Special Issue "Ophthalmic Drug Delivery Volume II"

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Drug Delivery and Controlled Release".

Deadline for manuscript submissions: 31 July 2021.

Special Issue Editors

Prof. Dr. Francisco Javier Otero-Espinar
E-Mail Website
Guest Editor
Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
Special Issues and Collections in MDPI journals
Dr. Anxo Fernández Ferreiro
E-Mail Website
Guest Editor
Pharmacy Group. Health Research Institute Santiago Compostela (IDIS. SERGAS) CP 15701 Spain
Interests: ocular drug delivery; ocular pharmacokinetic; drug development; pharmacogenetics; clinical and translational research
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

Research in ophthalmic drug delivery has developed significant advances in the last years, and efforts have been made to develop more effective topical formulations to increase drug bioavailability, efficiency, and safety. Drug delivery to the posterior segment of the eye remains a great challenge in the pharmaceutical industry due to the complexity and particularity of the anatomy and physiology of the eye. Some advances have been made with the purpose of maintaining constant drug levels in the site of action. The anatomical ocular barriers have a great impact on drug pharmacokinetics and, subsequently, on the pharmacological effect.

Despite the increasing interest in efficiently reaching the posterior segment of the eye with reduced adverse effects, there is still a need to expand the knowledge of ocular pharmacokinetics that allow the development of safer and more innovative drug delivery systems. These novel approaches may greatly help to improve the lives of patients with ocular pathologies.

In this Special Issue, our goal is to highlight papers describing the advances in ophthalmic drug delivery systems for topical and specialized ocular administration.

Prof. Dr. Francisco Javier Otero-Espinar
Dr. Anxo Fernández Ferreiro
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • ocular pharmacokinetics
  • ocular drug delivery systems
  • ocular routs of drug administration
  • intravitreal administration
  • topical administration

Related Special Issue

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Permeability of the Retina and RPE-Choroid-Sclera to Three Ophthalmic Drugs and the Associated Factors
Pharmaceutics 2021, 13(5), 655; https://doi.org/10.3390/pharmaceutics13050655 - 04 May 2021
Viewed by 156
Abstract
In this study, Retina-RPE-Choroid-Sclera (RCS) and RPE-Choroid-Sclera (CS) were prepared by scraping them off neural retina, and using the Ussing chamber we measured the average time–concentration values in the acceptor chamber across five isolated rabbit tissues for each drug molecule. We determined the [...] Read more.
In this study, Retina-RPE-Choroid-Sclera (RCS) and RPE-Choroid-Sclera (CS) were prepared by scraping them off neural retina, and using the Ussing chamber we measured the average time–concentration values in the acceptor chamber across five isolated rabbit tissues for each drug molecule. We determined the outward direction permeability of the RCS and CS and calculated the neural retina permeability. The permeability coefficients of RCS and CS were as follows: ganciclovir, 13.78 ± 5.82 and 23.22 ± 9.74; brimonidine, 15.34 ± 7.64 and 31.56 ± 12.46; bevacizumab, 0.0136 ± 0.0059 and 0.0612 ± 0.0264 (×10−6 cm/s). The calculated permeability coefficients of the neural retina were as follows: ganciclovir, 33.89 ± 12.64; brimonidine, 29.83 ± 11.58; bevacizumab, 0.0205 ± 0.0074 (×10−6 cm/s). Between brimonidine and ganciclovir, lipophilic brimonidine presented better RCS and CS permeability, whereas ganciclovir showed better calculated neural retinal permeability. The large molecular weight drug bevacizumab demonstrated a much lower permeability than brimonidine and ganciclovir. In conclusion, the ophthalmic drug permeability of RCS and CS is affected by the molecular weight and lipophilicity, and influences the intravitreal half-life. Full article
(This article belongs to the Special Issue Ophthalmic Drug Delivery Volume II)
Show Figures

