Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2672 KiB  
Review
A Review on Textile Recycling Practices and Challenges
by Jeanger P. Juanga-Labayen, Ildefonso V. Labayen and Qiuyan Yuan
Textiles 2022, 2(1), 174-188; https://doi.org/10.3390/textiles2010010 - 16 Mar 2022
Cited by 128 | Viewed by 51912
Abstract
The expansion of clothing and textile industry and the fast fashion trend among consumers have caused a rapid global increase in textile waste in the municipal solid waste (MSW) stream. Worldwide, 75% of textile waste is landfilled, while 25% is recycled or reused. [...] Read more.
The expansion of clothing and textile industry and the fast fashion trend among consumers have caused a rapid global increase in textile waste in the municipal solid waste (MSW) stream. Worldwide, 75% of textile waste is landfilled, while 25% is recycled or reused. Landfilling of textile waste is a prevalent option that is deemed unsustainable. Promoting an enhanced diversion of textile waste from landfills demands optimized reuse and recycling technologies. Reuse is the more preferred option compared with recycling. Various textile reuse and recycling technologies are available and progressively innovated to favor blended fabrics. This paper aims to establish reuse and recycling technologies (anaerobic digestion, fermentation, composting, fiber regeneration, and thermal recovery) to manage textile waste. Improved collection systems, automation of sorting, and discovering new technologies for textile recycling remains a challenge. Applying extended producer responsibility (EPR) policy and a circular economy system implies a holistic consensus among major stakeholders. Full article
(This article belongs to the Special Issue New Research Trends for Textiles)
Show Figures

Figure 1

31 pages, 7094 KiB  
Review
Dielectric Properties of Textile Materials: Analytical Approximations and Experimental Measurements—A Review
by Yusuke Yamada
Textiles 2022, 2(1), 50-80; https://doi.org/10.3390/textiles2010004 - 14 Jan 2022
Cited by 25 | Viewed by 21060
Abstract
Deciphering how the dielectric properties of textile materials are orchestrated by their internal components has far-reaching implications. For the development of textile-based electronics, which have gained ever-increasing attention for their uniquely combined features of electronics and traditional fabrics, both performance and form factor [...] Read more.
Deciphering how the dielectric properties of textile materials are orchestrated by their internal components has far-reaching implications. For the development of textile-based electronics, which have gained ever-increasing attention for their uniquely combined features of electronics and traditional fabrics, both performance and form factor are critically dependent on the dielectric properties. The knowledge of the dielectric properties of textile materials is thus crucial in successful design and operation of textile-based electronics. While the dielectric properties of textile materials could be estimated to some extent from the compositional profiles, recent studies have identified various additional factors that have also substantial influence. From the viewpoint of materials characterization, such dependence of the dielectric properties of textile materials have given rise to a new possibility—information on various internal components could be, upon successful correlation, extracted by measuring the dielectric properties. In view of these considerable implications, this invited review paper summarizes various fundamental theories and principles related to the dielectric properties of textile materials. In order to provide an imperative basis for uncovering various factors that intricately influence the dielectric properties of textile materials, the foundations of the dielectrics and polarization mechanisms are first recapitulated, followed by an overview on the concept of homogenization and the dielectric mixture theory. The principal advantages, challenges and opportunities in the analytical approximations of the dielectric properties of textile materials are then discussed based on the findings from the recent literature, and finally a variety of characterization methods suitable for measuring the dielectric properties of textile materials are described. It is among the objectives of this paper to build a practical signpost for scientists and engineers in this rapidly evolving, cross-disciplinary field. Full article
(This article belongs to the Special Issue New Research Trends for Textiles)
Show Figures

Figure 1

33 pages, 6947 KiB  
Review
A Review of Recent Developments in Composites Made of Recycled Carbon Fiber Textiles
by Philip R. Barnett and Hicham K. Ghossein
Textiles 2021, 1(3), 433-465; https://doi.org/10.3390/textiles1030023 - 9 Oct 2021
Cited by 21 | Viewed by 8843
Abstract
Carbon fiber recycling has garnered significant attention in recent years due to the large volume of manufacturing waste and upcoming end-of-life products that will enter the waste stream as the current generation of aircraft is retired from service. Recycled carbon fibers have been [...] Read more.
Carbon fiber recycling has garnered significant attention in recent years due to the large volume of manufacturing waste and upcoming end-of-life products that will enter the waste stream as the current generation of aircraft is retired from service. Recycled carbon fibers have been shown to retain most of their virgin mechanical properties, but their length is generally reduced such that continuous fiber laminates cannot be remade. As such, these fibers are typically used in low-performance applications including injection molding, extrusion/compression molding, and 3D printing that further degrade the fiber length and resulting composite properties. However, recent advances in the processing of long discontinuous fiber textiles have led to medium- to high-performance composites using recycled carbon fibers. This review paper describes the recent advances in recycled carbon fiber textile processing that have made these improvements possible. The techniques used to manufacture high-value polymer composites reinforced with discontinuous recycled carbon fiber are described. The resulting mechanical and multifunctional properties are also discussed to illustrate the advantages of these new textile-based recycled fiber composites over the prior art. Full article
(This article belongs to the Special Issue Fibrous Materials (Textiles) for Functional Applications)
Show Figures

