Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2203 KiB  
Review
Current Topics in Dermatophyte Classification and Clinical Diagnosis
by Alex E. Moskaluk and Sue VandeWoude
Pathogens 2022, 11(9), 957; https://doi.org/10.3390/pathogens11090957 - 23 Aug 2022
Cited by 73 | Viewed by 21843
Abstract
Dermatophytes are highly infectious fungi that cause superficial infections in keratinized tissues in humans and animals. This group of fungi is defined by their ability to digest keratin and encompasses a wide range of species. Classification of many of these species has recently [...] Read more.
Dermatophytes are highly infectious fungi that cause superficial infections in keratinized tissues in humans and animals. This group of fungi is defined by their ability to digest keratin and encompasses a wide range of species. Classification of many of these species has recently changed due to genetic analysis, potentially affecting clinical diagnosis and disease management. In this review, we discuss dermatophyte classification including name changes for medically important species, current and potential diagnostic techniques for detecting dermatophytes, and an in-depth review of Microsporum canis, a prevalent zoonotic dermatophyte. Fungal culture is still considered the “gold standard” for diagnosing dermatophytosis; however, modern molecular assays have overcome the main disadvantages of culture, allowing for tandem use with cultures. Further investigation into novel molecular assays for dermatophytosis is critical, especially for high-density populations where rapid diagnosis is essential for outbreak prevention. A frequently encountered dermatophyte in clinical settings is M. canis, which causes dermatophytosis in humans and cats. M. canis is adapting to its primary host (cats) as one of its mating types (MAT1-2) appears to be going extinct, leading to a loss of sexual reproduction. Investigating M. canis strains around the world can help elucidate the evolutionary trajectory of this fungi. Full article
(This article belongs to the Special Issue New Insights into Fungal Infections of Companion Animals and Wildlife)
Show Figures

