Advances in Technical Textiles

A special issue of Textiles (ISSN 2673-7248).

Deadline for manuscript submissions: closed (31 December 2025) | Viewed by 42099

Special Issue Editors


E-Mail Website
Guest Editor
1. German Textile Research Center North-West, 47798 Krefeld, Germany
2. Department of Chemistry, Moscow State University, Moscow 119899, Russia
Interests: polymer physics; fiber; technical textiles; soft matter; colloid and surface chemistry; thin polymer films

E-Mail Website
Guest Editor
German Textile Research Center North-West, 47798 Krefeld, Germany
Interests: fiber physics; surface modification; thin-layer deposition; photo-chemistry; photo-grafting; wettability

E-Mail Website
Guest Editor
1. DWI–Leibniz Institute for Interactive Materials e. V., 52056 Aachen, Germany
2. Lehrstuhl für Makromolekulare Chemie der RWTH Aachen University, 52056 Aachen, Germany
Interests: self-assembling materials; sol-gel technology; organic synthesis; macromolecular chemistry; textile finishing; functional coatings

Special Issue Information

Dear Colleagues,

The development of the structure and functionality of fibers and fabrics is indispensable for advances in modern technologies spanning across transport, construction, geo- and agriculture sectors, environmental protection, medicine, and electronics, all of which increasingly make use of technical textiles.

The scope of this Special Issue focuses on novel advances in fabrication, materials, and products, which constitute technical textiles. These may cover improvements in fibers and nanofibers, woven and non-woven fabrics, coated and laminated fabrics, and fiber-reinforced composites that aim at achieving better performance, sustainability, or eco-friendly properties.

Review articles, original research papers, and short letters are solicited for submission and will be peer-reviewed prior to publication.

Dr. Larisa A. Tsarkova
Dr. Thomas Bahners
Dr. Xiaomin Zhu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Textiles is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • technical textiles
  • fibers
  • biopolymers
  • biobased fiber-reinforced composites
  • sustainability in textile fabrication, coloration, and finishing

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 1564 KB  
Article
Evaluating the Potential of Enzymatically Synthesized Flavonoid Oligomers for Simultaneous Dyeing and Functionalization of Fabrics of Different Chemical Compositions
by Ana Vukoičić, Aleksandra Ivanovska, Marija Ćorović, Anja Petrov Ivanković, Ana Milivojević and Dejan Bezbradica
Textiles 2026, 6(1), 18; https://doi.org/10.3390/textiles6010018 - 9 Feb 2026
Viewed by 81
Abstract
This study explored, for the first time, the simultaneous dyeing and functionalization of textiles using enzymatically synthesized mixtures of phloridzin and esculin oligomers. Initial screening using multifiber fabric containing diacetate, cotton, polyamide, polyester, polyacrylonitrile, silk, viscose, and wool revealed that the oligomers successfully [...] Read more.
This study explored, for the first time, the simultaneous dyeing and functionalization of textiles using enzymatically synthesized mixtures of phloridzin and esculin oligomers. Initial screening using multifiber fabric containing diacetate, cotton, polyamide, polyester, polyacrylonitrile, silk, viscose, and wool revealed that the oligomers successfully imparted color and high antioxidant activity to cotton, polyamide, and viscose. These three materials were therefore selected for determination of key process parameters’ influence, including temperature (35 °C and 75 °C), reaction time (6 h and 19 h), and oligomers’ concentration (1.5 and 3.0 mg/mL). Treated fabrics were evaluated for color strength (K/S), antioxidant activity, and prebiotic capacity (in vitro stratum corneum model), with all properties assessed before and after washing. The results showed that several functionalized fabrics retained coloration and functionality after washing, while fabrics functionalized with esculin oligomers’ mixture showed strong prebiotic capacity. Overall, the polyamide that functionalized with 3.0 mg/mL esculin oligomers for 19 h at 35 °C was identified as a promising candidate for reusable colored textiles, including dermatology-oriented garments for sensitive or atopic skin, sportswear, protective workwear, and daily use functional items such as hygienic pads or cloth liners. These findings demonstrate the feasibility of developing textiles with targeted prebiotic functionality. Full article
(This article belongs to the Special Issue Advances in Technical Textiles)
Show Figures

