A Review of the Structure, Performance, Fabrication, and Impacts of Application Conditions on Wearable Textile GNSS Antennas
Abstract
1. Introduction
2. Structure and Performance of Wearable Textile Antennas
2.1. Frequency Bands of BDS Antennas and Performance of GNSS Textile Antennas
2.1.1. Frequency Bands of BDS Antennas
2.1.2. Performance and Dimensions of GNSS Textile Antennas
Ref. | Freq. (GHz) | Type | Size (mm) Length × Width × Thickness | Gain/Effi. |
---|---|---|---|---|
Sungwoo [23] | 1.555–1.625 GPS, GLONASS | Patch antenna | 100 × 100 × 1.575 | / |
Vallozzi [24] | GPS-L1 | Patch antenna | / | 8.4 dBi (open space) 8.34 dBi (with additional textile layers) 7.52 dBi (on body with firefighter jacket) |
Sabapathy [25] | 1.538–1.622 | Patch antenna | 113.75 × 99 | / |
Ahmad [26] | 1.563–1.587 GPS L1 902–928 MHz ISM | Patch antenna monopole antenna | / | 9.37 dBi, 80.31% 7.83 dBi, 14.61% |
Anbalagan [27] | Slot antenna | 48 × 80 × 0.99 | 0.36 dB | |
Hassan [28] | 1–1.62 GPS L1 L2 | / | 139.43 × 139.43 × 6 | L1: −0.4–2.4 dB L2: 1.1–2.1 dB |
Salleh [29] | 1.575 | Patch antenna | 113 × 99 × 2.04 | 0.2–4.8 dBi 17.1–47.2% |
Ahmed [30] | / | Patch antenna | 86 × 69 × 1.6 | 6.33 dBi |
Gil [31] | 1.575 GPS L1 | Patch antenna | 115 × 114 × 0.8 | −0.4 dBi 15.6% |
Nordin [32] | / | Patch antenna | 100 × 66 × 1 | / |
Choi [33] | 1.563–1.587 GPS L1 902–928 MHz ISM | Patch antenna monopole antenna | 158 × 158 × 5.2 | 8.26 dBi, 72.61% −10.96 dBi, 6.39% |
Monti [34] | 1.575 GPS L1 1.710–1.785, 1.805–1.880 GSM-1800 | Patch antenna | 95.2 × 47.6 | 7.5 dB |
Gil [35] | 1.575 GPS L1 | Patch antenna | 72 × 71 × 1 | 1.7 dBi 23.1% |
Sundarsingh [36] | 1.435–1.81 GPS L1, L3 2.755–3.19 4 G LTE | Patch antenna | Patch 53 × 44.35 × 7 | 96% 88% |
Jais [37] | GNSS | Patch r = 40 mm | 1.81 dB | |
Kaivanto [38] | Iridium GPS | Slot antenna | Patch 65 × 65 × 3 | −2.5–7.5 dBi |
2.2. GNSS Textile Antenna Bandwidth Enhancement Techniques
Ref. | Type | Application | Method | Bandwidth (MHz) |
---|---|---|---|---|
Hussine [39] | Patch antenna | GNSS | / | 610 |
Mao [41] | Patch antenna | 2.45 GHz ISM | Additional strip on feedline | 40 (1.6%) (Before) 120 (4.8%) (After) |
Abdulmalek [42] | Slot antenna | 5.2 GHz ISM WLAN | Slot the patch | 180 (Before) 870 (After) |
Jaiswal [43] | Slot antenna | / | “U” slot via open hole pin | / |
Mustaqim [44] | Patch antenna | UBW | DGS stepped slits on patch Add notch on ground | 2500 (Before) 7500 (After) |
Le [45] | Slot antenna | 5.85 GHz WBAN | MS | / |
Dwivedi [46] | Patch antenna | / | Central hexagonal slot DGS | 1635 |
Soh [47] | PIFA | 1.8–3 GHz WBAN | PIFA Short-Circuit Wall Interconnection Slot the patch | / |
Hassan [48] | Patch antenna | GPS, UMTS, WiFi, ISM, Bluetooth, WLAN, WiMAX, 5G | Slots on patch DGS | 0.58–0.83 GHz 1.39–1.58 GHz 2.40–2.43 GHz 2.88–3.52 GHz 4.93–5.15 GHz |
Zaidi [49] | Patch antenna | 1.575 GHz GPS | DGS | 4.04% (Before) 12.20% (After) |
Karimyian [50] | Fractal antenna | GPS, PCS-1900, WiFi, UWB | Non-uniform geometry patch DGS | 1.4–20 GHz (18,600) |
Ullah [40] | Patch antenna | / | Non-Uniform geometry patch | 1–6 GHz (5000) |
2.3. GNSS Textile Antenna Miniaturization Techniques
Ref. | Freq (GHz) | Type | Method | Area (mm3) |
---|---|---|---|---|
Tekneci [53] | 1.568–1.582 GPS 5.15–5.35 WLAN | NSRR | 31 × 27 × 0.7 0.187λg × 0.215λg × 0.004λg | |
Rao [54] | 1.57–1.615 GPS, GLONASS | Patch antenna | 58 × 58 × 1.57 0.307λo × 0.307λo × 0.008λo | |
Wen [55] | - | Patch antenna | 50 × 50 × 1.6 | |
Ismail [56] | 1.575 GPS | Dipole antenna | Meandering Slot | 40 × 25 × 0.1016 |
2.4. GNSS Textile Antenna Gain Enhancement Techniques
Ref. | Freq (GHz) | Method | Area (mm3) | Gain (dBi) |
---|---|---|---|---|
Tetik [57] | 1.654–2.052 ISM | EBG | 76 × 58 × 0.71 | 2.746 |
Sabban [58] | 0.4 | SRR | / | / |
Zhu [59] | 2.4 5 | EBG | Patch: 55 × 55 × 1.1 EBG: 120 × 120 × 2.2 | / |
Hassan [48] | 0.58–0.83 1.39–1.58 2.40–2.43 2.88–3.52 4.93–5.15 GPS, UMTS, Wi-Fi, ISM, WLAN, WiMAX, 5G | Use silver nanoparticles for high electrical conductivity and precise printing | / | 12 |
Joshi [60] | 1.575 GPS 2.45 WLAN | AMC | 85.5 × 85.5 × 5.79 | 1.94–1.98 |
Hassan [61] | GPS L1 | Increase thickness of substrate | R = 37 mm H (substrate thickness) = 1–3 mm | H = 1, 1.5, 2, 2.5, 3 mm Gain = −2.7, −1.1, 1.09, 1.7, 2.28 |
3. Fabrication of GNSS Wearable Textile Antennas
3.1. Fabric Lamination
3.1.1. Fabrication Process
3.1.2. Textile Substrate
Ref. | Material | Thickness (mm) | εr | Tanδ | Pic. |
---|---|---|---|---|---|
Abdulmalek [42] | Felt | 3 | 1.44 | 0.044 | |
Mustaqim [44] | FR4 | 1.6 | 4.4 | 0.019 | |
Denim | 1 | 1.67 | 0.01 | ||
Le [45] | Felt | 1.3 | 1.4 | 0.044 | |
Denim | 1 | 1.7 | 0.024 | ||
Dwivedi [46] | / | / | 1.7 | 0.024 | |
Tetik [57] | Felt | 0.65 | 1.44 | / | |
Sadadiwala [75] | Jeans | 3 | 1.7 | 0.002 | |
Sabapathy [25] | Felt | 1.5 | 1.22 | / | |
Soh [47] | Felt | 6 | 1.43 | 0.025 | |
Zhu [59] | Felt | 1.1 | 1.38 | 0.02 | |
Tekneci [53] | Denim | 0.7 | 1.8 | 0.03 | |
Ahmad [26] | Felt | 5 | 1.2 | 0.2 |
3.1.3. Conductive Textiles
Ref. | Thickness (mm) | Conductivity (S/m) | Material |
---|---|---|---|
Abdulmalek [42] | 0.17 | 1.18 × 105 | ShieldIt Super (ripstop, woven polyester textile plated with copper and nickel) |
Le [45] | / | 1.18 × 105 | Shieldit super-conductive textile |
Tetik [57] | 0.03 | 2.5 × 105 | Pure copper Polyester taffeta fabrics (PCPTFs) Electrotextile materials (ETMs) |
Vallozzi [24] | / | / | Flectron® |
Sabapathy [25] | / | / | SheildIt Super |
Zhu [59] | 0.06 | 1 × 106 | Zelt conducting material High-quality nylon-based substrate plated with copper |
