Digital Twins for a Sustainable Textile Industry: A Critical Analysis of Unexplored Applications and Future Directions
Abstract
1. Introduction
- Reduction in new-model development time
- Reduction in the need for physical prototypes
- Optimisation of production processes
- Reduction in waste
2. State of Implementation of Digital Twins and Structural Overview
- Internet of Things (IoT) sensors—collecting real-time data from physical components [32];
- Simulation models—replicating the behaviour of physical systems under various conditions [32];
- Design and Prototyping
- Production monitoring
- Quality control
- Supply chain
- Sustainability
- Personalisation
- Training and Human Resources (HR)
- Cybersecurity
3. Unrealised Potential: Seven Untapped Application Areas for DTs in the Textile Industry
3.1. Prediction and Control of Wear in Textile Machinery
- High-speed knitting production
- High-temperature textile dyeing
- Centralised machine control
3.2. Textile Waste and Recycling
- Minimising waste in a spinning mill
- Garment cutting with minimal waste
- Waste management within a circular factory
3.3. Prediction of Deformations and Defects in Textile Structures
- Sportswear manufacturing
- Automotive textiles
- Medical textiles
3.4. Simulation of Energy Efficiency in Textile Processes
- Optimisation of drying in a dyeing unit
- Peak-hour energy-load management
- Comparison between conventional and energy-efficient technologies
3.5. Personalised Textile Production
- Online clothing order with a virtual customer
- Personalised work uniform
- Personalised underwear with anatomical modelling
3.6. Optimisation of the Human Factor (Ergonomics, Safety)
- Simulating working posture in a sewing department
- Virtual training of new employees
- Monitoring fatigue and preventing accidents
3.7. Cybersecurity of DTs
- Protection against unauthorised access in a dyeing facility
- Anomalies in IoT-sensor data
- Protection of a cloud-based simulation platform
4. Discussion
5. Conclusions
- For researchers: To develop interdisciplinary models that combine engineering simulation, behavioural data, and economic analyses within DTs.
- For the industry: To start with pilot projects in niches with the lowest barriers to implementation, testing and validating the added value of the DT technology on a small scale.
- For software and platform developers: To focus on modular and adaptable solutions that can be integrated with different types of machines and production systems.
- For policymakers and institutions: To encourage investments and standards related to the digitalisation of production, with an emphasis on cybersecurity, energy efficiency, and sustainable resource management.
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Badhwar, A.; Islam, S.; Tan, C.S.L.; Panwar, T.; Wigley, S.; Nayak, R. Unraveling green marketing and greenwashing: A systematic review in the context of the fashion and textiles indus-try. Sustainability 2024, 16, 2738. [Google Scholar] [CrossRef]
- Martins, J.M. (Ed.) Industry and Innovation: Textile Industry; Springer Nature: Berlin, Germany, 2024. [Google Scholar]
- Tzachor, A.; Sabri, S.; Richards, C.E.; Rajabifard, A.; Acuto, M. Potential and limitations of digital twins to achieve the sustainable development goals. Nat. Sustain. 2022, 5, 822–829. [Google Scholar] [CrossRef]