Figure 1

10 pages, 268 KiB  
Review
Monkeypox and Its Possible Sexual Transmission: Where Are We Now with Its Evidence?
by Ranjit Sah, Abdelaziz Abdelaal, Abdullah Reda, Basant E. Katamesh, Emery Manirambona, Hanaa Abdelmonem, Rachana Mehta, Ali A. Rabaan, Saad Alhumaid, Wadha A. Alfouzan, Amer I. Alomar, Faryal Khamis, Fadwa S. Alofi, Maha H. Aljohani, Amal H. Alfaraj, Mubarak Alfaresi, Jumana M. Al-Jishi, Jameela Alsalman, Ahlam Alynbiawi, Mohammed S. Almogbel and Alfonso J. Rodriguez-Moralesadd Show full author list remove Hide full author list
Pathogens 2022, 11(8), 924; https://doi.org/10.3390/pathogens11080924 - 17 Aug 2022
Cited by 101 | Viewed by 8268
Abstract
Monkeypox is a rare disease but is increasing in incidence in different countries since the first case was diagnosed in the UK by the United Kingdom (UK) Health Security Agency on 6 May 2022. As of 9 August, almost 32,000 cases have been [...] Read more.
Monkeypox is a rare disease but is increasing in incidence in different countries since the first case was diagnosed in the UK by the United Kingdom (UK) Health Security Agency on 6 May 2022. As of 9 August, almost 32,000 cases have been identified in 89 countries. In endemic areas, the monkeypox virus (MPXV) is commonly transmitted through zoonosis, while in non-endemic regions, it is spread through human-to-human transmission. Symptoms can include flu-like symptoms, rash, or sores on the hands, feet, genitalia, or anus. In addition, people who did not take the smallpox vaccine were more likely to be infected than others. The exact pathogenesis and mechanisms are still unclear; however, most identified cases are reported in men who have sex with other men (MSM). According to the CDC, transmission can happen with any sexual or non-sexual contact with the infected person. However, a recent pooled meta-analysis reported that sexual contact is involved in more than 91% of cases. Moreover, it is the first time that semen analysis for many patients has shown positive monkeypox virus DNA. Therefore, in this review, we will describe transmission methods for MPXV while focusing mainly on potential sexual transmission and associated sexually transmitted infections. We will also highlight the preventive measures that can limit the spread of the diseases in this regard. Full article
(This article belongs to the Special Issue Human Monkeypox: An Emerging Sexually Transmitted Infection?)
12 pages, 274 KiB  
Article
Assessment of Knowledge of Monkeypox Viral Infection among the General Population in Saudi Arabia
by Najim Z. Alshahrani, Faris Alzahrani, Abdullah M. Alarifi, Mohammed R. Algethami, Maathir Naser Alhumam, Hatim Abdullah Mohammed Ayied, Ahmed Zuhier Awan, Abdullah Faisal Almutairi, Saeed Abdullah Bamakhrama, Budur Saad Almushari and Ranjit Sah
Pathogens 2022, 11(8), 904; https://doi.org/10.3390/pathogens11080904 - 11 Aug 2022
Cited by 114 | Viewed by 8402
Abstract
Monkeypox is re-emerging and spreading over the world, posing a serious threat to human life, especially in non-endemic countries, including Saudi Arabia. Due to the paucity of research on knowledge about monkeypox in Saudi Arabia, this study aimed to evaluate the general population’s [...] Read more.
Monkeypox is re-emerging and spreading over the world, posing a serious threat to human life, especially in non-endemic countries, including Saudi Arabia. Due to the paucity of research on knowledge about monkeypox in Saudi Arabia, this study aimed to evaluate the general population’s knowledge of monkeypox in a sample of the country. A web-based cross-sectional survey was conducted from 25 May 2022 to 15 July 2022. Participants’ knowledge about monkeypox on a 23-item scale and socio-demographic characteristics were gathered in the survey. Pearson’s Chi-square test was used to compare knowledge level (categorized into high and low) and explanatory variables. Out of 480, only 48% of the respondents had high knowledge (mean score > 14). Participants’ age, marital status, residential region, living in the urban area, education level, employment status, being a healthcare worker, income, and smoking status were significantly associated with the level of knowledge about monkeypox (p < 0.01). Overall, social media (75.0%) was the most frequently reported source from where participants obtained monkeypox-related information followed by TV and radio (45.6%), family or friend (15.6%), and healthcare provider (13.8%). We found that overall knowledge of monkeypox infection was slightly poor among the Saudi population. These findings highlight the urgent need for public education on monkeypox to promote awareness and engage the public ahead of the outbreak. Full article
(This article belongs to the Special Issue Human Monkeypox: An Emerging Sexually Transmitted Infection?)
9 pages, 606 KiB  
Article
Serological Evidence of Q Fever among Dairy Cattle and Buffalo Populations in the Campania Region, Italy
by Gianmarco Ferrara, Barbara Colitti, Ugo Pagnini, Danila D’Angelo, Giuseppe Iovane, Sergio Rosati and Serena Montagnaro
Pathogens 2022, 11(8), 901; https://doi.org/10.3390/pathogens11080901 - 10 Aug 2022
Cited by 19 | Viewed by 2696
Abstract
Due to its economic impact on livestock and its zoonotic effect, Q fever is a public and animal health problem. Information on this infection in Italy is presently supported by reports of reproductive problems in livestock farms and is, therefore, insufficient to properly [...] Read more.
Due to its economic impact on livestock and its zoonotic effect, Q fever is a public and animal health problem. Information on this infection in Italy is presently supported by reports of reproductive problems in livestock farms and is, therefore, insufficient to properly understand the impact of the disease. This study aimed to describe for the first time the seroprevalence of Q fever in dairy cows and water buffalos in the Campania region (Southern Italy). A total of 424 dairy cattle and 214 water buffalo were tested using a commercial indirect ELISA kit. An overall seroprevalence of 11.7% confirmed the wide distribution of C. burnetii in this region. Several factors were positively associated with higher seroprevalence, such as species (higher in cattle than in water buffalo), age, and coexistence with other ruminant species. The final model of logistic regression included only age (older) and species (cattle), which were positively associated with the presence of Q fever antibodies. Our findings support the widespread presence of Coxiella burnettii in Campania and show a seroprevalence similar to that observed in previous studies in other Italian regions and European countries. Since human cases are typically linked to contact with infected ruminants, there is a need to improve surveillance for this infection. Full article
Show Figures