Ahmad [26] | 0.1 | 0.02 Ω/□ | Shieldex conductive metallized nylon fabric |
3.2. Printing Technologies
3.2.1. Fabrication Process
3.2.2. Textile Substrate
3.2.3. Conductive Inks
3.3. Embroidery Technology
3.3.1. Fabrication Process
3.3.2. Textile Substrate
3.3.3. Conductive Yarns
3.4. Environmental Stability of Fabrication Processes
4. Influence of Operational Conditions on Antenna Performance of Wearable Textile Antennas
4.1. Human Body Effects
4.2. Dynamic Effects
4.2.1. Bending
4.2.2. Wrinkling
4.2.3. Compression
4.2.4. Shear and Tensile Deformation
4.3. Environmental Effects
4.3.1. Humidity
4.3.2. Combined Effects of Temperature and Humidity
5. Conclusions and Future Perspectives
5.1. Conclusions
5.2. Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Li, Y.Z. Design and Research of Microstrip Beidou Navigation Antenna. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2022. [Google Scholar]
- Hui, Z. Design of Miniaturized Multi-Band Circularly Polarized Beidou Antenna. Master’s Thesis, Jiangsu University, Zhenjiang, China, 2016. [Google Scholar]
- Meng, F.Y.; Gao, Y.; Tao, Q.Y.; Hu, J.Y.; Yang, X.D. Braided coaxial two-electrode triboelectric thread with a mesh spacer for highly sensitive respiration monitoring. ACS Appl. Mater. Interfaces 2025, 17, 20013–20021. [Google Scholar] [CrossRef] [PubMed]
- Tao, Q.Y.; Gao, Y.; Hu, J.Y.; Jiang, J.H. Braiding parameter design of high-compressible yarn-like triboelectric electrode for self-powered fabric pressure sensors. Text. Res. J. 2025. [Google Scholar] [CrossRef]
- Ridoy, M.Z.H.; Tao, Q.Y.; Ghosh, S.; Shishir, M.A.; Hu, J.Y. Design and evaluation of core—Shell yarn-based triboelectric sensing fabric for human motion monitoring. J. Mater. Sci. Mater. Electron. 2025, 36, 220. [Google Scholar] [CrossRef]
- Huang, F.; Huang, C.; Meng, F.Y.; Aw, K.C.; Yan, X.; Hu, J.Y. A novel strategy to control the effective strain range for yarn-based resistive strain sensor by braiding technology. Fibers Polym. 2025, 26, 433–446. [Google Scholar] [CrossRef]
- Meng, F.Y.; Hu, J.Y. Piezoelectric outputs of electrospun pvdf web as full-textile sensor at different mechanical excitation frequencies. Polymers 2024, 16, 1728. [Google Scholar] [CrossRef]
- Huang, F.; Huang, C.; Meng, F.Y.; Aw, K.C.; Yan, X.; Hu, J.Y. Understanding the sensing performance alteration mechanism of a yarn-based strain sensor after encapsulation and an effective encapsulation structural designs. Colloids Surf. A Physicochem. Eng. Asp. 2024, 697, 134501. [Google Scholar] [CrossRef]
- Zhang, Y.; Tong, Y.; Hu, J.Y.; Yan, X. Performance regulation of high-precision wireless passive yarn sensor based on normal mode helical dipole antenna. Sens. Actuators A Phys. 2024, 366, 114940. [Google Scholar] [CrossRef]
- Zheng, C.; Hu, J.Y.; Jiang, J.H. Composite structural design of fabric substrate to improve the rf energy harvesting performance of wearable antenna. J. Electron. Mater. 2025, 54, 1444–1454. [Google Scholar] [CrossRef]
- Zheng, C.; Hu, J.Y.; Jiang, J.H. Substrate effect and structure optimization of fabric-based circularly polarized dipole antenna for radio frequency energy harvesting. Text. Res. J. 2023, 93, 3956–3968. [Google Scholar] [CrossRef]
- Meng, F.Y.; Dai, S.Q.; Zhang, Y.; Hu, J.Y. The interconnecting process and sensing performance of stretchable hybrid electronic yarn for body temperature monitoring. Polymers 2024, 16, 243. [Google Scholar] [CrossRef]
- Lu, D.X.; Liao, S.Q.; Chu, Y.; Cai, Y.B.; Wei, Q.F.; Chen, K.L.; Wang, Q.Q. Highly durable and fast response fabric strain sensor for movement monitoring under extreme conditions. Adv. Fiber Mater. 2023, 5, 223–234. [Google Scholar] [CrossRef]
- Huang, F.; Hu, J.; Yan, X. A wide-linear-range and low-hysteresis resistive strain sensor made of double-threaded conductive yarn for human movement detection. J. Mater. Sci. Technol. 2024, 172, 202–212. [Google Scholar] [CrossRef]
- Tsolis, A.; Bakogianni, S.; Angelaki, C.; Alexandridis, A.A. A review of clothing components in the development of wearable textile antennas: Design and experimental procedure. Sensors 2023, 23, 3289. [Google Scholar] [CrossRef] [PubMed]
- Timpoc, S.R.H.; Sosa, C.L.R.; Arboleda, E.R. Evaluation of antenna designs for wearable technology: A literature review. Int. J. Res. Publ. Rev. 2024, 5, 959–966. [Google Scholar] [CrossRef]
- Singh, S.; Mishra, R.; Kapoor, A.; Singh, S. A comprehensive review and analysis of the design aspects, structure, and applications of flexible wearable antennas. Telecom 2025, 6, 3. [Google Scholar] [CrossRef]
- Taher, M.A.; Othman, M.; Illias, H.A.; Latef, T.A.; Izam, T.F.T.M.N.; Azam, S.M.K.; Ullah, M.U.; Alkhatib, M.; Hussein, M.I. Conformal and flexible antennas in ultra-high frequencies: Prospects and challenges for partial discharge diagnostics. IEEE Access 2025, 13, 10139–10159. [Google Scholar] [CrossRef]
- Marterer, V.; Radouchová, M.; Soukup, R.; Hipp, S.; Blecha, T. Wearable textile antennas: Investigation on material variants, fabrication methods, design and application. Fash. Text. 2024, 11, 9. [Google Scholar] [CrossRef]
- Ali, U.; Ullah, S.; Kamal, B.; Matekovits, L.; Altaf, A. Design, analysis and applications of wearable antennas: A review. IEEE Access 2023, 11, 14458–14486. [Google Scholar] [CrossRef]
- EN IEC 62311:2020; Assessment of Electronic and Electrical Equipment Related to Human Exposure Restrictions for Electromagnetic Fields (0 Hz to 300 GHz). International Electrotechnical Commission: Brussels, Belgium, 2020.
