires were estimated and the largest daily emissions, 1935 ton/day, were caused by the Creek fire. To analyze the air quality in the study area, we developed a method utilizing a combination of regulatory and low-cost sensor data to estimate the daily PM2.5 concentration levels at 5 km spatial resolution. The concentrations maps showed that the highest average concentration levels were reached on 17 September with an average of 130 μg/m3 when about one-fifth of the study area was affected by hazardous PM2.5 levels. A sensitivity study of our interpolation method showed that the addition of low-cost sensors to regulatory data improved the performance of area-wide concentration estimates and reduced the mean absolute error and the root mean square error by more than 20%.
Full article

Figure 1
Open AccessArticle
A Protection for LPG Domestic Cylinders at Wildland-Urban Interface Fire
Fire 2022, 5(3), 63; https://doi.org/10.3390/fire5030063 - 30 Apr 2022
Abstract
Wildland fires are frequent events worldwide, particularly in the European-Mediterranean region, USA, and Australia. These fires have been more frequent and intense in recent years due to climate changes and may cause significant damage, especially when reaching the Wildland-Urban Interface (WUI) areas. The
[...] Read more.
Wildland fires are frequent events worldwide, particularly in the European-Mediterranean region, USA, and Australia. These fires have been more frequent and intense in recent years due to climate changes and may cause significant damage, especially when reaching the Wildland-Urban Interface (WUI) areas. The presence of liquefied petroleum gas (LPG) cylinders may cause severe events in WUI areas, as occurred in Portugal during the large wildfires of 2017, which could have been avoided if the cylinders were protected. Devices for protecting the parts of houses under WUI fire were previously presented, but a protective device for cylinders was not. In this work, a protective device for LPG cylinders made with a thin fabric with an aluminum coating on the external face was tested in laboratory and field conditions. The cylinder and the fabric were equipped with thermocouples and heat flux sensors attached to their surfaces. The tests showed that the device gave effective protection to the cylinder, decreasing the radiative heat flux that reaches it and keeping it in a safe condition when exposed to a fire; consequently preventing extreme behavior such as an explosion.
Full article
(This article belongs to the Special Issue Fire in Human Landscapes)
►▼
Show Figures

Figure 1
Open AccessArticle
A Field Study of Tropical Peat Fire Behaviour and Associated Carbon Emissions
by
, , , , and
Fire 2022, 5(3), 62; https://doi.org/10.3390/fire5030062 - 29 Apr 2022
Abstract
►▼
Show Figures
Tropical peatlands store vast volumes of carbon belowground. Human land uses have led to their degradation, reducing their carbon storage services. Clearing and drainage make peatlands susceptible to surface and belowground fires. Satellites do not readily detect smouldering peat fires, which release globally
[...] Read more.
Tropical peatlands store vast volumes of carbon belowground. Human land uses have led to their degradation, reducing their carbon storage services. Clearing and drainage make peatlands susceptible to surface and belowground fires. Satellites do not readily detect smouldering peat fires, which release globally significant quantities of aerosols and climate-influencing gases. Despite national and international desire to improve management of these fires, few published results exist for in situ tropical peat fire behaviour and associated carbon emissions. We present new field methodology for calculating rates of fire spread within degraded peat (average spread rates, vertical 0.8 cm h−1, horizontal 2.7 cm h−1) and associated peat volume losses (102 m3 ha−1 in August, 754 m3 ha−1 in September) measured at six peat fire sites in Kalimantan, Indonesia, in 2015. Utilizing locally collected bulk density and emission factors, total August and September gas emissions of 27.2 t ha−1 (8.1 tC ha−1) and 200.7 t ha−1 (60.2 tC ha−1) were estimated. We provide much needed, but currently lacking, IPCC Tier 3-level data to improve GHG estimates from tropical peat fires. We demonstrate how calculations of total emission estimates can vary greatly in magnitude (+798% to −26%) depending on environmental conditions, season, peat burn depth methodology, bulk density and emission factors data sources, and assumed versus observed combustion factors. This illustrates the importance of in situ measurements and the need for more refined methods to improve accuracies of GHG estimates from tropical peat fires.
Full article

