Special Issue "Bioactive Compounds in Plants"

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Phytochemistry".

Deadline for manuscript submissions: 30 April 2020.

Special Issue Editors

Prof. Laura Cornara
E-Mail Website
Guest Editor
Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy
Interests: plant anatomy; medicinal plants; ethnobotany; pharmacognosy; phytochemistry
Dr. Antonella Smeriglio
E-Mail Website
Guest Editor
Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina,Viale Palatucci, 98168 Messina, Italy
Interests: pharmacognosy; phytochemistry; ethnopharmacology; plant secondary metabolites

Special Issue Information

Dear Colleagues,

The journal Plants will jointly be publishing a Special Issue on bioactive compounds in plants. Plant secondary metabolites are receiving ever-increasing attention due to their various health and useful properties for a multitude of applications, not only for more traditional uses, such as those in the pharmaceutical, cosmetic, and food industries, but also as new sources of biopesticides. In relation to this, it should be noted that, in nature, plant secondary metabolites play an important role as defense mechanisms in response to pathogenic organisms, predatory herbivores, and competing plants.

The focus of this Special Issue will cover different types of approaches to the study of plant secondary metabolites. These approaches include micro-morphological characterization of plant tissues related to secondary metabolite production, extraction and chemical characterization of active ingredients, and the study of their biological properties by in vitro cell-free and cell-based assays. Biological properties of phytocomplexes, as well as of isolated bioactive compounds, can be tested in bioguided assays for the search for new compounds with a wide range of useful applications for human, animal, and environmental health.

Prof. Laura Cornara
Dr. Antonella Smeriglio
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plant extracts
  • essential oil
  • plant byproducts
  • micro-morphological features
  • phytochemical profile
  • bioactive compounds
  • health effects
  • biopesticides

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Nutritional Value, Mineral Composition, Secondary Metabolites, and Antioxidant Activity of Some Wild Geophyte Sedges and Grasses
Plants 2019, 8(12), 569; https://doi.org/10.3390/plants8120569 - 04 Dec 2019
Abstract
Geophytes are plants with underground storage organs including bulbs, corms, tubers, and rhizomes, often physiologically active and able to survive during harsh environmental conditions. This study is conducted to assess the nutritive value, mineral composition, bioactive metabolites, and antioxidant activity of five wild [...] Read more.
Geophytes are plants with underground storage organs including bulbs, corms, tubers, and rhizomes, often physiologically active and able to survive during harsh environmental conditions. This study is conducted to assess the nutritive value, mineral composition, bioactive metabolites, and antioxidant activity of five wild geophytes (Cyperus capitatus, C. conglomeratus, Elymus farctus, Lasiurus scindicus, and Panicum turgidum) collected from the Nile Delta coast and inland desert. The proximate composition including dry matter, moisture content, ash content, fiber, fat, protein, sucrose, and glucose were determined. Also, total carbohydrates, total digestible nutrients (TDN), and nutritive values were calculated. Macro- and micro-minerals were also determined in the studied geophytes. Total phenolics, total flavonoids, alkaloids, saponins, and tannins were determined. Antioxidant activity was evaluated based on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicle scavenging. Based on the nutritive value, the studied geophytes are ranked as follows: E. farctus > C. conglomeratus > L. scindicus > P. turgidum > C. capitatus. The mineral analysis reveals a sufficient amount of macro- and micro-elements in the studied geophytes while the microelements levels in the studied wild plants exist as Fe > Mn > Zn > Cu. Cyperus conglomeratus attained the highest concentrations of all determined secondary metabolites. On the other hand, C. conglomeratus, C. capitatus, and P. turgidum extracts showed strong scavenging activity (EC50 < 1 mg mL−1), while extracts of E. farctus and L. scindicus exhibited moderate scavenging activity (1 ≤ EC50 ≤ 2 mg mL−1). The present data reveal that geophytes under investigation could be used as good forage plants, especially in arid habitats. In addition, C. conglomeratus could be a potentially important candidate for natural antioxidants as it attained high contents of the bioactive constituents. Full article
(This article belongs to the Special Issue Bioactive Compounds in Plants)
Open AccessArticle
Ginkgo biloba L. Leaf Extract Protects HepG2 Cells Against Paraquat-Induced Oxidative DNA Damage
Plants 2019, 8(12), 556; https://doi.org/10.3390/plants8120556 - 29 Nov 2019
Abstract
Ginkgo biloba L. leaf extracts and herbal infusions are used worldwide due to the health benefits that are attributed to its use, including anti-neoplastic, anti-aging, neuro-protection, antioxidant and others. The aim of this study was to evaluate the effect of an aqueous Ginkgo [...] Read more.
Ginkgo biloba L. leaf extracts and herbal infusions are used worldwide due to the health benefits that are attributed to its use, including anti-neoplastic, anti-aging, neuro-protection, antioxidant and others. The aim of this study was to evaluate the effect of an aqueous Ginkgo biloba extract on HepG2 cell viability, genotoxicity and DNA protection against paraquat-induced oxidative damage. Exposure to paraquat (PQ), over 24 h incubation at 1.0 and 1.5 µM, did not significantly reduce cell viability but induced concentration and time-dependent oxidative DNA damage. Ginkgo biloba leaf extract produced dose-dependent cytotoxicity (IC50 = 540.8 ± 40.5 µg/mL at 24 h exposure), and short incubations (1 h) produced basal and oxidative DNA damage (>750 and 1500 µg/mL, respectively). However, lower concentrations (e.g., 75 µg/mL) of Ginkgo biloba leaf extract were not cytotoxic and reduced basal DNA damage, indicating a protective effect at incubations up to 4 h. On the other hand, longer incubations (24 h) induced oxidative DNA damage. Co-incubation of HepG2 cells for 4 h, with G. biloba leaf extract (75 µg/mL) and PQ (1.0 or 1.5 µM) significantly reduced PQ-induced oxidative DNA damage. In conclusion, the consumption of Ginkgo biloba leaf extract for long periods at high doses/concentrations is potentially toxic; however, low doses protect the cells against basal oxidative damage and against environmentally derived toxicants that induce oxidative DNA damage. Full article
(This article belongs to the Special Issue Bioactive Compounds in Plants)
Show Figures