- IEEE C95.1-2019; IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz. IEEE Standards Association: Piscataway, NJ, USA, 2019.
- Lee, S.W.; Yang, Y.; Lee, K.Y.; Hwang, K.C. Circularly polarized chanel-logo antenna for gnss applications. J. Electromagn. Waves Appl. 2017, 31, 1434–1443. [Google Scholar] [CrossRef]
- Vallozzi, L.; Vandendriessche, W.; Rogier, H.; Hertleer, C.; Scarpello, M.L. Wearable textile GPS antenna for integration in protective garments. In Proceedings of the Fourth European Conference on Antennas and Propagation, Barcelona, Spain, 12–16 April 2010. [Google Scholar]
- Sabapathy, T.; Mohd, A.M.; Jusoh, M.; Shakhirul, M.S.; Soh, P.J. Location tracking system using wearable on-body GPS antenna. In Engineering Technology International Conference 2016 (ETIC 2016); EDP Sciences: Les Ulis, France, 2017. [Google Scholar]
- Pal, A.; Ahmad, D.; Pal, S.; Ghazali, A.N. Efficient and low SAR dual functional wearable antenna in rfid ism and GPS l1 bands for positioning applications. Wirel. Netw. 2024, 30, 5187–5199. [Google Scholar] [CrossRef]
- Anbalagan, A.; Sundarsingh, E.F.; Ramalingam, V.S.; Kapileshvar, A.P.; Subramaniam, K.; Asif, M.A.; Manikandan, E. Smart dynamic position tracking wearable for geofencing in marine environment. IEEE Trans. Instrum. Meas. 2023, 72, 8005109. [Google Scholar] [CrossRef]
- Hassan, W.M.; Attiya, A.M. Dual circular polarization textile antenna for l1 and l2 GPS applications. In Proceedings of the 2019 PhotonIcs & Electromagnetics Research Symposium-Spring (PIERS-Spring), Rome, Italy, 17–20 June 2019. [Google Scholar]
- Salleh, S.M.; Jusoh, M.; Ismail, A.H.; Kamarudin, M.R.; Nobles, P.; Rahim, M.K.A.; Sabapathy, T.; Osman, M.N.; Jais, M.I.; Soh, P.J. Textile antenna with simultaneous frequency and polarization reconfiguration for WBAN. IEEE Access 2018, 6, 7350–7358. [Google Scholar] [CrossRef]
- Ahmed, N.; Zade, P.L. Circularly polarized wearable textile antenna with defected ground structure for GPS application. In Proceedings of the 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, India, 17–18 March 2017. [Google Scholar]
- Gil, I.; García, R.F. Wearable embroidered GPS textile antenna. In Proceedings of the 2017 Progress In Electromagnetics Research Symposium-Spring (PIERS), St. Petersburg, Russia, 22–25 May 2017. [Google Scholar]
- Nordin, M.S.A.; Rahman, N.H.A.; Ali, M.T.; Shah, A.a.S.A.; Ahmad, M.R. Full-wave electromagnetic simulation of antenna on electro-textile and accurate measurement of dielectric properties through precise adjustable jig. In Proceedings of the 2017 IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpur, Malaysia, 13–16 November 2017. [Google Scholar]
- Lee, H.; Tak, J.; Choi, J. Wearable antenna integrated into military berets for indoor/outdoor positioning system. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1919–1922. [Google Scholar] [CrossRef]
- Monti, G.; Corchia, L.; De, B.E.; Tarricone, L. Wearable logo-antenna for GPS-gsm-based tracking systems. IET Microw. Antennas Propag. 2016, 10, 1332–1338. [Google Scholar] [CrossRef]
- Gil, I.; Fernández, G.R. Wearable GPS patch antenna on jeans fabric. In Proceedings of the Progress in Electromagnetic Research Symposium (PIERS), Shanghai, China, 8–11 August 2016. [Google Scholar]
- Sundarsingh, E.F.; Ramalingam, V.S.; Kanagasabai, M. Statistical analysis on the bandwidth of a dual frequency textile antenna. IET Microw. Antennas Propag. 2015, 9, 1683–1690. [Google Scholar] [CrossRef]
- Jais, M.I.; Jamlos, M.F.; Jusoh, M.; Sabapathy, T.; Kamarudin, M.R. A novel 1.575-ghz dual-polarization textile antenna for GPS application. Microw. Opt. Technol. Lett. 2013, 55, 2414–2420. [Google Scholar] [CrossRef]
- Kaivanto, E.K.; Berg, M.; Salonen, E.; Maagt, P.D. Wearable circularly polarized antenna for personal satellite communication and navigation. IEEE Trans. Antennas Propag. 2011, 59, 4490–4496. [Google Scholar] [CrossRef]
- Hussine, U.U.; Huang, Y.; Song, C. A new circularly polarized antenna for gnss applications. In Proceedings of the 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017. [Google Scholar]
- Ullah, S.U.; Baghel, R.K. Hybrid system of electro-textile based wearable microstrip patch antenna with tuning holes. In Proceedings of the 2015 International Conference on Soft Computing Techniques and Implementations (ICSCTI), Faridabad, India, 8–10 October 2015. [Google Scholar]
- Mao, C.X.; Zhou, Y.; Wu, Y.H.; Soewardiman, H.; Werner, D.H.; Jur, J.S. Low-profile strip-loaded textile antenna with enhanced bandwidth and isolation for full-duplex wearable applications. IEEE Trans. Antennas Propag. 2020, 68, 6527–6537. [Google Scholar] [CrossRef]
- Abdulmalek, M.; Abdulaziz, N.; Rahman, H.; Rahim, H.A.; Fie, M.; Soh, P.J. Design of a 5.2 ghz circularly polarized textile patch antenna for on/off body radio propagation channel evaluation. In Proceedings of the 2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA), Ras Al Khaimah, United Arab Emirates, 6–8 December 2016. [Google Scholar]
- Jaiswal, P.; Sinha, P. Dual band wearable textile antenna by using u slot conical via hole. In Proceedings of the 2018 International Conference on Intelligent Circuits and Systems (ICICS), Phagwara, India, 19–20 April 2018. [Google Scholar]
- Mustaqim, M.; Khawaja, B.A.; Chattha, H.T.; Shafique, K.; Zafar, M.J.; Jamil, M. Ultra-wideband antenna for wearable internet of things devices and wireless body area network applications. Int. J. Numer. Model. Electron. Netw. Devices Fields 2019, 32, e2590. [Google Scholar] [CrossRef]