Figure 1

14 pages, 346 KiB  
Article
Bartonella, Rickettsia, Babesia, and Hepatozoon Species in Fleas (Siphonaptera) Infesting Small Mammals of Slovakia (Central Europe)
by Eva Špitalská, Lenka Minichová, Zuzana Hamšíková, Michal Stanko and Mária Kazimírová
Pathogens 2022, 11(8), 886; https://doi.org/10.3390/pathogens11080886 - 6 Aug 2022
Cited by 9 | Viewed by 2502
Abstract
Fleas (Siphonaptera) as obligate, blood-feeding ectoparasites are, together with ticks, hosted by small mammals and can transmit causative agents of serious infections. This study aimed to determine and characterize the presence and genetic diversity of Bartonella, Rickettsia, and apicomplexan parasites ( [...] Read more.
Fleas (Siphonaptera) as obligate, blood-feeding ectoparasites are, together with ticks, hosted by small mammals and can transmit causative agents of serious infections. This study aimed to determine and characterize the presence and genetic diversity of Bartonella, Rickettsia, and apicomplexan parasites (Babesia, Hepatozoon) in fleas feeding on small mammals from three different habitat types (suburban, natural, and rural) in Slovakia. The most common pathogen in the examined fleas was Bartonella spp. (33.98%; 95% CI: 30.38–37.58), followed by Rickettsia spp. (19.1%; 95% CI: 16.25–22.24) and apicomplexan parasites (4.36%; 95% CI: 2.81–5.91). Bartonella strains belonging to B. taylorii, B. grahamii, B. elizabethae, Bartonella sp. wbs11, and B. rochalimae clades were identified in Ctenophthalmus agyrtes, C. congener, C. assimilis, C. sciurorum, C. solutus, C. bisoctodentatus, Palaeopsylla similis, Megabothris turbidus, and Nosopsyllus fasciatus within all habitats. The presence of Rickettsia helvetica, R. monacensis, and rickettsiae, belonging to the R. akari and R. felis clusters, and endosymbionts with a 96–100% identity with the Rickettsia endosymbiont of Nosopsyllus laeviceps laeviceps were also revealed in C. agyrtes, C. solutus, C. assimilis, C. congener, M. turbidus, and N. fasciatus. Babesia and Hepatozoon DNA was detected in the fleas from all habitat types. Hepatozoon sp. was detected in C. agyrtes, C. assimilis, and M. turbidus, while Babesia microti was identified from C. agyrtes, C. congener, and P. similis. The present study demonstrated the presence of zoonotic pathogens in fleas, parasitizing the wild-living small mammals of southwestern and central Slovakia and widens our knowledge of the ecology and genomic diversity of Bartonella, Rickettsia, Babesia, and Hepatozoon. Full article
(This article belongs to the Section Parasitic Pathogens)
17 pages, 5157 KiB  
Article
Isolation, Partial Characterization and Application of Bacteriophages in Eradicating Biofilm Formation by Bacillus cereus on Stainless Steel Surfaces in Food Processing Facilities
by Maroua Gdoura-Ben Amor, Antoine Culot, Clarisse Techer, Mousa AlReshidi, Mohd Adnan, Sophie Jan, Florence Baron, Noël Grosset, Mejdi Snoussi, Radhouane Gdoura and Michel Gautier
Pathogens 2022, 11(8), 872; https://doi.org/10.3390/pathogens11080872 - 2 Aug 2022
Cited by 9 | Viewed by 6334
Abstract
The Bacillus cereus (B. cereus) group is a widespread foodborne pathogen with a persistent ability to form biofilm, and with inherent resistance to traditional treatment in the food industry. Bacteriophages are a promising biocontrol agent that could be applied to prevent [...] Read more.
The Bacillus cereus (B. cereus) group is a widespread foodborne pathogen with a persistent ability to form biofilm, and with inherent resistance to traditional treatment in the food industry. Bacteriophages are a promising biocontrol agent that could be applied to prevent or eliminate biofilms formation. We have described, in this study, the isolation from sewage samples and preliminary characterization of bacteriophages that are active against the B. cereus group. The effectiveness of phage treatment for reducing B. cereus attachment and biofilms on stainless steel surfaces has been also assessed using three incubation periods at different titrations of each phage. Out of 62 phages isolated, seven showed broad-spectrum lytic action against 174 B. cereus isolates. All selected phages appeared to be of the Siphoviridae family. SDS-PAGE proved that two phages have a similar profile, while the remainder are distinct. All isolated phages have the same restriction pattern, with an estimated genome size of around 37 kb. The isolated bacteriophages have been shown to be effective in preventing biofilm formation. Reductions of up to 1.5 log10 UFC/cm2 have been achieved, compared to the untreated biofilms. Curative treatment reduced the bacterial density by 0.5 log10 UFC/cm2. These results support the prospect of using these phages as a potential alternative strategy for controlling biofilms in food systems. Full article
(This article belongs to the Special Issue Bacterial Biofilm Infections and Treatment)
Show Figures