Graphical abstract

24 pages, 7551 KB  
Article
Scalable Fabrication of Non-Toxic Polyamide 6 Hybrid Nanofiber Membranes Using CuO for Antimicrobial and Aerosol Filtration Protection
by Radmila Žižková, Baturalp Yalcinkaya, Eva Filová, Fatma Yalcinkaya and Matej Buzgo
Textiles 2026, 6(1), 2; https://doi.org/10.3390/textiles6010002 - 29 Dec 2025
Viewed by 375
Abstract
Electrospinning has advanced from a lab technique to an industrial method, enabling modern filters that are high-performing, sustainable, recyclable, and non-toxic. This study produced recycled PA6 nanofibers using green solvents and incorporated non-toxic CuO nanoparticles via industrial free-surface electrospinning. Polymer solutions with concentrations [...] Read more.
Electrospinning has advanced from a lab technique to an industrial method, enabling modern filters that are high-performing, sustainable, recyclable, and non-toxic. This study produced recycled PA6 nanofibers using green solvents and incorporated non-toxic CuO nanoparticles via industrial free-surface electrospinning. Polymer solutions with concentrations of 12.5, 15.0 and 17.5 (w/v)% were electrospun directly onto recyclable polypropylene spunbond/meltblown nonwoven substrates to produce nanofibers with average fiber sizes of 80–250 nm. Electrospinning parameter optimization revealed that the 12.5 wt.% PA6 solution and the 2–3 mm·s−1 winding speed had the optimal performance, attaining 98.06% filtering efficiency and a 142 Pa pressure drop. The addition of 5 wt.% CuO nanoparticles increased the membrane density and reduced the pressure drop to 162 Pa, thereby improving the filtration efficiency to 98.23%. Bacterial and viral filtration studies have demonstrated pathogen retention above 99%. Moreover, antibacterial and antiviral testing has demonstrated that membranes trap and inactivate microorganisms, resulting in a 2.0 log (≈approximately 99%) reduction in viral titer. This study shows that recycled PA6 can be converted into high-performance membranes using green, industrial electrospinning, introducing innovations such as non-toxic CuO functionalization and ultra-fine fibers on recyclable substrates, yielding sustainable filters with strong antimicrobial and filtration performance, which are suitable for personal protective equipment and medical filtration. Full article
(This article belongs to the Special Issue Advances in Technical Textiles)
Show Figures

Graphical abstract

19 pages, 3317 KB  
Article
Cementitious Composites Reinforced with Multidimensional Epoxy-Coated Sisal/PET Braided Textile
by Lais Kohan, Carlos Alexandre Fioroni, Adriano G. S. Azevedo, Ivis de Aguiar Souza, Tais O. G. Freitas, Daniel V. Oliveira, Julia Baruque-Ramos, Raul Fangueiro and Holmer Savastano Junior
Textiles 2025, 5(4), 70; https://doi.org/10.3390/textiles5040070 - 18 Dec 2025
Viewed by 475
Abstract
Textile-reinforced concrete (TRC) is an alternative class of mechanical reinforcement for cement composites. The biaxial braided reinforcement structure in composite materials with diverse cross-sectional shapes offers high adaptability, torsional stability, and resistance to damage. In general, 3D textile reinforcements improve the mechanical properties [...] Read more.
Textile-reinforced concrete (TRC) is an alternative class of mechanical reinforcement for cement composites. The biaxial braided reinforcement structure in composite materials with diverse cross-sectional shapes offers high adaptability, torsional stability, and resistance to damage. In general, 3D textile reinforcements improve the mechanical properties of composites compared to 2D reinforcements. This study aimed to verify reinforcement behavior by comparing multidimensional braided textiles, 2D (one- and two-layer) reinforcements, and 3D reinforcement in composite cementitious boards. Experimental tests were performed to evaluate the effect of textile structures on cementitious composites using four-point bending tests, porosity measurements, and crack patterns. All textiles showed sufficient space between yarns, allowing the matrix (a commercial formulation) to infiltrate and influence the composite mechanical properties. All composites presented ductility behavior. The two layers of 2D textile composites displayed thicker cracks, influenced by shear forces. Three-dimensional textiles exhibited superior values in four-point bending tests for modulus of rupture (7.4 ± 0.5 MPa) and specific energy (5.7 ± 0.3 kJ/m2). No delamination or debonding failure was observed in the boards after the bending tests. The 3D textile structure offers a larger contact area with the cementitious matrix and creates a continuous network, enabling more uniform force distribution in all directions. Full article
(This article belongs to the Special Issue Advances in Technical Textiles)
Show Figures