- Le, T.T.; Kim, Y.D.; Yun, T.Y. Bandwidth-enhanced circularly polarized all-textile wearable antenna using an lp-to-cp metasurface. IEEE Access 2024, 12, 173749–173757. [Google Scholar] [CrossRef]
- Dwivedi, R.; Srivastava, D.K.; Singh, V.K. A nested orbicular shaped textile antenna with centered hexagonal slot, dgs and enhanced bandwidth for ism, wi-fi, WLAN & bluetooth applications. Iran. J. Sci. Technol. Trans. Electr. Eng. 2024, 48, 1393–1415. [Google Scholar] [CrossRef]
- Soh, P.J.; Vandenbosch, G.a.E.; Ooi, S.L.; Rais, N.H.M. Design of a broadband all-textile slotted PIFA. IEEE Trans. Antennas Propag. 2012, 60, 379–384. [Google Scholar] [CrossRef]
- Hassan, A.; Saeed, A.; Ali, S.; Cheema, H.M.; Bermak, A. Additively manufactured polyethylene terephthalate-based high-gain multiband-flexible antenna for wireless mobile applications. J. Mater. Sci. Mater. Electron. 2025, 36, 182. [Google Scholar] [CrossRef]
- Zaidi, N.I.; Rahman, N.H.A.; Yahya, M.F.; Nordin, M.S.A.; Subahir, S.; Yamada, Y.; Majumdar, A. Analysis on bending performance of the electro-textile antennas with bandwidth enhancement for wearable tracking application. IEEE Access 2022, 10, 31800–31820. [Google Scholar] [CrossRef]
- Karimyian, M.M.; Dorostkar, M.A.; Shokuohi, F.; Shanbeh, M.; Torkan, A. Super-wideband textile fractal antenna for wireless body area networks. J. Electromagn. Waves Appl. 2015, 29, 1728–1740. [Google Scholar] [CrossRef]
- Hussain, N.; Jeong, M.J.; Abbas, A.; Kim, T.J.; Kim, N. A metasurface-based low-profile wideband circularly polarized patch antenna for 5g millimeter-wave systems. IEEE Access 2020, 8, 22127–22135. [Google Scholar] [CrossRef]
- Hussain, N.; Jeong, M.J.; Park, J.; Kim, N. A broadband circularly polarized fabry-perot resonant antenna using a single-layered prs for 5g mimo applications. IEEE Access 2019, 7, 42897–42907. [Google Scholar] [CrossRef]
- Tekneci, G.; Cinar, A.; Gorgun, A.R.; Cumhur Basaran, S. Dual-band compact textile antenna design based on nested split-ring resonators. AEU Int. J. Electron. Commun. 2025, 191, 155654. [Google Scholar] [CrossRef]
- Rao, K.S.; Jahagirdar, D.R.; Ramakrishna, D. Compact broadband asymmetric slit circularly polarized microstrip patch antenna for GPS and GLONASS applications. In Proceedings of the 2017 IEEE International Conference on Antenna Innovations & Modern Technologies for Ground, Aircraft and Satellite Applications (iAIM), Bangalore, India, 24–26 November 2017. [Google Scholar]
- Chen, W.S.; Wu, C.K.; Wong, K.L. Novel compact circularly polarized square microstrip antenna. IEEE Trans. Antennas Propag. 2001, 49, 340–342. [Google Scholar] [CrossRef]
- Ismail, S.; Barton, A.; Gaydecki, P.; Karimian, N.; Karimian, S. Design and development of a compact wearable dipole GPS antenna. In Proceedings of the 2016 46th European Microwave Conference (EuMC), London, UK, 4–6 October 2016. [Google Scholar]
- Tetik, E.; Tetik, G.D. The effect of a metamaterial-based wearable microstrip patch antenna on the human body. Can. J. Phys. 2018, 96, 796–800. [Google Scholar] [CrossRef]
- Sabban, A. Small wearable antennas for wireless communication and medical systems. In Proceedings of the 2018 IEEE Radio and Wireless Symposium (RWS), Anaheim, CA, USA, 15–18 January 2018. [Google Scholar]
- Zhu, S.; Langley, R. Dual-band wearable textile antenna on an ebg substrate. IEEE Trans. Antennas Propag. 2009, 57, 926–935. [Google Scholar] [CrossRef]
- Joshi, R.; Hussin, E.F.N.M.; Soh, P.J.; Jamlos, M.F.; Lago, H.; Hadi, A.a.A.; Podilchak, S.K. Dual-band, dual-sense textile antenna with amc backing for localization using GPS and WBAN/WLAN. IEEE Access 2020, 8, 89468–89478. [Google Scholar] [CrossRef]
- Hassan, W.M.; Attiya, A.M. Textile antenna integrated with a cap for l1 GPS application. In Proceedings of the 2018 35th National Radio Science Conference (NRSC), Cairo, Egypt, 20–22 March 2018. [Google Scholar]
- Shishir, M.A.; Wang, R.H.; Ridoy, M.Z.H.; Ghosh, S.; Chen, W.J.; Hu, J.Y. Gain enhancement through structural optimization of 100% textile-based microstrip patch antennas for wearable applications at 2.45 ghz. Text. Res. J. 2025. [Google Scholar] [CrossRef]
- Zhu, J.; Eleftheriades, G.V. A compact transmission-line metamaterial antenna with extended bandwidth. IEEE Antennas Wirel. Propag. Lett. 2008, 8, 295–298. [Google Scholar] [CrossRef]
- Marqués, R.; Mesa, F.; Martel, J.; Medina, F. Comparative analysis of edge-and broadside-coupled split ring resonators for metamaterial design-theory and experiments. IEEE Trans. Antennas Propag. 2003, 51, 2572–2581. [Google Scholar] [CrossRef]
- Sabban, A. New wideband printed antennas for medical applications. IEEE Trans. Antennas Propag. 2012, 61, 84–91. [Google Scholar] [CrossRef]
- Sabban, A. Wideband rf technologies and antennas in microwave frequencies; John Wiley & Sons: New York, NY, USA, 2016. [Google Scholar]
- Hertleer, C.; Rogier, H.; Vallozzi, L.; Van Langenhove, L. A textile antenna for off-body communication integrated into protective clothing for firefighters. IEEE Trans. Antennas Propag. 2009, 57, 919–925. [Google Scholar] [CrossRef]
- Kaija, T.; Lilja, J.; Salonen, P. Exposing textile antennas for harsh environment. In Proceedings of the 2010-Milcom 2010 Military Communications Conference, San Jose, CA, USA, 31 October–3 November 2010. [Google Scholar]
- Bal, K.; Kothari, V. Measurement of dielectric properties of textile materials and their applications. Indian J. Fibre Text. Res. 2009, 34, 191–199. [Google Scholar]