Figure 1

15 pages, 1075 KiB  
Article
Epidemiologic Investigation of Two Welder’s Anthrax Cases Caused by Bacillus cereus Group Bacteria: Occupational Link Established by Environmental Detection
by Patrick Dawson, Johanna S. Salzer, Caroline A. Schrodt, Karl Feldmann, Cari B. Kolton, Jay E. Gee, Chung K. Marston, Christopher A. Gulvik, Mindy G. Elrod, Aaron Villarma, Rita M. Traxler, María E. Negrón, Kate A. Hendricks, Heather Moulton-Meissner, Laura J. Rose, Paul Byers, Kathryn Taylor, Daphne Ware, Gary A. Balsamo, Theresa Sokol, Bret Barrett, Erica Payne, Saad Zaheer, Ga On Jung, Stephen Long, Ricardo Quijano, Lindsey LeBouf, Briana O’Sullivan, Erin Swaney, James M. Antonini, Marie A. de Perio, Zachary Weiner, William A. Bower and Alex R. Hoffmasteradd Show full author list remove Hide full author list
Pathogens 2022, 11(8), 825; https://doi.org/10.3390/pathogens11080825 - 23 Jul 2022
Cited by 6 | Viewed by 3834
Abstract
Bacillus cereus group bacteria containing the anthrax toxin genes can cause fatal anthrax pneumonia in welders. Two welder’s anthrax cases identified in 2020 were investigated to determine the source of each patient’s exposure. Environmental sampling was performed at locations where each patient had [...] Read more.
Bacillus cereus group bacteria containing the anthrax toxin genes can cause fatal anthrax pneumonia in welders. Two welder’s anthrax cases identified in 2020 were investigated to determine the source of each patient’s exposure. Environmental sampling was performed at locations where each patient had recent exposure to soil and dust. Samples were tested for the anthrax toxin genes by real-time PCR, and culture was performed on positive samples to identify whether any environmental isolates matched the patient’s clinical isolate. A total of 185 environmental samples were collected in investigation A for patient A and 108 samples in investigation B for patient B. All samples from investigation B were real-time PCR-negative, but 14 (8%) samples from investigation A were positive, including 10 from patient A’s worksite and 4 from his work-related clothing and gear. An isolate genetically matching the one recovered from patient A was successfully cultured from a worksite soil sample. All welder’s anthrax cases should be investigated to determine the source of exposure, which may be linked to their worksite. Welding and metalworking employers should consider conducting a workplace hazard assessment and implementing controls to reduce the risk of occupationally associated illnesses including welder’s anthrax. Full article
(This article belongs to the Special Issue Anthrax—a Threat beyond Bacillus anthracis)
Show Figures