Figure 1

13 pages, 1436 KB  
Article
Basalt Fiber Mechanical Properties After Low-Temperature Treatment
by Sergey I. Gutnikov, Evgeniya S. Zhukovskaya, Sergey S. Popov and Bogdan I. Lazoryak
Textiles 2025, 5(3), 32; https://doi.org/10.3390/textiles5030032 - 5 Aug 2025
Viewed by 1462
Abstract
This study investigates the production and characterization of basalt continuous fibers (BCFs) with varying oxide contents (including Na2O, SiO2, CaO, TiO2, and Al2O3), derived from modified basalt bulk glasses. The fibers were created [...] Read more.
This study investigates the production and characterization of basalt continuous fibers (BCFs) with varying oxide contents (including Na2O, SiO2, CaO, TiO2, and Al2O3), derived from modified basalt bulk glasses. The fibers were created through a two-stage process that included the preparation of basalt glasses followed by fiber drawing. A key focus of the research was on evaluating the mechanical properties of BCF after low-temperature treatments. Tensile testing revealed that the maximum tensile strength of the fibers was 1915 MPa at room temperature, which decreased to 1714 MPa at −196 °C, representing a shift of −10.5%. The addition of sodium oxide not only broadened the fiber-forming temperature range but also increased the strength to 2351 MPa. However, significant reductions in strength were observed at cryogenic temperatures, particularly for the Na-rich sample, which experienced a decrease of 32.8%. These findings highlight the importance of optimizing oxide content and minimizing hydroxyl (OH) groups to enhance the performance of basalt fibers in low-temperature applications, positioning them as viable materials for use in extreme environments. Full article
(This article belongs to the Special Issue Advances in Technical Textiles)
Show Figures

Figure 1

9 pages, 3001 KB  
Article
Three-Dimensional Printing by Vat Photopolymerization on Textile Fabrics: Method and Mechanical Properties of the Textile/Polymer Composites
by Philipp Gruhn, Daniel Koske, Jan Lukas Storck and Andrea Ehrmann
Textiles 2024, 4(3), 417-425; https://doi.org/10.3390/textiles4030024 - 17 Sep 2024
Cited by 4 | Viewed by 2438
Abstract
Composites of textile fabrics and 3D-printed layers have been investigated thoroughly during the last decade. Usually, material extrusion such as the fused deposition modeling (FDM) technique is used to build such composites, revealing challenges in preparing form-locking connections between both materials due to [...] Read more.
Composites of textile fabrics and 3D-printed layers have been investigated thoroughly during the last decade. Usually, material extrusion such as the fused deposition modeling (FDM) technique is used to build such composites, revealing challenges in preparing form-locking connections between both materials due to the highly viscous polymer melt, which can hardly be pressed into textile fabrics. Resins used for 3D printing by vat photopolymerization, i.e., for stereolithography (SLA), are less viscous and can thus penetrate deeper into textile fabrics; however, fixing a textile on the printing bed that is fully dipped into the resin is more complicated. Here, we present one possible solution to easily fix textile fabrics for SLA printing with consumer printers according to the digital light processing (DLP) sub-method. Also, we show the results of a study of the mechanical properties of the resulting textile/polymer composites, as revealed by three-point bending tests. Full article
(This article belongs to the Special Issue Advances in Technical Textiles)
Show Figures