Figure 1

Open AccessArticle
Comparative Analysis of Morphological and Release Profiles in Ocular Implants of Acetazolamide Prepared by Electrospinning
Pharmaceutics 2021, 13(2), 260; https://doi.org/10.3390/pharmaceutics13020260 - 15 Feb 2021
Viewed by 332
Abstract
The visual impairment that often leads to blindness causes a higher morbidity rate. The goal of this work is to create a novel biodegradable polymeric implant obtained from coaxial fibers containing the dispersed drug—acetazolamide—in order to achieve sustained drug release and increase patient [...] Read more.
The visual impairment that often leads to blindness causes a higher morbidity rate. The goal of this work is to create a novel biodegradable polymeric implant obtained from coaxial fibers containing the dispersed drug—acetazolamide—in order to achieve sustained drug release and increase patient compliance, which is of the highest importance. Firstly, during this work, uncoated implants were produced by electrospinning, and rolled in the shape of small cylinders that were composed of uniaxial and coaxial fibers with immobilized drug inside. The fibers were composed by PCL (poly ε-caprolactone) and Lutrol F127 (poly (oxyethylene-b-oxypropylene-b-oxyethylene)). The prepared implants exhibited a fast rate of drug release, which led to the preparation of new implants incorporating the same formulation but with an additional coating film prepared by solvent casting and comprising PCL and Lutrol F127 or PCL and Luwax EVA 3 ((poly (ethylene-co-vinyl acetate)). Implants were characterized and in vitro release profiles of acetazolamide were obtained in phosphate buffered saline (PBS) at 37 °C. The release profile of the acetazolamide from coated implant containing Luwax EVA 3 is considerably slower than what was observed in case of coated implants containing Lutrol F127, allowing a sustained release and an innovation relatively to other ocular drug delivery systems. Full article
(This article belongs to the Special Issue Ophthalmic Drug Delivery Volume II)
Show Figures

Figure 1

Open AccessArticle
Development and Characterization of a Tacrolimus/Hydroxypropyl-β-Cyclodextrin Eye Drop
Pharmaceutics 2021, 13(2), 149; https://doi.org/10.3390/pharmaceutics13020149 - 23 Jan 2021
Cited by 1 | Viewed by 701
Abstract
Uveitis is a vision inflammatory disorder with a high prevalence in developing countries. Currently, marketed treatments remain limited and reformulation is usually performed to obtain a tacrolimus eye drop as a therapeutic alternative in corticosteroid-refractory eye disease. The aim of this work was [...] Read more.
Uveitis is a vision inflammatory disorder with a high prevalence in developing countries. Currently, marketed treatments remain limited and reformulation is usually performed to obtain a tacrolimus eye drop as a therapeutic alternative in corticosteroid-refractory eye disease. The aim of this work was to develop a mucoadhesive, non-toxic and stable topical ophthalmic formulation that can be safely prepared in hospital pharmacy departments. Four different ophthalmic formulations were prepared based on the tacrolimus/hydroxypropyl-β-cyclodextrin (HPβCD) inclusion complexes’ formation. Phase solubility diagrams, Nuclear Magnetic Resonance (NMR) and molecular modeling studies showed the formation of 1:1 and 1:2 tacrolimus/HPβCD inclusion complexes, being possible to obtain a 0.02% (w/v) tacrolimus concentration by using 40% (w/v) HPβCD aqueous solutions. Formulations also showed good ophthalmic properties in terms of pH, osmolality and safety. Stability studies proved these formulations to be stable for at least 3 months in refrigeration. Ex vivo bioadhesion and in vivo ocular permanence showed good mucoadhesive properties with higher ocular permanence compared to the reference pharmacy compounding used in clinical settings (t1/2 of 86.2 min for the eyedrop elaborated with 40% (w/v) HPβCD and Liquifilm® versus 46.3 min for the reference formulation). Thus, these novel eye drops present high potential as a safe alternative for uveitis treatment, as well as a versatile composition to include new drugs intended for topical ophthalmic administration. Full article
(This article belongs to the Special Issue Ophthalmic Drug Delivery Volume II)
Show Figures