Figure 1
Open AccessArticle
Reducing Rural Fire Risk through the Development of a Sustainable Supply Chain Model for Residual Agroforestry Biomass Supported in a Web Platform: A Case Study in Portugal Central Region with the Project BioAgroFloRes
Fire 2022, 5(3), 61; https://doi.org/10.3390/fire5030061 - 29 Apr 2022
Abstract
►▼
Show Figures
In the European Mediterranean region, rural fires are a widely known problem that cause serious socio-economic losses and undesirable environmental consequences, including the loss of lives, infrastructures, cultural heritage, and ecosystem services such as carbon sequestration and the provisioning of raw materials. In
[...] Read more.
In the European Mediterranean region, rural fires are a widely known problem that cause serious socio-economic losses and undesirable environmental consequences, including the loss of lives, infrastructures, cultural heritage, and ecosystem services such as carbon sequestration and the provisioning of raw materials. In the last decades, the collapse of the traditional rural socioeconomic systems that once characterized the Mediterranean region, along with land-use changes, have created conflicts and additional driving factors for rural fires. Within Europe, Portugal is the most affected country by rural fires. This work intends to demonstrate the importance of recovering and valorizing residual agroforestry biomass to reduce rural fire risk in Portugal, and thus contributing to a fire resilient landscape. From the results of the known causes of fires in Portugal, it becomes very clear that it is crucial to educate people to end risky behaviors, such as the burning of agroforestry leftovers that causes 27% of fires in Portugal each year. The valorization of the existing energy potential in the lignocellulosic biomass of agroforestry residues favors the reduction of the probability of rural fires, this being the focus of the project BioAgroFloRes—Sustainable Supply Chain Model for Residual Agroforestry Biomass supported in a Web Platform—introduced and explained here.
Full article

Figure 1
Open AccessReview
A Survey on Monitoring of Wild Animals during Fires Using Drones
Fire 2022, 5(3), 60; https://doi.org/10.3390/fire5030060 - 29 Apr 2022
Abstract
Forest fires occur for natural and anthropogenic reasons and affect the distribution, structure, and functioning of terrestrial ecosystems worldwide. Monitoring fires and their impacts on ecosystems is an essential prerequisite for effectively managing this widespread environmental problem. With the development of information technologies,
[...] Read more.
Forest fires occur for natural and anthropogenic reasons and affect the distribution, structure, and functioning of terrestrial ecosystems worldwide. Monitoring fires and their impacts on ecosystems is an essential prerequisite for effectively managing this widespread environmental problem. With the development of information technologies, unmanned aerial vehicles (drones) are becoming increasingly important in remote monitoring the environment. One of the main applications of drone technology related to nature monitoring is the observation of wild animals. Unmanned aerial vehicles are thought to be the best solution for detecting forest fires. There are methods for detecting wildfires using drones with fire- and/or smoke-detection equipment. This review aims to study the possibility of using drones for monitoring large animals during fires. It was established that in order to use unmanned aerial vehicles to monitor even small groups of wild animals during forest fires, effective unmanned remote sensing technologies in critical temperature conditions are required, which can be provided not only by the sensors used, but also by adapted software for image recognition.
Full article
(This article belongs to the Section Fire Science Models, Remote Sensing, and Data)
►▼
Show Figures

Figure 1
Open AccessArticle
Mapping Fine-Scale Crown Scorch in 3D with Remotely Piloted Aircraft Systems
Fire 2022, 5(3), 59; https://doi.org/10.3390/fire5030059 - 29 Apr 2022
Abstract
Remotely piloted aircraft systems (RPAS) are providing fresh perspectives for the remote sensing of fire. One opportunity is mapping tree crown scorch following fires, which can support science and management. This proof-of-concept shows that crown scorch is distinguishable from uninjured canopy in point
[...] Read more.
Remotely piloted aircraft systems (RPAS) are providing fresh perspectives for the remote sensing of fire. One opportunity is mapping tree crown scorch following fires, which can support science and management. This proof-of-concept shows that crown scorch is distinguishable from uninjured canopy in point clouds derived from low-cost RGB and calibrated RGB-NIR cameras at fine resolutions (centimeter level). The Normalized Difference Vegetation Index (NDVI) provided the most discriminatory spectral data, but a low-cost RGB camera provided useful data as well. Scorch heights from the point cloud closely matched field measurements with a mean absolute error of 0.52 m (n = 29). Voxelization of the point cloud, using a simple threshold NDVI classification as an example, provides a suitable dataset worthy of application and further research. Field-measured scorch heights also showed a relationship to RPAS-thermal-camera-derived fire radiative energy density (FRED) estimates with a Spearman rank correlation of 0.43, but there are many issues still to resolve before robust inference is possible. Mapping fine-scale scorch in 3D with RPAS and SfM photogrammetry is a viable, low-cost option that can support related science and management.
Full article
(This article belongs to the Section Fire Science Models, Remote Sensing, and Data)
►▼
Show Figures