- Qian, C.; Liu, X.; Ripley, C.; Qian, M.; Liang, F.; Yu, W. Digital twin—Cyber replica of physical things: Architecture, applications and future research directions. Futur. Internet 2022, 14, 64. [Google Scholar] [CrossRef]
- Panyaram, S. Digital Twins & IoT: A New Era for Predictive Maintenance in Manufacturing. Int. J. Invent. Electron. Electr. Eng. 2024, 10, 1–9. [Google Scholar]
- Shen, T.; Li, B. Digital twins in additive manufacturing: A state-of-the-art review. Int. J. Adv. Manuf. Technol. 2024, 131, 63–92. [Google Scholar] [CrossRef]
- Xiong, M.; Wang, H. Digital twin applications in aviation industry: A review. Int. J. Adv. Manuf. Technol. 2022, 121, 5677–5692. [Google Scholar] [CrossRef]
- Deng, S.; Ling, L.; Zhang, C.; Li, C.; Zeng, T.; Zhang, K.; Guo, G. A systematic review on the current research of digital twin in automotive application. Internet Things Cyber-Phys. Syst. 2023, 3, 180–191. [Google Scholar] [CrossRef]
- Borowski, P.F. Digitization, digital twins, blockchain, and industry 4.0 as elements of management process in enterprises in the energy sector. Energies 2021, 14, 1885. [Google Scholar] [CrossRef]
- Marshall, M.; Collins, J.; Aziz, A. Digital twin implementation in textile manufacturing: Challenges and opportunities. Int. J. Comput. Integr. Manuf. 2024, 37, 145–160. [Google Scholar]
- Singh, R.; Yadav, V.; Gaur, T.S.; Siddh, M.M. Barriers to adopting Industry 4.0 in Indian textile and clothing industries. Discov. Appl. Sci. 2025, 7, 560. [Google Scholar] [CrossRef]
- Kuzmichev, V.; Yan, J. The application of digital twins in the field of fashion. In Digital Twins: Basics and Applications; Springer International Publishing: Cham, Switzerland, 2022; pp. 45–57. [Google Scholar]
- Donmezer, S.; Demircioglu, P.; Bogrekci, I.; Bas, G.; Durakbasa, M.N. Revolutionizing the garment industry 5.0: Embracing closed-loop design, E-libraries, and digital twins. Sustainability 2023, 15, 15839. [Google Scholar] [CrossRef]
- Kim, M.; Kim, S. Development of a dedicated process simulator for the digital twin in apparel manufacturing: A case study. Int. J. Cloth. Sci. Technol. 2024, 36, 629–645. [Google Scholar] [CrossRef]
- Murugesan, B.; Jayanthi, K.B.; Karthikeyan, G. Integrating Digital Twins and 3D Technologies in Fashion: Advancing Sustainability and Consumer Engagement. In Illustrating Digital Innovations Towards Intelligent Fashion: Leveraging Information System Engineering and Digital Twins for Efficient Design of Next-Generation Fashion; Springer Nature: Cham, Switzerland, 2024; pp. 1–88. [Google Scholar]
- dos Santos, C.H.; Gabriel, G.T.; do Amaral, J.V.S.; Montevechi, J.A.B.; de Queiroz, J.A. Decision-making in a fast fashion company in the Industry 4.0 era: A Digital Twin proposal to support operational planning. Int. J. Adv. Manuf. Technol. 2021, 116, 1653–1666. [Google Scholar] [CrossRef]
- Wagner, R.; Kabalska, A. Sustainable value in the fashion industry: A case study of value construction/destruction using digital twins. Sustain. Dev. 2023, 31, 1652–1667. [Google Scholar] [CrossRef]
- Doungtap, S.; Petchhan, J.; Phanichraksaphong, V.; Wang, J.-H. Towards digital twins of 3D reconstructed apparel models with an end-to-end mobile visualization. Appl. Sci. 2023, 13, 8571. [Google Scholar] [CrossRef]
- Jayalakshmi, I.; Vasanthi, D.; Perumal, V.V. Digital Twin Contribution in Integrated Processes of Fashion and Textile Supply Chains. In Illustrating Digital Innovations Towards Intelligent Fashion: Leveraging Information System Engineering and Digital Twins for Efficient Design of Next-Generation Fashion; Springer Nature: Cham, Switzerland, 2024; pp. 573–599. [Google Scholar]