Graphical abstract

Open AccessArticle
Formulation and Stability of Ataluren Eye Drop Oily Solution for Aniridia
Pharmaceutics 2021, 13(1), 7; https://doi.org/10.3390/pharmaceutics13010007 - 22 Dec 2020
Viewed by 628
Abstract
Congenital aniridia is a rare and severe panocular disease characterized by a complete or partial iris defect clinically detectable at birth. The most common form of aniridia occurring in around 90% of cases is caused by PAX6 haploinsufficiency. The phenotype includes ptosis, nystagmus, [...] Read more.
Congenital aniridia is a rare and severe panocular disease characterized by a complete or partial iris defect clinically detectable at birth. The most common form of aniridia occurring in around 90% of cases is caused by PAX6 haploinsufficiency. The phenotype includes ptosis, nystagmus, corneal limbal insufficiency, glaucoma, cataract, optic nerve, and foveal hypoplasia. Ataluren eye drops aim to restore ocular surface PAX6 haploinsufficiency in aniridia-related keratopathy (ARK). However, there are currently no available forms of the ophthalmic solution. The objective of this study was to assess the physicochemical and microbiological stability of ataluren 1% eye drop in preservative-free low-density polyethylene (LDPE) bottle with an innovative insert that maintains sterility after opening. Because ataluren is a strongly lipophilic compound, the formulation is complex and involves a strategy based on co-solvents in an aqueous phase or an oily formulation capable of totally dissolving the active ingredient. The visual aspect, ataluren quantification by a stability-indicating chromatographic method, and microbiological sterility were analyzed. The oily formulation in castor oil and DMSO (10%) better protects ataluren hydrolysis and oxidative degradation and permits its complete solubilization. Throughout the 60 days period, the oily solution in the LDPE bottle remained clear without any precipitation or color modification, and no drug loss and no microbial development were detected. The demonstrated physical and microbiological stability of ataluren 1% eye drop formulation at 22–25 °C might facilitate clinical research in aniridia. Full article
(This article belongs to the Special Issue Ophthalmic Drug Delivery Volume II)
Show Figures

Graphical abstract

Open AccessArticle
Quantification of Drugs in Distinctly Separated Ocular Substructures of Albino and Pigmented Rats
Pharmaceutics 2020, 12(12), 1174; https://doi.org/10.3390/pharmaceutics12121174 - 02 Dec 2020
Viewed by 554
Abstract
The rat is a commonly used species in ocular drug research. Detailed methods of separating rat ocular tissues have not been described in literature. To understand the intraocular drug distribution, we developed a robust method for the separation of individual anterior and posterior [...] Read more.
The rat is a commonly used species in ocular drug research. Detailed methods of separating rat ocular tissues have not been described in literature. To understand the intraocular drug distribution, we developed a robust method for the separation of individual anterior and posterior substructures of pigmented Brown Norway (BN) and albino Wistar Han (WH) rat eyes, followed by quantification of drug concentration in these substructures. A short formalin incubation, which did not interfere with drug quantification, enabled the preservation of individual tissue sections while minimizing cross-tissue contamination, as demonstrated by histological analysis. Following oral administration, we applied the tissue separation method, in order to determine the ocular concentrations of dexamethasone and levofloxacin, as well as two in-house molecules BI 113823 and BI 1026706, compounds differing in their melanin binding. The inter-individual variability in tissue partitioning coefficients (Kp) was low, demonstrating the reproducibility of the separation method. Kp values of individual tissues varied up to 100-fold in WH and up to 46,000-fold in BN rats highlighting the importance of measuring concentration directly from the ocular tissue of interest. Additionally, clear differences were observed in the BN rat tissue partitioning compared to the WH rat. Overall, the developed method enables a reliable determination of small molecule drug concentrations in ocular tissues to support ocular drug research and development. Full article
(This article belongs to the Special Issue Ophthalmic Drug Delivery Volume II)
Show Figures

Graphical abstract

Back to TopTop