Figure 1
Open AccessArticle
Weather Research and Forecasting—Fire Simulated Burned Area and Propagation Direction Sensitivity to Initiation Point Location and Time
by
, , , , , and
Fire 2022, 5(3), 58; https://doi.org/10.3390/fire5030058 - 28 Apr 2022
Abstract
Wildland fire behavior models are often initiated using the detection information listed in incident reports. This information carries an unknown amount of uncertainty, though it is often the most readily available ignition data. To determine the extent to which the use of detection
[...] Read more.
Wildland fire behavior models are often initiated using the detection information listed in incident reports. This information carries an unknown amount of uncertainty, though it is often the most readily available ignition data. To determine the extent to which the use of detection information affects wildland fire forecasts, this research examines the range of burned area values and propagation directions resulting from different initiation point locations and times. We examined the forecasts for ten Colorado 2018 wildland fire case studies, each initiated from a set of 17 different point locations, and three different starting times (a total of 520 case study simulations). The results show that the range of forecast burned area and propagation direction values is strongly affected by the location of the initiation location, and to a lesser degree by the time of initiation.
Full article
(This article belongs to the Section Fire Science Models, Remote Sensing, and Data)
►▼
Show Figures

Figure 1
Open AccessArticle
Experimental Study of the Source of CO Anomalies in Mines Based on Microscopic Changes
Fire 2022, 5(3), 57; https://doi.org/10.3390/fire5030057 - 25 Apr 2022
Abstract
The phenomenon of abnormal CO emergence occurred in a working face of Tangshan mine, and the CO source was analyzed from the two perspectives of CO detection method optimization and microstructure changes in the low-temperature environment of the coal body. Then, the critical
[...] Read more.
The phenomenon of abnormal CO emergence occurred in a working face of Tangshan mine, and the CO source was analyzed from the two perspectives of CO detection method optimization and microstructure changes in the low-temperature environment of the coal body. Then, the critical index system was optimized. The CO identification tube test results and gas chromatograph test results are combined to derive a fitting formula, and the CO identification tube test results are used as the independent variable to obtain the gas chromatograph test results, which can effectively eliminate the error of small CO identification tube test results. The analysis of raw coal and coal samples heated by water bath at 30 °C, 40 °C, and 50 °C was carried out using low temperature liquid nitrogen adsorption and thermogravimetric and infrared spectroscopy experiments. It was found that the pore structure of the coal body developed as the temperature increased; the oxidation reaction occurred in the low-temperature state when heat was absorbed to produce CO. The thermal decomposition of carbonyl group was found to be the main source of CO. Finally, the index of spontaneous combustion of coal is optimized according to the temperature, and the index systems represented by O2/(CO2+CO), CH4 and CO2/CO were determined from 30~80 °C, 90~180 °C and 18~240 °C, respectively.
Full article
(This article belongs to the Special Issue Mine Fires and Explosions)
►▼
Show Figures

Figure 1
Open AccessReply
Reply to Giglio et al. Comment on “Otón et al. Analysis of Trends in the FireCCI Global Long Term Burned Area Product (1982–2018). Fire 2021, 4, 74”
Fire 2022, 5(3), 56; https://doi.org/10.3390/fire5030056 - 20 Apr 2022
Abstract
►▼
Show Figures
First of all, we would like to thank the authors of the comment [...]
Full article

Figure 1
Open AccessArticle
Wildfire Rates of Spread in Grasslands under Critical Burning Conditions
Fire 2022, 5(2), 55; https://doi.org/10.3390/fire5020055 - 14 Apr 2022
Abstract
►▼
Show Figures
An analysis of a dataset (n = 58) of high-intensity wildfire observations in cured grasslands from southern Australia revealed a simple relationship suitable for quickly obtaining a first approximation of a fire’s spread rate under low dead fuel moisture contents and strong
[...] Read more.
An analysis of a dataset (n = 58) of high-intensity wildfire observations in cured grasslands from southern Australia revealed a simple relationship suitable for quickly obtaining a first approximation of a fire’s spread rate under low dead fuel moisture contents and strong wind speeds. It was found that the forward rate of fire spread is approximately 20% of the average 10-m open wind speed. The data on rate of fire spread and 10 m open wind speed ranged from 1.6 to 17 and 20 to 62 km h−1, respectively. The validity of the resulting rule of thumb was examined across a spectrum of burning conditions and its performance was contrasted against that of established empirical-based fire spread models for three different grassland fuel conditions currently used operationally in Australia. The 20% rule of thumb for grassfires produced error statistics comparable to that of the fire spread rate model for grazed or cut grass fuel conditions as recommended for general use during the summer fire season in southern Australia.
Full article