- Bieńkowska, J. The effects of artificial intelligence on the fashion industry—Opportunities and challenges for sustainable transformation. Sustain. Dev. 2025, 33, 3774–3790. [Google Scholar] [CrossRef]
- Singh, B.; Vig, K.; Kaunert, C.; Dutta, P.K. Shaping Fashion Industry Assimilating Digital Twins: Ground Breaking Approach of Sketch to Sale for Transforming the Fashion Design Process for Sustainability. In Illustrating Digital Innovations Towards Intelligent Fashion: Leveraging In-formation System Engineering and Digital Twins for Efficient Design of Next-Generation Fashion; Springer Nature: Cham, Switzerland, 2024; pp. 89–104. [Google Scholar]
- Petzer, D.J.; Mostert, P.G.; Fourie, S. Online complaint intention and service recovery expectations of clothing retail customers. Retail. Mark. Rev. 2014, 10, 38–58. [Google Scholar]
- Dai, W.; Liu, S.; Lv, S.; Hu, J.; Wang, X. Multi-stage tool wear prediction method based on multi-dimensional digital twin. J. Intell. Manuf. 2025, 1–18. [Google Scholar] [CrossRef]
- Preut, A.; Kopka, J.-P.; Clausen, U. Digital twins for the circular economy. Sustainability 2021, 13, 10467. [Google Scholar] [CrossRef]
- Mügge, J.; Seegrün, A.; Hoyer, T.-K.; Riedelsheimer, T.; Lindow, K. Digital twins within the circular economy: Literature review and concept presentation. Sustainability 2024, 16, 2748. [Google Scholar] [CrossRef]
- Guo, D.; Ling, S.; Li, H.; Ao, D.; Zhang, T.; Rong, Y.; Huang, G.Q. A framework for personalized production based on digital twin, blockchain and additive manufacturing in the context of Industry 4.0. In Proceedings of the 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE), Hong Kong, China, 20–21 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1181–1186. [Google Scholar]
- Bucci, I.; Fani, V.; Bandinelli, R. Towards human-centric manufacturing: Exploring the role of human digital twins in industry 5.0. Sustainability 2024, 17, 129. [Google Scholar] [CrossRef]
- Zahid, A.; Ferraro, A.; Petrillo, A.; De Felice, F. Exploring the Role of Digital Twin and Industrial Metaverse Technologies in Enhancing Occupational Health and Safety in Manufacturing. Appl. Sci. 2025, 15, 8268. [Google Scholar] [CrossRef]
- Rahmani-Sane, G.; Azad, S.; Ameli, M.T.; Haghani, S. The Applications of Artificial Intelligence and Digital Twin in Power Systems: An In-Depth Review. IEEE Access 2025, 13, 108573–108608. [Google Scholar] [CrossRef]
- Wang, W.; Yang, Y.; Khan, L.U.; Niyato, D.; Han, Z.; Guizani, M. Digital twin for wireless networks: Security attacks and solutions. IEEE Wirel. Commun. 2023, 31, 278–285. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, J.; Pan, R.; Wang, L.; Zhou, J.; Zhang, N.; Xiang, J. Digital Twin Platform Based on Virtual Sensing for Real-Time Monitoring of Mechanical Features in Weaving Motion. IEEE Sens. J. 2025, 25, 20406–20414. [Google Scholar] [CrossRef]
- Sajadieh, S.M.M.; Noh, S.D. From Simulation to Autonomy: Reviews of the Integration of Artificial Intelligence and Digital Twins. Int. J. Precis. Eng. Manuf. Technol. 2025, 12, 1597–1628. [Google Scholar] [CrossRef]
- Salis, A.; Marguglio, A.; De Luca, G.; Razzetti, S.; Quadrini, W.; Gusmeroli, S. An edge-cloud based reference architecture to support cognitive solutions in process industry. Procedia Comput. Sci. 2023, 217, 20–30. [Google Scholar] [CrossRef]