Figure 1

12 pages, 1964 KB  
Article
Characterization of the Viscoelastic Properties of Yarn Materials: Dynamic Mechanical Analysis in Longitudinal Direction
by Karl Kopelmann, Mathis Bruns, Andreas Nocke, Michael Beitelschmidt and Chokri Cherif
Textiles 2023, 3(3), 307-318; https://doi.org/10.3390/textiles3030021 - 11 Aug 2023
Cited by 1 | Viewed by 2923
Abstract
Warp knitting is a highly productive textile manufacturing process and method of choice for many products. With the current generation of machines running up to 4400 min−1, dynamics become a limit for the production. Resonance effects of yarn-guiding elements and oscillations [...] Read more.
Warp knitting is a highly productive textile manufacturing process and method of choice for many products. With the current generation of machines running up to 4400 min−1, dynamics become a limit for the production. Resonance effects of yarn-guiding elements and oscillations of the yarn lead to load peaks, resulting in breakage or mismatches. This limits material choice to highly elastic materials for high speeds, which compensate for these effects through their intrinsic properties. To allow the processing of high-performance fibers, a better understanding of the viscoelastic yarn behavior is necessary. The present paper shows a method to achieve this in longitudinal yarn direction using a dynamic mechanical analysis approach. Samples of high tenacity polyester and aramid are investigated. The test setup resembles the warp knitting process in terms of similar geometrical conditions, pre-loads, and occurring frequencies. By recording the mechanical load resulting from an applied strain, it is possible to calculate the phase shift and the dissipation factor, which is a key indicator for the damping behavior. It shows that the dissipation factor rises with rising frequency. The results allow for a simulation of the warp knitting process, including a detailed yarn model and representation of stitch-formation process. Full article
(This article belongs to the Special Issue Advances in Technical Textiles)
Show Figures

Graphical abstract

12 pages, 4835 KB  
Article
Efficient Poisson’s Ratio Evaluation of Weft-Knitted Auxetic Metamaterials
by Kun Luan, Zoe Newman, Andre West, Kuan-Lin Lee and Srujan Rokkam
Textiles 2023, 3(3), 275-286; https://doi.org/10.3390/textiles3030018 - 4 Jul 2023
Cited by 7 | Viewed by 14634
Abstract
Auxetic metamaterials expand transversely when stretched longitudinally or contract transversely when compressed, resulting in a negative Poisson’s ratio (NPR). Auxetic fabrics are 3D textile metamaterials possessing a unique geometry that can generate an auxetic response with respect to tension. In weft-knitted auxetic fabrics, [...] Read more.
Auxetic metamaterials expand transversely when stretched longitudinally or contract transversely when compressed, resulting in a negative Poisson’s ratio (NPR). Auxetic fabrics are 3D textile metamaterials possessing a unique geometry that can generate an auxetic response with respect to tension. In weft-knitted auxetic fabrics, the NPR property is achieved due to the inherent curling effect of the face and back stitches of the knit loops; they contract in an organized knitting pattern. The traditional method used to evaluate NPR is to measure the lateral fabric deformation during axial tensile testing on a mechanical testing machine, which is time-consuming and inaccurate in measuring uneven deformations. In this study, an efficient method was developed to evaluate the NPR of weft-knitted fabric that can also estimate deformation directionality. The elasticity and extension properties of the weft-knitted fabric can be analyzed immediately following removal from the knitting bed. Five fabrics, all with the same stitch densities (including four auxetic patterns and one single jersey pattern), were designed and produced to validate the proposed method. The use of our estimation method to evaluate the Poisson’s ratio of such fabrics showed higher values compared with the traditional method. In conclusion, the deformation directionality, elasticity, and extensionality were examined. It is anticipated that the proposed method could assist in the innovative development and deployment of auxetic knitted metamaterials. Full article
(This article belongs to the Special Issue Advances in Technical Textiles)
Show Figures