Figure 1
Open AccessReview
The CAED Framework for the Development of Performance-Based Design at the Wildland–Urban Interface
Fire 2022, 5(2), 54; https://doi.org/10.3390/fire5020054 - 13 Apr 2022
Abstract
The hazard posed by wildland–urban-interface (WUI) fires is recognized by the international fire research community and features as one of nine research need priority threads in the Society of Fire Protection Engineers (SFPE) Research Roadmap. We posit that the first step in the
[...] Read more.
The hazard posed by wildland–urban-interface (WUI) fires is recognized by the international fire research community and features as one of nine research need priority threads in the Society of Fire Protection Engineers (SFPE) Research Roadmap. We posit that the first step in the journey to enhancing fire safety engineering at the WUI is to develop a common understanding between developers, engineers, planners, and regulators of the development scope, wildfire problem, technical design solutions, and verification methods to be used. In order to define a fire safety engineering consultation process appropriate for the wildfire context, this paper aims to translate well-established and evidence-based performance-based design (PBD) consultation frameworks and approaches from traditional fire safety engineering to the wildfire context. First, we review international English-language fire safety engineering frameworks that have been developed for the urban context. Next, we distil the results into a streamlined framework, which we call the “CAED Framework”. Finally, we apply and discuss the contextualization of the CAED Framework to the WUI context through a comparative case study of urban and WUI development. In doing so we seek to provide a structure for the development of standardized PBD within the WUI context across jurisdictions internationally, as well as to embed best practices into the emerging field of performance-based wildfire engineering.
Full article
(This article belongs to the Section Fire Research at the Science–Policy–Practitioner Interface)
►▼
Show Figures

Figure 1
Open AccessPerspective
How Nostalgia Drives and Derails Living with Wildland Fire in the American West
Fire 2022, 5(2), 53; https://doi.org/10.3390/fire5020053 - 13 Apr 2022
Abstract
Representations of fire in the U.S. are often tinged with nostalgia: for unburned landscapes, for less frequent fires, for more predictable fire behavior, or for a simpler, more harmonious relationship between human communities and wildfire. Our perspective piece identifies four prevalent nostalgic figures
[...] Read more.
Representations of fire in the U.S. are often tinged with nostalgia: for unburned landscapes, for less frequent fires, for more predictable fire behavior, or for a simpler, more harmonious relationship between human communities and wildfire. Our perspective piece identifies four prevalent nostalgic figures that recur in popular representations of wildfire: the Giant Sequoia, the Heroic Firefighter engaged in “the Good Fight”, the Lone Frontiersman, and the “Noble Savage”. We assess the affordances and constraints of each of these figures for helping and/or hindering fire management. We consider how some forms of nostalgia position particular humans as heroes and fire as a villain, how others prioritize the communities that come together to face catastrophic fire events, and how some romanticize Indigenous burning practices. Drawing on knowledge from fire science, human geography, and the environmental humanities, we suggest that a more nuanced understanding of nostalgia can be useful for fire management and for finding healthier ways of living with more fire in the future.
Full article
(This article belongs to the Collection Rethinking Wildland Fire Governance: A Series of Perspectives)
►▼
Show Figures

Figure 1
Open AccessComment
Comment on Otón et al. Analysis of Trends in the FireCCI Global Long Term Burned Area Product (1982–2018). Fire 2021, 4, 74
Fire 2022, 5(2), 52; https://doi.org/10.3390/fire5020052 - 11 Apr 2022
Cited by 1
Abstract
►▼
Show Figures
In a recent study, Otón et al. [...]
Full article