- Awouda, A.; Traini, E.; Bruno, G.; Chiabert, P. IoT-Based Framework for Digital Twins in the industry 5.0 era. Sensors 2024, 24, 594. [Google Scholar] [CrossRef]
- Malashin, I.; Martysyuk, D.; Tynchenko, V.; Gantimurov, A.; Nelyub, V.; Borodulin, A.; Galinovsky, A. Machine Learning in Polymeric Technical Textiles: A Review. Polymers 2025, 17, 1172. [Google Scholar] [CrossRef]
- Ingle, N.; Jasper, W.J. A review of the evolution and concepts of deep learning and AI in the textile industry. Text. Res. J. 2025, 95, 1709–1737. [Google Scholar] [CrossRef]
- Miranda, J.; Costa, A.; Romero, L.; Faria, P.M. Digital Twins in Industrial Maintenance: Integrating Virtual and Augmented Reality for Innovation. World J. Inf. Syst. 2025, 2, 11–22. [Google Scholar] [CrossRef]
- Chen, Y.-P.; Karkaria, V.; Tsai, Y.-K.; Rolark, F.; Quispe, D.; Gao, R.X.; Cao, J.; Chen, W. Real-time decision-making for Digital Twin in additive manufacturing with Model Predictive Control using time-series deep neural networks. J. Manuf. Syst. 2025, 80, 412–424. [Google Scholar] [CrossRef]
- Yao, J.-F.; Yang, Y.; Wang, X.-C.; Zhang, X.-P. Systematic review of digital twin technology and applications. Vis. Comput. Ind. Biomed. Art 2023, 6, 10. [Google Scholar] [CrossRef] [PubMed]
- Iliuţă, M.-E.; Moisescu, M.-A.; Pop, E.; Ionita, A.-D.; Caramihai, S.-I.; Mitulescu, T.-C. Digital twin—a review of the evolution from concept to technology and its analytical perspectives on applications in various fields. Appl. Sci. 2024, 14, 5454. [Google Scholar] [CrossRef]
- Eyre, J.M.; Dodd, T.J.; Freeman, C.; Lanyon-Hogg, R.; Lockwood, A.J.; Scott, R.W. Demonstration of an industrial framework for an implementation of a process digital twin. In ASME International Mechanical Engineering CONGRESS and Exposition; American Society of Mechanical Engineers: New York, NY, USA, 2018; Volume 52019, p. V002T02A070. [Google Scholar]
- West, S.; Stoll, O.; Meierhofer, J.; Züst, S. Digital twin providing new opportunities for value co-creation through supporting decision-making. Appl. Sci. 2021, 11, 3750. [Google Scholar] [CrossRef]
- Hu, Y. Application of CLO3D Software in the Teaching of Garment Structure Drawing. BCP Educ. Psychol. 2022, 4, 8–14. [Google Scholar] [CrossRef]
- Collins, T.; Thompson, A.J. Digital versus Physical Textiles: A Case Study of Browzwear’s Fabric Rendering. Int. J. Des. Objects 2024, 18, 125. [Google Scholar] [CrossRef]
- Choi, K.-H. 3D dynamic fashion design development using digital technology and its potential in online platforms. Fash. Text. 2022, 9, 9. [Google Scholar] [CrossRef]
- Gioberto, G.; Coughlin, J.; Bibeau, K.; Dunne, L.E. Detecting bends and fabric folds using stitched sensors. In Proceedings of the 2013 International Symposium on Wearable Computers, Zurich, Switzerland, 8–12 September 2013; pp. 53–56. [Google Scholar]
- Sarma, A.D.N. FusionFlow: A Software Development Approach in the Era of Design Thinking and AI. In Innovative Design Thinking Approaches in Software Engineering; IGI Global Scientific Publishing: Hershey, PA, USA, 2025; pp. 53–84. [Google Scholar]
- Saez, M.; Maturana, F.P.; Barton, K.; Tilbury, D.M. Real-time manufacturing machine and system performance monitoring using internet of things. IEEE Trans. Autom. Sci. Eng. 2018, 15, 1735–1748. [Google Scholar] [CrossRef]
- Manglani, H.; Hodge, G.L.; Oxenham, W. Application of the Internet of Things in the textile industry. Text. Prog. 2019, 51, 225–297. [Google Scholar] [CrossRef]