Graphical abstract

22 pages, 29988 KB  
Article
Influence of Knitting and Material Parameters on the Quality and Reliability of Knitted Conductor Tracks
by Sigrid Rotzler, Jan Malzahn, Lukas Werft, Malte von Krshiwoblozki and Elisabeth Eppinger
Textiles 2022, 2(4), 524-545; https://doi.org/10.3390/textiles2040030 - 5 Oct 2022
Cited by 5 | Viewed by 3563
Abstract
Many electronic textile (e-textile) applications require a stretchable basis, best achieved through knitted textiles. Ideally, conductive structures can be directly integrated during the knitting process. This study evaluates the influence of several knitting and material parameters on the resistance of knitted conductive tracks [...] Read more.
Many electronic textile (e-textile) applications require a stretchable basis, best achieved through knitted textiles. Ideally, conductive structures can be directly integrated during the knitting process. This study evaluates the influence of several knitting and material parameters on the resistance of knitted conductive tracks after the knitting process and after durability testing. The knitting speed proves to be of little influence, while the type of conductive thread used, as well as the knitting pattern both impact the resistance of the knitted threads and their subsequent reliability considerably. The presented research provides novel insights into the knitting process for conductive yarns and possible applications and shows that choosing suitable material and processing methods can improve the quality and robustness of knitted e-textiles. Full article
(This article belongs to the Special Issue Advances in Technical Textiles)
Show Figures

Figure 1

14 pages, 5375 KB  
Article
A Prognostic Based Fuzzy Logic Method to Speculate Yarn Quality Ratio in Jute Spinning Industry
by Tamal Krishna Paul, Tazin Ibna Jalil, Md. Shohan Parvez, Md. Reazuddin Repon, Ismail Hossain, Md. Abdul Alim, Tarikul Islam and Mohammad Abdul Jalil
Textiles 2022, 2(3), 422-435; https://doi.org/10.3390/textiles2030023 - 29 Jul 2022
Cited by 5 | Viewed by 4247
Abstract
Jute is a bio-degradable, agro-renewable, and widely available lingo cellulosic fiber having high tensile strength and initial modulus, moisture regain, good sound, and heat insulation properties. For these unique properties and eco-friendly nature of jute fibers, jute-based products are now widely used in [...] Read more.
Jute is a bio-degradable, agro-renewable, and widely available lingo cellulosic fiber having high tensile strength and initial modulus, moisture regain, good sound, and heat insulation properties. For these unique properties and eco-friendly nature of jute fibers, jute-based products are now widely used in many sectors such as packaging, home textiles, agro textiles, build textiles, and so forth. The diversified applications of jute products create an excellent opportunity to mitigate the negative environmental effect of petroleum-based products. For producing the best quality jute products, the main prerequisite is to ensure the jute yarn quality that can be defined by the load at break (L.B), strain at break (S.B), tenacity at break (T.B), and tensile modulus (T.M). However, good quality yarn production by considering these parameters is quite difficult because these parameters follow a non-linear relationship. Therefore, it is essential to build up a model that can cover this entire inconsistent pattern and forecast the yarn quality accurately. That is why, in this study, a laboratory-based research work was performed to develop a fuzzy model to predict the quality of jute yarn considering L.B, S.B, T.B, and T.M as input parameters. For this purpose, 173 tex (5 lb/spindle) and 241 tex (7 lb/spindle) were produced, and then L.B, S.B, T.B and T.M values were measured. Using this measured value, a fuzzy model was developed to determine the optimum L.B, S.B, T.B, and T.M to produce the best quality jute yarn. In our proposed fuzzy model, for 173 tex and 241 tex yarn count, the mean relative error was found to be 1.46% (Triangular membership) and 1.48% (Gaussian membership), respectively, and the correlation coefficient was 0.93 for both triangular and gaussian membership function. This result validated the effectiveness of the proposed fuzzy model for an industrial application. The developed fuzzy model may help a spinner to produce the best quality jute yarn. Full article
(This article belongs to the Special Issue Advances in Technical Textiles)
Show Figures