Figure 1
Open AccessArticle
Detecting Fire-Caused Forest Loss in a Moroccan Protected Area
by
, , , , , and
Fire 2022, 5(2), 51; https://doi.org/10.3390/fire5020051 - 09 Apr 2022
Abstract
Fire is a concern for the sustainability of dry forests such as those of the Mediterranean region, especially under warming climate and high human use. We used data derived from Landsat and MODIS sensors to assess forest changes in the Talassemtane National Park
[...] Read more.
Fire is a concern for the sustainability of dry forests such as those of the Mediterranean region, especially under warming climate and high human use. We used data derived from Landsat and MODIS sensors to assess forest changes in the Talassemtane National Park (TNP) in North Africa from 2003–2018. The Talassemtane National Park is a protected area in northern Morocco, a biodiverse, mountainous region with endemic species of concern such as the Moroccan fir (Abies marocana) and Barbary macaque (Macaca sylvanus). To help the managers of the TNP better understand how the forest has been impacted by fire vs. other disturbances, we combined information from remotely derived datasets. The Hansen Global Forest Change (GFC) data are a global resource providing annual forest change, but without specifying the causes of change. We compared the GFC data to MODIS wildfire data from Andela’s Global Fire Atlas (GFA), a new global tool to identify fire locations and progression. We also analyzed surface reflectance-corrected Landsat imagery to calculate fire severity and vegetation death using Relative Differenced Normalized Burn Ratio analysis (RdNBR). In the park, GFC data showed a net loss of 1695 ha over 16 years, corresponding to an approximately 0.3% annual loss of forest. The GFA identified nine large fires that covered 4440 ha in the study period, coinciding with 833 ha of forest loss in the same period. Within these fires, detailed image analysis showed that GFA fire boundaries were approximately correct, providing the first quantitative test of GFA accuracy outside North America. High-severity fire, as determined by RdNBR analysis, made up about 32% of burned area. Overall, the GFA was validated as a useful management tool with only one non-detected wildfire in the study period; wildfires were linked to approximately 49% of the forest loss. This information helps managers develop conservation strategies based on reliable data about forest threats.
Full article
(This article belongs to the Special Issue Multi-Source and Multi-System Fire Monitoring Relying on EO Data in Mediterranean Ecosystems)
►▼
Show Figures

Figure 1
Open AccessReview
Review on Research Progress of C6F12O as a Fire Extinguishing Agent
Fire 2022, 5(2), 50; https://doi.org/10.3390/fire5020050 - 08 Apr 2022
Abstract
►▼
Show Figures
Clean gas fire suppressants with high efficiency are widely applied. This paper provides a systematic review of the research advances in the novel environmentally friendly suppressant, C6F12O. Considering the principle of screening fire suppressants, the physical and chemical properties
[...] Read more.
Clean gas fire suppressants with high efficiency are widely applied. This paper provides a systematic review of the research advances in the novel environmentally friendly suppressant, C6F12O. Considering the principle of screening fire suppressants, the physical and chemical properties of C6F12O are presented first. Specifically, research on the measurement of the thermodynamic parameters, toxicity, corrosion, environmental compatibility and dispersion characteristics are summarized, revealing that the poor dispersibility, corrosion of the hydrolysates (perfluoropropionic acid), corrosion and toxicity of thermal breakdown products such as HF and COF2 and environmentally unfriendly products such as perfluorocarbons should be paid more attention. Three main synthesis routes of C6F12O are also introduced in view of its promising prospects for application. Furthermore, the fire extinguishing efficiency of C6F12O has been fully investigated in both a laboratory burner scale and full-scale fire extinguishing experiment, the results of which show that the minimum extinguishing volume concentration of C6F12O is lower than HFCs, but the mass concentration is much higher. Although C6F12O has shown satisfactory fire extinguishing performance in various fire protection scenarios, fire enhancement phenomenon and the large production of HF have been observed during fire extinguishment. Finally, the fire extinguishing mechanism of C6F12O has been discussed. The flame suppression effect of C6F12O, combustion enhancement phenomenon and the influence of water in the reaction zone have been revealed. This review fully evaluates C6F12O, in hope that it will provide a reference for follow-up research and the development of a halon replacement.
Full article

Figure 1
Open AccessPerspective
Re-Envisioning Wildland Fire Governance: Addressing the Transboundary, Uncertain, and Contested Aspects of Wildfire
by
, , , , and
Fire 2022, 5(2), 49; https://doi.org/10.3390/fire5020049 - 08 Apr 2022
Abstract
Wildfire is a complex problem because of the diverse mix of actors and landowners involved, uncertainty about outcomes and future conditions, and unavoidable trade-offs that require ongoing negotiation. In this perspective, we argue that addressing the complex challenge of wildfire requires governance approaches
[...] Read more.
Wildfire is a complex problem because of the diverse mix of actors and landowners involved, uncertainty about outcomes and future conditions, and unavoidable trade-offs that require ongoing negotiation. In this perspective, we argue that addressing the complex challenge of wildfire requires governance approaches designed to fit the nature of the wildfire problem. For instance, while wildfire is often described as a cross-boundary problem, understanding wildfire risk as transboundary highlights important political and institutional challenges that complicate collaboration across jurisdictions and shared stewardship. Transboundary risk requires collaborative governance that attends to the distribution of power, authority, and capacity across the range of actors relevant to particular fire-prone landscapes. Wildfire is also changing in unprecedented ways and multiple, interacting uncertainties make predicting future wildfires difficult. Anticipatory governance can build our capacity to integrate uncertainty into wildfire decision-making and manage risk in proactive ways. Finally, competing interests and values mean that trade-offs are inherent to the wildfire problem. Risk governance links science and society through deliberative, participatory processes that explicitly navigate tradeoffs and build legitimacy for actions to address wildfire risk. Governance approaches that better target the nature of the wildfire problem will improve our ability to coexist with fire today and in the future.
Full article
(This article belongs to the Collection Rethinking Wildland Fire Governance: A Series of Perspectives)
►▼
Show Figures