- Patel, T.; Sahoo, M. Design issues of wearable antennas. Int. J. Sci. Res. 2016, 5, 662–664. [Google Scholar]
- Kirtania, S.G.; Elger, A.W.; Hasan, M.R.; Wisniewska, A.; Sekhar, K.; Karacolak, T.; Sekhar, P.K. Flexible antennas: A review. Micromachines 2020, 11, 847. [Google Scholar] [CrossRef]
- Ashyap, A.Y.; Dahlan, S.H.B.; Abidin, Z.Z.; Abbasi, M.I.; Kamarudin, M.R.; Majid, H.A.; Dahri, M.H.; Jamaluddin, M.H.; Alomainy, A. An overview of electromagnetic band-gap integrated wearable antennas. IEEE Access 2020, 8, 7641–7658. [Google Scholar] [CrossRef]
- Mohanan, P.; Roshni, S.B.; Jayakrishnan, M.P.; Surendran, K. Design and fabrication of an e-shaped wearable textile antenna on pvb-coated hydrophobic polyester fabric. Smart Mater. Struct. 2017, 26, 105011. [Google Scholar]
- Jiyong, H.; Hongyan, J.; Huating, T.; Huan, B.; Hong, H.; Yaya, Z.; Xudong, Y. Influence of woven fabric specification and yarn constitutions on the dielectric properties at ultrahigh frequency. Mater. Res. Express 2017, 4, 116308. [Google Scholar] [CrossRef]
- Sadadiwala, V.; Mahindroo, K.; Singh, V.; Bansal, P.; Singhal, S. Human body monitoring wearable antenna. In Optical and Wireless Technologies; Springer: Singapore, 2022. [Google Scholar]
- Locher, I.; Klemm, M.; Kirstein, T.; Troster, G. Design and characterization of purely textile patch antennas. IEEE Trans. Adv. Packag. 2006, 29, 777–788. [Google Scholar] [CrossRef]
- Bashir, S. Design and Synthesis of Non Uniform High Impedance Surface Based Wearable Antennas. Ph.D. Thesis, Loughborough University, Loughborough, Leicestershire, UK, 2019. [Google Scholar]
- Li, Y.; Zhang, Z.J.; Feng, Z.H.; Khaleel, H.R. Fabrication and measurement techniques of wearable and flexible antennas. Cult. Tour 2014, 1, 7–23. [Google Scholar]
- Ye, K. Development of the Flexible Textile Conformal Antennas and Investigation of the Radiation Properties. Ph.D. Thesis, Donghua University, Shanghai, China, 2019. [Google Scholar]
- Jiang, L.H.; Wang, S.T.; Meng, F.Y.; Hu, J.Y.; Yan, X. The influence of electrode geometry on the electrochemical performance of fabric-based screen-printed coplanar supercapacitors. J. Energy Storage 2023, 73, 109001. [Google Scholar] [CrossRef]
- Zheng, C.; Hu, J.Y.; Jiang, J.H. Effect of fabric structure on the performance of screen-printed ultra-high frequency radio frequency identification tag antenna for wireless radio frequency energy harvesting. J. Ind. Text. 2022, 52, 15280837221109641. [Google Scholar] [CrossRef]
- Pavec, M.; Bystričky, T.; Moravcova, D.; Reboun, J.; Soukup, R.; Navratil, J.; Hamacek, A. A comparison of embroidered and screen-printed ultra-wideband antennas. In Proceedings of the 2017 40th International Spring Seminar on Electronics Technology (ISSE), Sofia, Bulgaria, 10–14 May 2017. [Google Scholar]
- Yokus, M.A.; Foote, R.; Jur, J.S. Printed stretchable interconnects for smart garments: Design, fabrication, and characterization. IEEE Sens. J. 2016, 16, 7967–7976. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, J.W.; Wang, Y.Y.; Luo, Z.B.; Zhang, B.Z.; Duan, J.P. Flexible wearable composite antennas for global wireless communication systems. Sensors 2021, 21, 6083. [Google Scholar] [CrossRef]
- Lee, J.H.; Dzagbletey, P.A.; Jang, M.; Chung, J.Y.; So, J.H. Flat yarn fabric substrates for screen-printed conductive textiles. Adv. Eng. Mater. 2020, 22, 2000722. [Google Scholar] [CrossRef]
- Hong, H.; Hu, J.Y.; Yan, X. Effect of the basic surface properties of woven lining fabric on printing precision and electrical performance of screen-printed conductive lines. Text. Res. J. 2020, 90, 1212–1223. [Google Scholar] [CrossRef]
- Hong, H.; Jiyong, H.; Moon, K.-S.; Yan, X.; Wong, C.-P. Rheological properties and screen printability of uv curable conductive ink for flexible and washable e-textiles. J. Mater. Sci. Technol. 2021, 67, 145–155. [Google Scholar] [CrossRef]
- Bai, H.; Peng, F.; Zhang, K. Preparation and packaging technology of fabric based UHF-RFD tag antenna. J. Donghua Univ. 2020, 46, 220–225. [Google Scholar]
- Tu, H.T.; Hu, J.Y.; Bai, H.; Jiang, H.Y.; Hong, H.; Ding, X.; Yang, X.D.; Yan, X. Effect of curing conditions on electrical properties of screen-printed fabric antenna for UHF rfid tags. AATCC J. Res. 2019, 6, 24–27. [Google Scholar] [CrossRef]
- Zhao, H.Z.; Wang, M.Y.; Zhang, K.; Fang, K.J.; Song, Y.W.; Shi, F.R.; Chen, W.C. Effective cotton surface treatment using natural polymer for controlled ink droplet spreading and high-quality inkjet printing images. Prog. Org. Coat. 2022, 172, 107127. [Google Scholar] [CrossRef]
- Zhou, Y.Y.; Yu, J.C.; Biswas, T.T.; Tang, R.C.; Nierstrasz, V. Inkjet printing of curcumin-based ink for coloration and bioactivation of polyamide, silk, and wool fabrics. ACS Sustain. Chem. Eng. 2018, 7, 2073–2082. [Google Scholar]
- Guo, W.J.; Hu, J.Y.; Yan, X. Control of uv-curing ink splashing and line quality during dc-pulse-modulated electrohydrodynamic printing for textile-based electronics. ACS Sustain. Chem. Eng. 2023, 11, 5748–5755. [Google Scholar] [CrossRef]
- Guo, W.J.; Hu, J.Y.; Yan, X. Influence of process parameters on the characteristics of electrohydrodynamic-printed uv-curing conductive lines on the fabric. J. Micromech. Microeng. 2022, 32, 035003. [Google Scholar] [CrossRef]
- Islam, M.R.; Afroj, S.; Yin, J.; Novoselov, K.S.; Chen, J.; Karim, N. Advances in printed electronic textiles. Adv. Sci. 2024, 11, 2304140. [Google Scholar] [CrossRef]