- Zhong, D.; Xia, Z.; Zhu, Y.; Duan, J. Overview of predictive maintenance based on digital twin technology. Heliyon 2023, 9, e14534. [Google Scholar] [CrossRef] [PubMed]
- Akter, S.S.; Munna, M.H.; Turjo, K.I.H.; Emon, A.S.; Redwan, K.; Ahmed, M.; Al Sohan, F.A. IoT-Enabled Digital Twin Ecosystem for Optimizing Maintenance and Minimizing Downtime in Smart Manufacturing. In Proceedings of the 7th Bangladesh Conference on Industrial Engineering and Operations Management, Dhaka, Bangladesh, 21–22 December 2024. [Google Scholar]
- Islam, M.M.; Mintoo, A.A.; Saimon, A.S.M. Enhancing textile quality control with iot sensors: A case study of automated defect detection. Int. J. Manag. Inf. Syst. Data Sci. 2024, 1, 19–30. [Google Scholar]
- Amjad, A.I.; Joshi, S. Technological advancements and the role of artificial intelligence—A review of textile material, machine manufacturing, and stakeholder experiences. Int. J. Cloth. Sci. Technol. 2025, ahead of print.. [CrossRef]
- Ren, J.; Chen, G.; Li, X. A fine grained digital textile printing system based on image registration. Comput. Ind. 2017, 92, 152–160. [Google Scholar] [CrossRef]
- Ullah, A.; Younas, M.; Saharudin, M.S. Transforming manufacturing quality management with cognitive twins: A data-driven, predictive approach to real-time optimization of quality. J. Manuf. Mater. Process. 2025, 9, 79. [Google Scholar] [CrossRef]
- Surung, J.S.; Bayupati, I.P.A.; Putri, G.A.A. The Implementation Of ERP In Supply Chain Management On Conventional Woven Fabric Business. Int. J. Inf. Eng. Electron. Bus. 2020, 12, 8–18. [Google Scholar] [CrossRef]
- Komal, S.; Saad, S.M. Supply chain management strategies approach for the UK textile industry. Procedia Comput. Sci. 2024, 232, 117–127. [Google Scholar] [CrossRef]
- Abideen, A.Z.; Sundram, V.P.K.; Pyeman, J.; Othman, A.K.; Sorooshian, S. Digital twin integrated reinforced learning in supply chain and logistics. Logistics 2021, 5, 84. [Google Scholar] [CrossRef]
- Roumeliotis, C.; Dasygenis, M.; Lazaridis, V.; Dossis, M. Blockchain and digital twins in smart industry 4.0: The use case of supply chain-a review of integration techniques and applications. Designs 2024, 8, 105. [Google Scholar] [CrossRef]
- Vashishth, T.K.; Sharma, V.; Sharma, K.K.; Kumar, B.; Chaudhary, S.; Panwar, R. Digital twins solutions for smart logistics and transportation. In Digital Twins for Smart Cities and Villages; Elsevier: Amsterdam, The Netherlands, 2025; pp. 353–376. [Google Scholar]
- Ospital, P.; Masson, D.H.; Beler, C.; Legardeur, J. Toward total traceability and full transparency communication in textile industry supply chain. INCOSE Int. Symp. 2022, 32, 1–7. [Google Scholar] [CrossRef]
- Gonçalves, A.; Silva, C. Looking for sustainability scoring in apparel: A review on environmental footprint, social impacts and transparen-cy. Energies 2021, 14, 3032. [Google Scholar] [CrossRef]
- Muñoz-Torres, M.J.; Fernández-Izquierdo, M.Á.; Ferrero-Ferrero, I.; Escrig-Olmedo, E.; Rivera-Lirio, J.M. Social life cycle analysis of textile industry impacts for greater social sustainability of global supply chains. Systems 2022, 11, 8. [Google Scholar] [CrossRef]
- Alves, L.; Sá, M.; Cruz, E.F.; Alves, T.; Alves, M.; Oliveira, J.; Santos, M.; da Cruz, A.M.R. A traceability platform for monitoring environmental and social sustainability in the textile and clothing value chain: Towards a digital passport for textiles and clothing. Sustainability 2023, 16, 82. [Google Scholar] [CrossRef]