Figure 1

Review

Jump to: Research

42 pages, 6644 KB  
Review
Advancing Greenhouse Air Filtration: Biodegradable Nanofiber Filters with Sustained Antimicrobial Performance
by Amirali Bajgholi, Reza Jafari and Alireza Saidi
Textiles 2026, 6(1), 15; https://doi.org/10.3390/textiles6010015 - 27 Jan 2026
Viewed by 314
Abstract
Air quality management in greenhouses is critical to safeguarding plant health and occupational safety, yet conventional filtration methods often fall short in performance and sustainability. These enclosed environments are prone to the accumulation of bioaerosols, including fungi, bacteria, pollen, and dust particles, which [...] Read more.
Air quality management in greenhouses is critical to safeguarding plant health and occupational safety, yet conventional filtration methods often fall short in performance and sustainability. These enclosed environments are prone to the accumulation of bioaerosols, including fungi, bacteria, pollen, and dust particles, which can compromise crop productivity and pose health risks to workers. This review explores recent advancements in air filtration technologies for controlled environments such as greenhouses, where airborne particulate matter, bioaerosols, and volatile organic compounds (VOCs) present ongoing challenges. Special focus is given to the development of filtration media based on electrospun nanofibers, which offer high surface area, tunable porosity, and low airflow resistance. The use of biodegradable polymers in these systems to support environmental sustainability is examined, along with electrospinning techniques that enable precise control over fiber morphology and functionalization. Antimicrobial enhancements are discussed, including inorganic agents such as metal nanoparticles and bio-based options like essential oils. Essential oils, known for their broad-spectrum antimicrobial properties, are assessed for their potential in long-term, controlled-release applications through nanofiber encapsulation. Overall, this paper highlights the potential of integrating sustainable materials, innovative fiber fabrication techniques, and nature-derived antimicrobials to advance air filtration performance while meeting ecological and health-related standards. Full article
(This article belongs to the Special Issue Advances in Technical Textiles)
Show Figures

Graphical abstract

30 pages, 10124 KB  
Review
Current and Future Trends in Textiles for Concrete Construction Applications
by Martin Scheurer, Danny Friese, Paul Penzel, Gözdem Dittel, Shantanu Bhat, Vanessa Overhage, Lars Hahn, Kira Heins, Chokri Cherif and Thomas Gries
Textiles 2023, 3(4), 408-437; https://doi.org/10.3390/textiles3040025 - 17 Oct 2023
Cited by 14 | Viewed by 8937
Abstract
Textile-reinforced concrete (TRC) is a composite material consisting of a concrete matrix with a high-performance reinforcement made of technical textiles. TRC offers unique mechanical properties for the construction industry, enabling the construction of lightweight, material-minimized structures with high load-bearing potential. In addition, compared [...] Read more.
Textile-reinforced concrete (TRC) is a composite material consisting of a concrete matrix with a high-performance reinforcement made of technical textiles. TRC offers unique mechanical properties for the construction industry, enabling the construction of lightweight, material-minimized structures with high load-bearing potential. In addition, compared with traditional concrete design, TRC offers unique possibilities to realize free-form, double-curved structures. After more than 20 years of research, TRC is increasingly entering the market, with several demonstrator elements and buildings completed and initial commercialization successfully finished. Nevertheless, research into this highly topical area is still ongoing. In this paper, the authors give an overview of the current and future trends in the research and application of textiles in concrete construction applications. These trends include topics such as maximizing the textile utilization rate by improving the mechanical load-bearing performance (e.g., by adapting bond behavior), increasing design freedom by utilizing novel manufacturing methods (e.g., based on robotics), adding further value to textile reinforcements by the integration of additional functions in smart textile solutions (e.g., in textile sensors), and research into increasing the sustainability of TRC (e.g., using recycled fibers). Full article
(This article belongs to the Special Issue Advances in Technical Textiles)
Show Figures

Figure 1

Back to TopTop