Figure 1

39 pages, 8348 KiB  
Review
Wearable Actuators: An Overview
by Yu Chen, Yiduo Yang, Mengjiao Li, Erdong Chen, Weilei Mu, Rosie Fisher and Rong Yin
Textiles 2021, 1(2), 283-321; https://doi.org/10.3390/textiles1020015 - 24 Aug 2021
Cited by 43 | Viewed by 12527
Abstract
The booming wearable market and recent advances in material science has led to the rapid development of the various wearable sensors, actuators, and devices that can be worn, embedded in fabric, accessorized, or tattooed directly onto the skin. Wearable actuators, a subcategory of [...] Read more.
The booming wearable market and recent advances in material science has led to the rapid development of the various wearable sensors, actuators, and devices that can be worn, embedded in fabric, accessorized, or tattooed directly onto the skin. Wearable actuators, a subcategory of wearable technology, have attracted enormous interest from researchers in various disciplines and many wearable actuators and devices have been developed in the past few decades to assist and improve people’s everyday lives. In this paper, we review the actuation mechanisms, structures, applications, and limitations of recently developed wearable actuators including pneumatic and hydraulic actuators, shape memory alloys and polymers, thermal and hygroscopic materials, dielectric elastomers, ionic and conducting polymers, piezoelectric actuators, electromagnetic actuators, liquid crystal elastomers, etc. Examples of recent applications such as wearable soft robots, haptic devices, and personal thermal regulation textiles are highlighted. Finally, we point out the current bottleneck and suggest the prospective future research directions for wearable actuators. Full article
(This article belongs to the Special Issue New Research Trends for Textiles)
Show Figures

Figure 1

19 pages, 3712 KiB  
Review
Electrically Conductive Textile Materials—Application in Flexible Sensors and Antennas
by Mourad Krifa
Textiles 2021, 1(2), 239-257; https://doi.org/10.3390/textiles1020012 - 30 Jul 2021
Cited by 39 | Viewed by 8608
Abstract
This paper reviews some prominent applications and approaches to developing smart fabrics for wearable technology. The importance of flexible and electrically conductive textiles in the emerging body-centric sensing and wireless communication systems is highlighted. Examples of applications are discussed with a focus on [...] Read more.
This paper reviews some prominent applications and approaches to developing smart fabrics for wearable technology. The importance of flexible and electrically conductive textiles in the emerging body-centric sensing and wireless communication systems is highlighted. Examples of applications are discussed with a focus on a range of textile-based sensors and antennas. Developments in alternative materials and structures for producing flexible and conductive textiles are reviewed, including inherently conductive polymers, carbon-based materials, and nano-enhanced composite fibers and fibrous structures. Full article
(This article belongs to the Special Issue Fibrous Materials (Textiles) for Functional Applications)
Show Figures