- Guo, W.J.; Fu, Y.; Kumar Dalapati, G.; Hu, J.Y.; Yan, X.; Ramakrishna, S. Electrohydrodynamic direct writing of well-defined and high-performance multifunctional conductive patterns towards flexible and washable e-textiles using uv-curable silver ink. Chem. Eng. J. 2024, 500, 157213. [Google Scholar] [CrossRef]
- Virkki, J.; Björninen, T.; Kellomäki, T.; Merilampi, S.; Shafiq, I.; Ukkonen, L.; Sydänheimo, L.; Chan, Y.C. Reliability of washable wearable screen printed UHF rfid tags. Microelectron. Reliab. 2014, 54, 840–846. [Google Scholar] [CrossRef]
- Kim, B.J.; Haas, T.; Friederich, A.; Lee, J.H.; Nam, D.H.; Binder, J.R.; Bauer, W.; Choi, I.S.; Joo, Y.C.; Gruber, P.A.; et al. Improving mechanical fatigue resistance by optimizing the nanoporous structure of inkjet-printed ag electrodes for flexible devices. Nanotechnology 2014, 25, 125706. [Google Scholar] [CrossRef]
- Inoue, M.; Tada, Y.; Muta, H.; Hayashi, Y.; Tokumaru, T. Development of highly conductive inks for smart textiles. In Proceedings of the 2012 14th International Conference on Electronic Materials and Packaging (EMAP), Hong Kong, China, 13–16 December 2012. [Google Scholar]
- Matsuhisa, N.; Kaltenbrunner, M.; Yokota, T.; Jinno, H.; Kuribara, K.; Sekitani, T.; Someya, T. Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun. 2015, 6, 7461. [Google Scholar] [CrossRef]
- Yang, K.; Torah, R.; Wei, Y.; Beeby, S.; Tudor, J. Waterproof and durable screen printed silver conductive tracks on textiles. Text. Res. J. 2013, 83, 2023–2031. [Google Scholar] [CrossRef]
- Scarpello, M.L.; Kazani, I.; Hertleer, C.; Rogier, H.; Ginste, D.V. Stability and efficiency of screen-printed wearable and washable antennas. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 838–841. [Google Scholar] [CrossRef]
- Kazani, I.; Declercq, F.; Scarpello, M.L.; Hertleer, C.; Rogier, H.; Ginste, D.V.; Mey, G.D.; Guxho, G.; Langenhove, L.V. Performance study of screen-printed textile antennas after repeated washing. Autex Res. J. 2014, 14, 47–54. [Google Scholar] [CrossRef]
- Kellomäki, T.; Virkki, J.; Merilampi, S.; Ukkonen, L. Towards washable wearable antennas: A comparison of coating materials for screen-printed textile-based UHF rfid tags. Int. J. Antennas Propag. 2012, 2012, 476570. [Google Scholar] [CrossRef]
- Chauraya, A.; Whittow, W.G.; Vardaxoglou, J.C.; Li, Y.; Torah, R.; Yang, K.; Beeby, S.; Tudor, J. Inkjet printed dipole antennas on textiles for wearable communications. IET Microw. Antennas Propag. 2013, 7, 760–767. [Google Scholar] [CrossRef]
- Ha, S.J.; Jung, C.W. Reconfigurable beam steering using a microstrip patch antenna with a u-slot for wearable fabric applications. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 1228–1231. [Google Scholar] [CrossRef]
- Park, M.W.; Im, J.; Shin, M.; Min, Y.; Park, J.; Cho, H.; Park, S.J.; Shim, M.B.; Jeon, S.H.; Chung, D.Y.; et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol. 2012, 7, 803–809. [Google Scholar] [CrossRef]
- Koski, K.; Moradi, E.; Babar, A.A.; Björninen, T.; Sydänheimo, L.; Ukkonen, L.; Rahmat-Samii, Y. Durability of embroidered antennas in wireless body-centric healthcare applications. In Proceedings of the 2013 7th European Conference on Antennas and Propagation (EuCAP), Gothenburg, Sweden, 8–12 April 2013. [Google Scholar]
- Toivonen, M.; Koski, K.; Moradi, E.; Babar, A.A.; Sydänheimo, L.; Ukkonen, L.; Samii, Y.R.; Kallio, P. Washing durability of embroidered polymer coated rfid tags. In Proceedings of the 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), Orlando, FL, USA, 7–13 July 2013. [Google Scholar]
- Tsolis, A.; Whittow, W.G.; Alexandridis, A.A.; Vardaxoglou, J.C. Embroidery and related manufacturing techniques for wearable antennas: Challenges and opportunities. Electronics 2014, 3, 314–338. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, M.; Xu, L.; Li, Y.; Ye, T.T. Characterizations and optimization techniques of embroidered rfid antenna for wearable applications. IEEE J. Radio Freq. Identif. 2020, 4, 38–45. [Google Scholar] [CrossRef]
- Rui, W.; Jiyong, H.; Huiping, Z.; Jinlin, Y.; Xiong, Y. Influence of process parameters on dc resistance of fabric-based embroidery transmission lines. Tech. Text. 2016, 34, 6–11. [Google Scholar]
- Wang, Z.; Zhang, L.; Bayram, Y.; Volakis, J.L. Embroidered conductive fibers on polymer composite for conformal antennas. IEEE Trans. Antennas Propag. 2012, 60, 4141–4147. [Google Scholar] [CrossRef]
- Zhi, C.; Du, M.; Sun, Z.; Wu, M.; He, X.; Meng, J.; Yu, L. Warp-knitted spacer fabric reinforced syntactic foam: A compression modulus meso-mechanics theoretical model and experimental verification. Polymers 2020, 12, 286. [Google Scholar] [CrossRef]
- Patron, D.; Mongan, W.; Kurzweg, T.P.; Fontecchio, A.; Dion, G.; Anday, E.K.; Dandekar, K.R. On the use of knitted antennas and inductively coupled rfid tags for wearable applications. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 1047–1057. [Google Scholar] [CrossRef]
- Jia, X. Fibre-Meshed Textile Electromagnetic Structures. Ph.D. Thesis, University of Sheffield, Sheffield, UK, 24 February 2020. [Google Scholar]
- Moehring, U.; Gimpel, S.; Neudeck, A.; Scheibner, W.; Zschenderlein, D. Conductive, sensorial and luminescent features in textile structures. In Proceedings of the 3rd International Forum on Applied Wearable Computing 2006, Berlin, Germany, 15–16 March 2006. [Google Scholar]
- Uzun, S.; Seyedin, S.; Stoltzfus, A.L.; Levitt, A.S.; Alhabeb, M.; Anayee, M.; Strobel, C.J.; Razal, J.M.; Dion, G.; Gogotsi, Y. Knittable and washable multifunctional mxene-coated cellulose yarns. Adv. Funct. Mater. 2019, 29, 1905015. [Google Scholar] [CrossRef]