- Alves, L.; Cruz, E.F.; Lopes, S.I.; Faria, P.M.; da Cruz, A.M.R. Towards circular economy in the textiles and clothing value chain through blockchain technology and IoT: A review. Waste Manag. Res. 2022, 40, 3–23. [Google Scholar] [CrossRef]
- Chakraborty, S.; Hoque, S.; Jeem, N.R.; Biswas, M.C.; Bardhan, D.; Lobaton, E. Fashion recommendation systems, models and methods: A review. Informatics 2021, 8, 49. [Google Scholar] [CrossRef]
- Deldjoo, Y.; Nazary, F.; Ramisa, A.; McAuley, J.; Pellegrini, G.; Bellogin, A.; Di Noia, T. A Review of modern fashion recommender systems. ACM Comput. Surv. 2023, 56, 1–37. [Google Scholar] [CrossRef]
- Angelova, R.A. Textiles and Human Thermophysiological Comfort in the Indoor Environment; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Mokanaasri, E.; Sadhna; Kumar, R. The Business of Textile Design. In The Art and Craft of Modern Textile Design: Woven Whimsy; Springer Nature: Cham, Switzerland, 2025; pp. 91–100. [Google Scholar]
- Glogar, M.; Petrak, S.; Naglić, M.M. Digital technologies in the sustainable design and development of textiles and clothing—a literature re-view. Sustainability 2025, 17, 1371. [Google Scholar] [CrossRef]
- He, Q.; Li, L.; Li, D.; Peng, T.; Zhang, X.; Cai, Y.; Zhang, X.; Tang, R. From digital human modeling to human digital twin: Framework and perspectives in human factors. Chin. J. Mech. Eng. 2024, 37, 9. [Google Scholar] [CrossRef]
- Pietrantoni, L.; Román-Niaves, M.S.; De Angelis, M. Human Trust and Digital Twins in a Human Factors and Ergonomic Framework. In Proceedings of the 2024 IEEE 29th International Conference on Emerging Technologies and Factory Automation (ETFA), Padova, Italy, 10–13 September 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–9. [Google Scholar]
- Orisadare, E.A.; Achukwu, O.E.; Ogunyemi, A.A.; Adedeji, D.O.; Diyaolu, I.J.; Ugwu, E.I.; Oluwatope, A.O.; Bakare, K.O.; Awoyelu, I.O. Digitalisation and green strategies: A systematic review of the textile, apparel and fashion industries. Circ. Econ. Sustain. 2025, 5, 2775–2827. [Google Scholar] [CrossRef]
- Kampa, T.; Müller, C.K.; Großmann, D. Interlocking IT/OT security for edge cloud-enabled manufacturing. Ad Hoc Netw. 2024, 154, 103384. [Google Scholar] [CrossRef]
- Alcaraz, C.; Lopez, J. Digital twin: A comprehensive survey of security threats. IEEE Commun. Surv. Tutor. 2022, 24, 1475–1503. [Google Scholar] [CrossRef]
- Wang, Y.; Su, Z.; Guo, S.; Dai, M.; Luan, T.H.; Liu, Y. A survey on digital twins: Architecture, enabling technologies, security and privacy, and future prospects. IEEE Internet Things J. 2023, 10, 14965–14987. [Google Scholar] [CrossRef]
- Naveen, P.; Maheswar, R.; Ragupathy, U.S. (Eds.) Digital Twins and Cybersecurity: Safeguarding the Future of Connected Systems; John Wiley & Sons: Hoboken, NJ, USA, 2025. [Google Scholar]
- Shamsuzzaman, M.; Mashud, M.; Rahman, M.; Rahman, M.; Hoq, E.; Das, D. Management and maintenance of textile machinery. In Advanced Technology in Textiles: Fibre to Apparel; Springer Nature: Singapore, 2023; pp. 31–63. [Google Scholar]
- Yalcin-Enis, I.; Kucukali-Ozturk, M.; Sezgin, H. Risks and management of textile waste. In Nanoscience and Biotechnology for Environmental Applications; Springer: Cham, Switzerland, 2019; pp. 29–53. [Google Scholar] [CrossRef]