Figure 1
Open AccessArticle
A Study on the Evacuation Spacing of Undersea Tunnels in Different Ventilation Velocity Conditions
Fire 2022, 5(2), 48; https://doi.org/10.3390/fire5020048 - 07 Apr 2022
Abstract
Ventilation velocity conditions may affect the smoke diffusion and evacuation environment in a tunnel fire, which should be fully considered in evacuation spacing designs of undersea tunnels. This study focuses on reasonable evacuation spacing under various possible velocity conditions of an undersea tunnel,
[...] Read more.
Ventilation velocity conditions may affect the smoke diffusion and evacuation environment in a tunnel fire, which should be fully considered in evacuation spacing designs of undersea tunnels. This study focuses on reasonable evacuation spacing under various possible velocity conditions of an undersea tunnel, providing a design method reference for calculating safe evacuation spacing. Fire Dynamic Simulator and Pathfinder software were used for numerical simulations of a 50 MW fire and evacuation process in a full-scale undersea tunnel with traffic congestion. The simulation cases contained velocity modes from zero to satisfying the critical velocity and evacuation spacings from 30 m to 80 m. The calculated distributions of the available safe escape time indicated that a low ventilation velocity, such as 1.0 m/s, is beneficial to the downstream evacuation, but turning off mechanical ventilation increased risk near the fire source. The required safe escape time is shortened with a reduction in slide spacings, but the shortened rate slowed down after spacing was less than 60 m. In addition, the slow evacuating areas from 100 m to 300 m from the fire source independent of spacing are identified. Ultimately, the reasonable evacuation spacings of 60 m, 50 m, and 30 m, corresponding to three possible ventilation velocity modes of low, medium, and high, are proposed through the comparisons of the distributions of available safe escape time and required safe escape time.
Full article
(This article belongs to the Special Issue Fire-Induced Smoke Movement and Control)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Fire Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor's Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Applied Sciences, Climate, Fire, Forests, Land, Remote Sensing
Recent Breakthroughs in Forest Fire Research
Topic Editors: Miguel G. Cruz, Alexander I. Filkov, Cristina Vega, Gilberto Vaz, Marielle JappiotDeadline: 30 June 2022

Conferences
Special Issues
Special Issue in
Fire
Multi-Source and Multi-System Fire Monitoring Relying on EO Data in Mediterranean Ecosystems
Guest Editors: Daniela Stroppiana, Mirco BoschettiDeadline: 24 May 2022
Special Issue in
Fire
Vegetation Fires, Greenhouse Gas Emissions and Climate Change
Guest Editors: João Neves Silva, Duarte OomDeadline: 15 June 2022
Special Issue in
Fire
Socio-Ecological Problems of Fire in Rangelands Wrought by Global Change
Guest Editors: Devan Allen McGranahan, Carissa L. Wonkka, Sofía Laura GonzalezDeadline: 30 June 2022
Topical Collections
Topical Collection in
Fire
Diversity Leaders in Fire Science
Collection Editors: Alistair M. S. Smith, James Lutz, Natasha Ribeiro
Topical Collection in
Fire
Technical Forum for Fire Science Laboratory and Field Methods
Collection Editors: Claire Belcher, David M.J.S. Bowman, Evan Ellicott, Peter Hamlington, Chad Hoffman, William M. Jolly, Rodman Linn, Sara McAllister, Joseph O'Brien, Albert Simeoni, Alistair M. S. Smith, Wojciech Węgrzyński
Topical Collection in
Fire
Rethinking Wildland Fire Governance: A Series of Perspectives
Collection Editors: Alistair M. S. Smith, Stephen D. Fillmore