- Bulathsinghala, R.L. Investigation on material variants and fabrication methods for microstrip textile antennas: A review based on conventional and novel concepts of weaving, knitting and embroidery. Cogent Eng. 2022, 9, 2025681. [Google Scholar] [CrossRef]
- Zaidi, N.; Ali, M.T.; Abd Rahman, N.H.; Yahya, M.; Nordin, M. Analysis on different shape of textile antenna under bending condition for GPS application. Bull. Electr. Eng. Inform. 2020, 9, 1964–1970. [Google Scholar] [CrossRef]
- Kuang, Y.; Yao, L.; Yu, S.-H.; Tan, S.; Fan, X.-J.; Qiu, Y.-P. Design and electromagnetic properties of a conformal ultra wideband antenna integrated in three-dimensional woven fabrics. Polymers 2018, 10, 861. [Google Scholar] [CrossRef]
- Sundarsingh, E.F.; Kanagasabai, M.; Ramalingam, V.S. Completely integrated multilayered weave electro-textile antenna for wearable applications. Int. J. Microw. Wirel. Technol. 2017, 9, 2029–2036. [Google Scholar] [CrossRef]
- Xu, F.; Yao, L.; Zhao, D.; Jiang, M.; Qiu, Y. Effect of weaving direction of conductive yarns on electromagnetic performance of 3d integrated microstrip antenna. Appl. Compos. Mater. 2013, 20, 827–838. [Google Scholar] [CrossRef]
- Xu, F.; Zhang, K.; Qiu, Y. Light-weight, high-gain three-dimensional textile structural composite antenna. Compos. Part B Eng. 2020, 185, 107781. [Google Scholar] [CrossRef]
- Zaman, S.U.; Tao, X.; Cochrane, C.; Koncar, V. Wash analyses of flexible and wearable printed circuits for e-textiles and their prediction of damages. Electronics 2021, 10, 1362. [Google Scholar] [CrossRef]
- Ventura, H.; Parés, F.; Fernández-García, R.; Gil, I.; Ardanuy, M. Effects of the fabric substrate on performance and durability of textile-embroidered dipole antennas. Text. Res. J. 2022, 92, 2808–2817. [Google Scholar] [CrossRef]
- Xu, B.; Eike, R.J.; Cliett, A.; Ni, L.; Cloud, R.; Li, Y. Durability testing of electronic textile surface resistivity and textile antenna performance. Text. Res. J. 2019, 89, 3708–3721. [Google Scholar] [CrossRef]
- Virkki, J.; Björninen, T.; Akbari, M.; Ukkonen, L. Strain reliability and substrate specific features of passive UHF rfid textile tag antennas. In Proceedings of the 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS), Monte Carlo, Monaco, 11–14 December 2016. [Google Scholar]
- Corchia, L.; Monti, G.; Tarricone, L. Durability of wearable antennas based on nonwoven conductive fabrics: Experimental study on resistance to washing and ironing. Int. J. Antennas Propag. 2018, 2018, 2340293. [Google Scholar] [CrossRef]
- Simorangkir, R.B.V.B.; Le, D.; Björninen, T.; Sayem, A.S.M.; Zhadobov, M.; Sauleau, R. Washing durability of pdms-conductive fabric composite: Realizing washable UHF rfid tags. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2572–2576. [Google Scholar] [CrossRef]
- Kazmi, A.; Rizwan, M.; Sydänheimo, L.; Ukkonen, L.; Virkki, J. A reliability study of coating materials for brush-painted washable textile rfid tags. In Proceedings of the 2016 6th Electronic System-Integration Technology Conference (ESTC), Grenoble, France, 13–15 September 2016. [Google Scholar]
- Soh, P.J.; Vandenbosch, G.a.E.; Ooi, S.L.; Husna, M.R.N. Wearable dual-band sierpinski fractal PIFA using conductive fabric. Electron. Lett. 2011, 47, 365–367. [Google Scholar] [CrossRef]
- Soh, P.J.; Vandenbosch, G.a.E.; Schreurs, D.M.M.P. On-body characterization of textile antennas for biomedical health monitoring systems. In Proceedings of the 2013 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems, Austin, TX, USA, 20–23 January 2013. [Google Scholar]
- Soh, P.J.; Vandenbosch, G.a.E.; Volski, V.; Nurul, H.M.R. Characterization of a simple broadband textile planar inverted-f antenna (PIFA) for on body communications. In Proceedings of the 2010 Conference Proceedings ICECom, 20th International Conference on Applied Electromagnetics and Communications, Dubrovnik, Croatia, 20–23 September 2010. [Google Scholar]
- Boyes, S.J.; Soh, P.J.; Huang, Y.; Vandenbosch, G.a.E.; Khiabani, N. Measurement and performance of textile antenna efficiency on a human body in a reverberation chamber. IEEE Trans. Antennas Propag. 2013, 61, 871–881. [Google Scholar] [CrossRef]
- Lilja, J.; Salonen, P.; Kaija, T.; Maagt, P.D. Design and manufacturing of robust textile antennas for harsh environments. IEEE Trans. Antennas Propag. 2012, 60, 4130–4140. [Google Scholar] [CrossRef]
- Pinapati, S.P.; Chen, S.J.; Ranasinghe, D.; Fumeaux, C. Detuning effects of wearable patch antennas. In Proceedings of the 2017 IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpur, Malaysia, 13–16 November 2017. [Google Scholar]
- Soh, P.J.; Vandenbosch, G.; Wee, F.H.; Bosch, A.V.D.; Vazquez, M.M.; Schreurs, D. Specific absorption rate (SAR) evaluation of textile antennas. IEEE Antennas Propag. Mag. 2015, 57, 229–240. [Google Scholar] [CrossRef]
- Ali, U.; Ullah, S.; Shafi, M.; Shah, S.a.A.; Shah, I.A.; Flint, J.A. Design and comparative analysis of conventional and metamaterial-based textile antennas for wearable applications. Int. J. Numer. Model. Electron. Netw. Devices Fields 2019, 32, e2567. [Google Scholar] [CrossRef]
- Gupta, A.; Kansal, A.; Chawla, P. Design of a wearable mimo antenna deployed with an inverted u-shaped ground stub for diversity performance enhancement. Int. J. Microw. Wirel. Technol. 2021, 13, 76–86. [Google Scholar] [CrossRef]
- Roy, S.; Chakraborty, U. Metamaterial based dual wideband wearable antenna for wireless applications. Wirel. Pers. Commun. 2019, 106, 1117–1133. [Google Scholar] [CrossRef]