- Tang, K.H.D. State of the art in textile waste management: A review. Textiles 2023, 3, 454–467. [Google Scholar] [CrossRef]
- Neri, M. Thermal and acoustic characterization of innovative and unconventional panels made of reused materials. Atmosphere 2022, 13, 1825. [Google Scholar] [CrossRef]
- Legardeur, J.; Ospital, P. Digital Product Passport for the Textile Sector. Ph.D. Thesis, Parlement Européen, Strasbourg, France, 2024. [Google Scholar]
- Li, C.; Li, J.; Li, Y.; He, L.; Fu, X.; Chen, J. Fabric defect detection in textile manufacturing: A survey of the state of the art. Secur. Commun. Networks 2021, 2021, 9948808. [Google Scholar] [CrossRef]
- Mitra, A. Fundamentals of Quality Control and Improvement; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Islam, A.; Akhter, S.; Mursalin, T.E.; Amin, M.A. Automated System to Detect Textile Defects. Statistics 2019, 50, 100. [Google Scholar]
- Yasin, S.; Behary, N.; Rovero, G.; Kumar, V. Statistical analysis of use-phase energy consumption of textile products. Int. J. Life Cycle Assess. 2016, 21, 1776–1788. [Google Scholar] [CrossRef]
- Farhana, K.; Kadirgama, K.; Mahamude, A.S.F.; Mica, M.T. Energy consumption, environmental impact, and implementation of renewable energy resources in global textile industries: An overview towards circularity and sustainability. Mater. Circ. Econ. 2022, 4, 15. [Google Scholar] [CrossRef]
- Wolff, K.; Herholz, P.; Ziegler, V.; Link, F.; Brügel, N.; Sorkine-Hornung, O. Designing personalized garments with body movement. Comput. Graph. Forum 2023, 42, 180–194. [Google Scholar] [CrossRef]
- Kaur, G.; Dey, B.K.; Pandey, P.; Majumder, A.; Gupta, S. A smart manufacturing process for textile industry automation under uncertainties. Processes 2024, 12, 778. [Google Scholar] [CrossRef]
- Choi, T.-M.; Guo, S. Responsive supply in fashion mass customisation systems with consumer returns. Int. J. Prod. Res. 2018, 56, 3409–3422. [Google Scholar] [CrossRef]
- Nagaraj, T.S.; Jeyapaul, R.; Vimal, K.; Mathiyazhagan, K. Integration of human factors and ergonomics into lean implementation: Ergonomic-value stream map approach in the textile industry. Prod. Plan. Control. 2019, 30, 1265–1282. [Google Scholar] [CrossRef]
- Sealetsa, O.; Thatcher, A. Ergonomics issues among sewing machine operators in the textile manufacturing industry in Botswana. Work 2011, 38, 279–289. [Google Scholar] [CrossRef]
- Udeze, K.U.; Nwafor, G.A. Ergonomic Framework to Enhance Sustainable Cost-Effective Process in A Fashion and Designed Industry. J. Eng. 2025, 31, 1–20. [Google Scholar] [CrossRef]
- Salisu, S.; Ruhaiyem, N.I.R.; Eisa, T.A.E.; Nasser, M.; Saeed, F.; Younis, H.A. Motion capture technologies for ergonomics: A systematic literature review. Diagnostics 2023, 13, 2593. [Google Scholar] [CrossRef]
- Blanco-Gonzalo, R.; Miguel-Hurtado, O.; Lunerti, C.; Guest, R.M.; Corsetti, B.; Ellavarason, E.; Sanchez-Reillo, R. Biometric systems interaction assessment: The state of the art. IEEE Trans. Hum.-Mach. Syst. 2019, 49, 397–410. [Google Scholar] [CrossRef]
- Stefana, E.; Marciano, F.; Rossi, D.; Cocca, P.; Tomasoni, G. Wearable devices for ergonomics: A systematic literature review. Sensors 2021, 21, 777. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Fuenmayor, E.; Hinchy, E.P.; Qiao, Y.; Murray, N.; Devine, D. Digital twin: Origin to future. Appl. Syst. Innov. 2021, 4, 36. [Google Scholar] [CrossRef]