Figure 1

Open AccessArticle
Chemical and Antifungal Variability of Several Accessions of Azadirachta indica A. Juss. from Six Locations Across the Colombian Caribbean Coast: Identification of Antifungal Azadirone Limonoids
Plants 2019, 8(12), 555; https://doi.org/10.3390/plants8120555 - 29 Nov 2019
Abstract
Plant materials (i.e., leaves, fruits, and seeds) from 40 trees of Azadirachta indica A. Juss. were collected from six different locations across the Colombian Caribbean coast. Eighty-four ethanolic extracts were prepared and the total limonoid contents (TLiC) and the antifungal activity against Fusarium [...] Read more.
Plant materials (i.e., leaves, fruits, and seeds) from 40 trees of Azadirachta indica A. Juss. were collected from six different locations across the Colombian Caribbean coast. Eighty-four ethanolic extracts were prepared and the total limonoid contents (TLiC) and the antifungal activity against Fusarium oxysporum conidia were measured. Their chemical profiles were also recorded via liquid chromatography-electrospray ionization interface-mass spectrometry (LC-ESI-MS) analysis and the top-ranked features were then annotated after supervised multivariate statistics. Inter-location chemical variability within sample set was assessed by sparse partial least squares discriminant analysis (sPLS-DA) and the chemical profiles and biological activity datasets were integrated through single-Y orthogonal partial least squares (OPLS) to identify antifungal bioactives in test extracts. The TLiC and antifungal activity (IC50 values) of the A. indica-derived extracts were found to be ranging from 4.5 to 48.5 mg limonin equivalent per g dry extract and 0.08–44.8 μg/mL, respectively. The presence/abundance of particular limonoids between collected samples influenced the variability among locations. In addition, the integration of chemical and antifungal activity datasets showed five features as markers probably contributing to the bioactivity, annotated as compounds with an azadirone-like moiety. To validate the information provided by the single-Y OPLS model, a high performance liquid chromatography (HPLC)-based microfractionation was then carried out on an active extract. The combined plot of chromatographic profile and microfraction bioactivity also evidenced five signals possessing the highest antifungal activity. The most active limonoid was identified as nimonol 1. Hence, this untargeted metabolite profiling was considered as a convenient tool for identifying metabolites as inter-location markers as well as antifungals against Fusarium oxysporum. Full article
(This article belongs to the Special Issue Bioactive Compounds in Plants)
Show Figures

Graphical abstract

Open AccessCommunication
Withaninsams A and B: Phenylpropanoid Esters from the Roots of Indian Ginseng (Withania somnifera)
Plants 2019, 8(12), 527; https://doi.org/10.3390/plants8120527 - 20 Nov 2019
Abstract
Withania somnifera (L.) Dunal (Solanaceae), known as Indian ginseng or ashwagandha, has been used in Indian Ayurveda for the treatment of a variety of disorders, such as diabetes and reproductive and nervous system disorders. It is particularly used as a general health tonic, [...] Read more.
Withania somnifera (L.) Dunal (Solanaceae), known as Indian ginseng or ashwagandha, has been used in Indian Ayurveda for the treatment of a variety of disorders, such as diabetes and reproductive and nervous system disorders. It is particularly used as a general health tonic, analgesic, and sedative. As part of continuing projects to discover unique bioactive natural products from medicinal plants, phytochemical investigation of the roots of W. somnifera combined with a liquid chromatography–mass spectrometry (LC/MS)-based analysis has led to the isolation of two novel phenylpropanoid esters, Withaninsams A (1) and B (2), as an inseparable mixture, along with three known phenolic compounds (3, 4, and 6) and a pyrazole alkaloid (5). The structures of the new compounds were elucidated using a combination of spectroscopic methods, including one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectroscopy (HR-ESIMS). Withaninsams A (1) and B (2) are phenylpropanoid esters that contain a side chain, 4-methyl-1,4-pentanediol unit. To the best of our knowledge, the present study is the first to report on phenylpropanoid esters with 4-methyl-1,4-pentanediol unit. The anti-inflammatory activity of the isolated compounds (16) was evaluated by determining their inhibitory effects on nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, where compound 3 inhibited LPS-induced NO production (IC50 = 33.3 μM) and TNF-α production, a pro-inflammatory cytokine (IC50 = 40.9 μM). The anti-inflammatory mechanism through the inhibition of transcriptional iNOS protein expression was confirmed by western blotting experiments for the active compound 3, which showed decreased iNOS protein expression. Full article
(This article belongs to the Special Issue Bioactive Compounds in Plants)
Show Figures