- Bai, Q.; Langley, R. Crumpling of PIFA textile antenna. IEEE Trans. Antennas Propag. 2012, 60, 63–70. [Google Scholar] [CrossRef]
- Ferreira, D.; Pires, P.; Rodrigues, R.; Caldeirinha, R.F.S. Wearable textile antennas examining the effect of bending on their performance. IEEE Antennas Propag. Mag. 2017, 59, 54–59. [Google Scholar] [CrossRef]
- Hertleer, C.; Van Laere, A.; Rogier, H.; Van Langenhove, L. Influence of relative humidity on textile antenna performance. Text. Res. J. 2010, 80, 177–183. [Google Scholar] [CrossRef]
- Lilja, J.; Salonen, P. Textile material characterization for softwear antennas. In Proceedings of the 2009 IEEE Military Communications Conference, Boston, MA, USA, 18–21 October 2009. [Google Scholar]
- Noakoasteen, O.; Vijayamohanan, J.; Gupta, A.; Christodoulou, C. Antenna design using a gan-based synthetic data generation approach. IEEE Open J. Antennas Propag. 2022, 3, 488–494. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, H.; Song, J.; Lu, M. Using generative model for intelligent design of dielectric resonator antennas. Microw. Opt. Technol. Lett. 2024, 66, e34013. [Google Scholar] [CrossRef]
- Yildiz, O. Digital twin-based ray tracing analysis for antenna orientation optimization in wireless networks. Electronics 2025, 14, 3023. [Google Scholar] [CrossRef]
- Yang, W.; Liu, S.; Yang, J. An optimized surrogate model and algorithm with rapid multi-parameter processing capability for antenna design. Measurement 2025, 241, 115719. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Y.; Jia, Z.; Zhao, W.; Wu, G. Multicomponent nanoparticles synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption. Nano-Micro Lett. 2022, 15, 13. [Google Scholar] [CrossRef] [PubMed]
- Xiang, D.; He, Q.; Fan, C.; Wang, Y.; Yin, X.; Wang, C. Preparation and 3d network structure optimization of sic and sic@fe3si nanofibers for enhanced electromagnetic wave absorption. Mater. Today Nano 2025, 30, 100644. [Google Scholar] [CrossRef]
- Wu, L.; Wang, W.; Han, Z.; Peng, Y.; Feng, Q.; Zhang, J.; Li, J.; Guo, S. Facile manufacturing of ultralight tpu/pda/cnt nanofibers with advanced electromagnetic wave absorption. ACS Appl. Electron. Mater. 2025, 7, 2829–2838. [Google Scholar] [CrossRef]
- Cao, X.; Wu, X.; Wang, X.; Luo, J.; Zhang, Z.; Xue, Y.; Zhang, G.; Zhang, L.; Zhang, H.; Yu, J. Mechanistic insights into the structural evolution of zif-67 via electrospinning strategy toward high electromagnetic wave absorption performance of zif-67-derived carbon nanofibers. Adv. Sci. 2025, 12, 2502560. [Google Scholar] [CrossRef]
- Xiang, Z.; Song, Z.; Wang, T.; Feng, M.; Zhao, Y.; Zhang, Q.; Hou, Y.; Wang, L. Bead-like flexible zif-67-derived co@carbon composite nanofibre mat for wideband microwave absorption in c-band. Carbon 2024, 216, 118573. [Google Scholar] [CrossRef]
BDS | Frequency Band | Operating Band |
---|---|---|
BD1 | S | 2491.75 MHz ± 4.08 MHz |
BD2 | L | 1615.68 MHz ± 4.08 MHz |
B1 | 1561.09 MHz ± 2.046 MHz | |
B2 | 1207.52 MHz ± 2.046 MHz | |
B3 | 1268.52 MHz ± 10.23 MHz | |
BD3 | B1 | 1575.42 MHz ± 2.046 MHz |
B2 | 1176.45 MHz ± 2.046 MHz | |
B3 | 1268.52 MHz ± 10.23 MHz |
Ref. | Type | Thickness (mm) | εr | Tanδ | Material |
---|---|---|---|---|---|
Mao [41] | Screen printing | 2 | 1.7 | 0.0095 | Evolon (30 wt% polyamide and 70 wt% polyester) (0.3 mm), polyurethane (PU) (0.057 mm) |
Sungwoo [23] | Screen printing | 1.575 | 2.1 | 0.0472 | Leather |
Ha [105] | Screen printing | 1.5 | 1.71 | 0.02 | Polyester 66.2% Cotton 33.8% |
Hassan [48] | Inkjet printing | 0.1 | 3 | 0.002 | Transparent flexible PET |
Type | Thickness (mm) | Conductivity (S/m) | Material | |
---|---|---|---|---|
Mao [41] | Screen printing | 0.037 | 1.3 × 106 | Dupont 5064H silver |
Sungwoo [23] | Screen printing | - | 2.22 × 106 | EM-271S silver paste |
Ha [105] | Screen printing | - | - | Silver paste: mixture of silver powder and acrylic resin |
Hassan [48] | Inkjet printing | - | 0.28 × 107 | Adhered Ag nanoparticles (AgNPs) |
Ref. | Material | Thickness (mm) | εr | Tanδ |
---|---|---|---|---|
Anbalagan [27] | cotton | 0.33 | 1.6 | 0.04 |
Gil [31] | cotton | 0.4 | 1.3 | 0.058 |
Ref. | Material | Conductivity |
---|---|---|
Wang [112] | Flexible silver-coated Amberstrand fibers | 0.8 Ω/m |
Anbalagan [27] | Embroidering Zari threads (silver-coated conductive threads with silk core) 0.125 mm | 6.2 × 107 S/m |
Gil [31] | Commercial Shieldex 117/17 dtex 2-ply (99% pure silver-plated nylon yarn 140/17 dtex) | 30 Ω/cm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Zheng, C.; Tao, Q.; Hu, J. A Review of the Structure, Performance, Fabrication, and Impacts of Application Conditions on Wearable Textile GNSS Antennas. Textiles 2025, 5, 35. https://doi.org/10.3390/textiles5030035
Wang R, Zheng C, Tao Q, Hu J. A Review of the Structure, Performance, Fabrication, and Impacts of Application Conditions on Wearable Textile GNSS Antennas. Textiles. 2025; 5(3):35. https://doi.org/10.3390/textiles5030035
Chicago/Turabian StyleWang, Ruihua, Cong Zheng, Qingyun Tao, and Jiyong Hu. 2025. "A Review of the Structure, Performance, Fabrication, and Impacts of Application Conditions on Wearable Textile GNSS Antennas" Textiles 5, no. 3: 35. https://doi.org/10.3390/textiles5030035
APA StyleWang, R., Zheng, C., Tao, Q., & Hu, J. (2025). A Review of the Structure, Performance, Fabrication, and Impacts of Application Conditions on Wearable Textile GNSS Antennas. Textiles, 5(3), 35. https://doi.org/10.3390/textiles5030035