Figure 1

21 pages, 7122 KiB  
Review
Innovation in 3D Braiding Technology and Its Applications
by Caroline Emonts, Niels Grigat, Felix Merkord, Ben Vollbrecht, Akram Idrissi, Johannes Sackmann and Thomas Gries
Textiles 2021, 1(2), 185-205; https://doi.org/10.3390/textiles1020009 - 7 Jul 2021
Cited by 25 | Viewed by 15642
Abstract
Braids are generally divided into 2D braids and 3D braids. Two-dimensional braids include flat braids and circular braids. Circular braids represent three-dimensional textiles, as they enclose a volume, but consist of a two-dimensional yarn architecture. Three-dimensional braids are defined by a three-dimensional yarn [...] Read more.
Braids are generally divided into 2D braids and 3D braids. Two-dimensional braids include flat braids and circular braids. Circular braids represent three-dimensional textiles, as they enclose a volume, but consist of a two-dimensional yarn architecture. Three-dimensional braids are defined by a three-dimensional yarn architecture. Historically, 3D braids were produced on row and column braiding machines with Cartesian or radial machine beds, by bobbin movements around inlay yarns. Three-dimensional rotary braiding machines allow a more flexible braiding process, as the bobbins are moved via individually controlled horn gears and switches. Both braiding machines at the Institut für Textiltechnik (ITA) of RWTH Aachen University, Germany, are based on the principal of 3D rotary machines. The fully digitized 3D braiding machine with an Industry 4.0 standard enables the near-net-shape production of three-dimensionally braided textile preforms for lightweight applications. The preforms can be specifically reinforced in all three spatial directions according to the application. Complex 3D structures can be produced in just one process step due to the high degree of design freedom. The 3D hexagonal braiding technology is used in the field of medical textiles. The special shape of the horn gears and their hexagonal arrangement provides the densest packing of the bobbins on the machine bed. In addition, the lace braiding mechanism allows two bobbins to occupy the position between two horn gears, maximizing the number of bobbins. One of the main applications is the near-net-shape production of tubular structures, such as complex stent structures. Three-dimensional braiding offers many advantages compared to 2D braiding, e.g., production of complex three-dimensional geometries in one process step, connection of braided layers, production of cross-section changes and ramifications, and local reinforcement of technical textiles without additional process steps. In the following review, the latest developments in 3D braiding, the machine development of 3D braiding machines, as well as software and simulation developments are presented. In addition, various applications in the fields of lightweight construction and medical textiles are introduced. Full article
(This article belongs to the Special Issue Fibrous Materials (Textiles) for Functional Applications)
Show Figures

Figure 1

66 pages, 16157 KiB  
Review
A Review of the Mechanical and Physical Properties of Polyethylene Fibers
by Coline Roiron, Eric Lainé, Jean-Claude Grandidier, Nicolas Garois and Cathie Vix-Guterl
Textiles 2021, 1(1), 86-151; https://doi.org/10.3390/textiles1010006 - 4 Jun 2021
Cited by 23 | Viewed by 7482
Abstract
Since the 1970s and 1980s, a major effort has been made to study UHMWPE (Ultra-High Molecular Weight PolyEthylene) fibers with remarkable mechanical properties, based on a basic polymer such as PE (PolyEthylene). These performances are above all associated with a very strong alignment [...] Read more.
Since the 1970s and 1980s, a major effort has been made to study UHMWPE (Ultra-High Molecular Weight PolyEthylene) fibers with remarkable mechanical properties, based on a basic polymer such as PE (PolyEthylene). These performances are above all associated with a very strong alignment of the molecules and the microfibrillar structures formed using various processes. However, they vary greatly depending on many parameters, and particularly on the draw ratio. Thus, these characteristics have been extensively analyzed by dynamic, static tensile, and creep tests, and are predominantly viscoelastic. The behavior appears to be associated with physical considerations and with the characteristic orthorhombic-hexagonal solid phase transition. The presence of a hexagonal phase is detrimental to the behavior because the chains slide easily relative to each other. Shifting this transition to higher temperatures is a challenge and many factors influence it and the temperature at which it takes place, such as the application of stress or annealing. The objective here is to give an overview of what has been done so far to understand the behavior of UHMWPE yarns. This is important given future numerical modeling work on the dimensioning of structural parts in which these UHMWPE yarns will be reinforcements within composites. Full article
(This article belongs to the Special Issue Fibrous Materials (Textiles) for Functional Applications)
Show Figures

Graphical abstract

18 pages, 28343 KiB  
Review
Washability of E-Textiles: Failure Modes and Influences on Washing Reliability
by Sigrid Rotzler and Martin Schneider-Ramelow
Textiles 2021, 1(1), 37-54; https://doi.org/10.3390/textiles1010004 - 21 May 2021
Cited by 28 | Viewed by 5695
Abstract
E-textiles, hybrid products that incorporate electronic functionality into textiles, often need to withstand washing procedures to ensure textile typical usability. Yet, the washability—which is essential for many e-textile applications like medical or sports due to hygiene requirements—is often still insufficient. The influence factors [...] Read more.
E-textiles, hybrid products that incorporate electronic functionality into textiles, often need to withstand washing procedures to ensure textile typical usability. Yet, the washability—which is essential for many e-textile applications like medical or sports due to hygiene requirements—is often still insufficient. The influence factors for washing damage in textile integrated electronics as well as common weak points are not extensively researched, which makes a targeted approach to improve washability in e-textiles difficult. As a step towards reliably washable e-textiles, this review bundles existing information and findings on the topic: a summary of common failure modes in e-textiles brought about by washing as well as influencing parameters that affect the washability of e-textiles. The findings of this paper can be utilized in the development of e-textile systems with an improved washability. Full article
(This article belongs to the Special Issue Fibrous Materials (Textiles) for Functional Applications)
Show Figures

Figure 1

Back to TopTop