Graphical abstract

Open AccessArticle
Polyphenol Characterization and Skin-Preserving Properties of Hydroalcoholic Flower Extract from Himantoglossum robertianum (Orchidaceae)
Plants 2019, 8(11), 502; https://doi.org/10.3390/plants8110502 - 14 Nov 2019
Abstract
Himantoglossum robertianum (Loisel.) P. Delforge is a Mediterranean orchid whose propagation in vitro has been achieved, making it eligible as a source of bioactive substances. Flowers were analyzed by light and SEM microscopy and used to obtain a polyphenol-rich, hydroalcoholic flower extract (HFE). [...] Read more.
Himantoglossum robertianum (Loisel.) P. Delforge is a Mediterranean orchid whose propagation in vitro has been achieved, making it eligible as a source of bioactive substances. Flowers were analyzed by light and SEM microscopy and used to obtain a polyphenol-rich, hydroalcoholic flower extract (HFE). HFE was characterized for total phenols, flavonoids and proanthocyanidins, and for polyphenol profile by RP-LC-DAD. Antioxidant assays, in vitro collagenase and elastase inhibition, and MTT and cell motility assays on HaCaT keratinocytes were done. Microscopy showed epidermal cells containing anthocyanins in the flower labellum. Flavonoids (flavones and flavan-3-ols) represented the most abundant compounds (42.91%), followed by scopoletin (33.79%), and phenolic acids (23.3%). Antioxidant assays showed strong activities, rating ORAC > FRAP > TEAC > β-carotene bleaching > DPPH > iron-chelation. Biological assays showed elastase and collagenase inhibition (up to 42% and 78%, respectively), improvement of HaCaT cell viability after treatment with 500 μM H2O2 (from 30% to 84% of control), and stimulation of cell migration rate up to 210% of control. In summary, HFE counteracted different free radicals, while protective properties were shown by cell-free and cell-based bioassays, suggesting the possible use of H. robertianum flowers for skin-preserving, repair, and anti-aging applications. Full article
(This article belongs to the Special Issue Bioactive Compounds in Plants)
Show Figures

Graphical abstract

Open AccessArticle
Polyphenol Profile and Pharmaceutical Potential of Quercus spp. Bark Extracts
Plants 2019, 8(11), 486; https://doi.org/10.3390/plants8110486 - 09 Nov 2019
Abstract
Targeted profiling of polyphenols in trees may reveal valuable sources of natural compounds with major applications in pharmacology and disease control. The current study targeted the profiling of polyphenols using HPLC-DAD in Quercus robur, Q. macrocarpa and Q. acutissima bark extracts. Free [...] Read more.
Targeted profiling of polyphenols in trees may reveal valuable sources of natural compounds with major applications in pharmacology and disease control. The current study targeted the profiling of polyphenols using HPLC-DAD in Quercus robur, Q. macrocarpa and Q. acutissima bark extracts. Free radical scavenging of each extract was investigated using antioxidant assays. Antimicrobial activities against a wide spectrum of bacteria and fungi were explored, as well as anticancer activities against different cancer cell lines. The HPLC-DAD analyses revealed the availability of several polyphenols in high amounts, including ellagic acid (in Q. robur) and caffeic acid (in Q. macrocarpa) in all three species. The bioactivity assay revealed high antioxidant activity in Q. robur compared to that of the other species, as well as phenolic standards. The three oak bark extracts showed clear antibacterial activities against most bacteria tested, with the highest antibacterial activities in the extracts of Q. robur. In addition, the three extracts showed higher antibacterial activities against Pseudomonas aeruginosa, Micrococcus flavus, and Escherichia coli compared to that of other bacteria. There were strong antifungal activities against some fungi, such as Aspergillus flavus, Penicillium funiculosum, and Penicillium ochrochloron. There were also noticeable anticancer activities against MCF-7, HeLa, Jurkat, and HT-29 cell lines, with the highest anticancer activity in the extracts of Q. robur. This is the first study that reveals not only novel sources of important polyphenols (e.g., ellagic acid) in Q. robur, Q. macrocarpa and Q. acutissima bark but also their anticancer activities against diverse cancer cell lines. Full article
(This article belongs to the Special Issue Bioactive Compounds in Plants)
Show Figures

Figure 1

Back to TopTop