- Ghosh, J.; Ghosh, R. Exploration of Fashion Industry Protection as Need of Hour on Intellectual Property. In Illustrating Digital Innovations Towards Intelligent Fashion: Leveraging Information System Engineering and Digital Twins for Efficient Design of Next-Generation Fashion; Springer Nature: Cham, Switzerland, 2024; pp. 397–415. [Google Scholar]
- Feng, H.; Chen, D.; Lv, H. Sensible and secure IoT communication for digital twins, cyber twins, web twins. Internet Things Cyber-Physical Syst. 2021, 1, 34–44. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, L.; Li, C.; Bai, J.; Lv, H.; Lv, Z. Blockchain-based secure communication of intelligent transportation digital twins system. IEEE Trans. Intell. Transp. Syst. 2022, 23, 22630–22640. [Google Scholar] [CrossRef]
- Ruppert, T.; Abonyi, J. Integration of real-time locating systems into digital twins. J. Ind. Inf. Integr. 2020, 20, 100174. [Google Scholar] [CrossRef]
- Huang, H.; Yang, L.; Wang, Y.; Xu, X.; Lu, Y. Digital Twin-driven online anomaly detection for an automation system based on edge intelligence. J. Manuf. Syst. 2021, 59, 138–150. [Google Scholar] [CrossRef]
- Broo, D.G.; Schooling, J. Digital twins in infrastructure: Definitions, current practices, challenges and strategies. Int. J. Constr. Manag. 2023, 23, 1254–1263. [Google Scholar] [CrossRef]
Area | Currently Used | Untapped Potential | Expected Value |
---|---|---|---|
Design and Prototyping | 3D virtual garments, fitting simulation | Real-time feedback during physical prototyping | Reduced time-to-market, lower material waste |
Production Monitoring | IoT-based machine-data tracking | Automated predictive maintenance of specific textile machine parts | Less downtime, cost savings |
Quality Control | Manual inspection, some AI-image analysis | Predictive modelling of defects during production | Higher product quality, fewer returns |
Supply Chain | Basic logistics visualisation | Real-time supply chain DT simulation | Better forecasting, reduced delays |
Sustainability | Lifecycle tracking (partial) | Closed-loop waste management simulations | Increased resource efficiency, reduced emissions |
Personalisation | Size-recommendation engines | Fully customised virtual product twins per customer | Better customer satisfaction, fewer returns |
Training and HR | e-learning modules | Immersive training via virtual-twin environments | Faster onboarding, fewer human errors |
Cybersecurity | Basic firewalls, separate IT/OT systems | Integrated real-time monitoring of DT infrastructure | Reduced cyber risk, increased system resilience |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelova, R.A. Digital Twins for a Sustainable Textile Industry: A Critical Analysis of Unexplored Applications and Future Directions. Textiles 2025, 5, 49. https://doi.org/10.3390/textiles5040049
Angelova RA. Digital Twins for a Sustainable Textile Industry: A Critical Analysis of Unexplored Applications and Future Directions. Textiles. 2025; 5(4):49. https://doi.org/10.3390/textiles5040049
Chicago/Turabian StyleAngelova, Radostina A. 2025. "Digital Twins for a Sustainable Textile Industry: A Critical Analysis of Unexplored Applications and Future Directions" Textiles 5, no. 4: 49. https://doi.org/10.3390/textiles5040049
APA StyleAngelova, R. A. (2025). Digital Twins for a Sustainable Textile Industry: A Critical Analysis of Unexplored Applications and Future Directions. Textiles, 5(4), 49. https://doi.org/10.3390/textiles5040049