Figure 1

15 pages, 911 KiB  
Article
Antifungal Activity of Select Essential Oils against Candida auris and Their Interactions with Antifungal Drugs
by Ryan A. Parker, Kyle T. Gabriel, Kayla D. Graham, Bethany K. Butts and Christopher T. Cornelison
Pathogens 2022, 11(8), 821; https://doi.org/10.3390/pathogens11080821 - 22 Jul 2022
Cited by 37 | Viewed by 6136
Abstract
Candida auris is an emerging fungal pathogen that commonly causes nosocomial blood infections in the immunocompromised. Several factors make this pathogen a global threat, including its misidentification as closely related species, its ability to survive for weeks on fomites, and its resistance to [...] Read more.
Candida auris is an emerging fungal pathogen that commonly causes nosocomial blood infections in the immunocompromised. Several factors make this pathogen a global threat, including its misidentification as closely related species, its ability to survive for weeks on fomites, and its resistance to commonly prescribed antifungal drugs, sometimes to all three classes of systemic antifungal drugs. These factors demonstrate a need for the development of novel therapeutic approaches to combat this pathogen. In the present study, the antifungal activities of 21 essential oils were tested against C. auris. Several essential oils were observed to inhibit the growth and kill C. auris, Candida lusitaniae, and Saccharomyces cerevisiae when in direct contact and at concentrations considered safe for topical use. The most effective essential oils were those extracted from lemongrass, clove bud, and cinnamon bark. These essential oils also elicited antifungal activity in gaseous form. The efficacies of formulations comprised of these three essential oils in combination with fluconazole, amphotericin B, flucytosine, and micafungin were explored. While synergism was neither observed with cinnamon bark oil nor any of the antifungal drugs, lemongrass oil displayed synergistic, additive, and indifferent interactions with select drugs. Formulations of clove bud oil with amphotericin B resulted in antagonistic interactions but displayed synergistic interactions with fluconazole and flucytosine. These essential oils and their combinations with antifungal drugs may provide useful options for surface disinfection, skin sanitization, and possibly even the treatment of Candida infections. Full article
(This article belongs to the Special Issue 10th Anniversary of Pathogens—Feature Papers)
Show Figures

Figure 1

8 pages, 1470 KiB  
Article
Prescription of Anti-Spike Monoclonal Antibodies in COVID-19 Patients with Resistant SARS-CoV-2 Variants in Italy
by Daniele Focosi and Marco Tuccori
Pathogens 2022, 11(8), 823; https://doi.org/10.3390/pathogens11080823 - 22 Jul 2022
Cited by 22 | Viewed by 2960
Abstract
Anti-Spike monoclonal antibodies have been considered a promising approach to COVID-19 therapy. Unfortunately, the advent of resistant lineages jeopardized their effectiveness and prompted limitations in their clinical use. Change in the dominant variant can be fast to such an extent that, in the [...] Read more.
Anti-Spike monoclonal antibodies have been considered a promising approach to COVID-19 therapy. Unfortunately, the advent of resistant lineages jeopardized their effectiveness and prompted limitations in their clinical use. Change in the dominant variant can be fast to such an extent that, in the absence of timely medical education, prescribers can keep using these drugs for relatively long periods even in patients with resistant variants. Therefore, many patients could have been exposed to drugs with unlikely benefits and probable risks. We show here that about 20% of bamlanivimab+etesevimab, 30% of casirivimab+imdevimab, and 30% of sotrovimab courses were administered in Italy during periods in which a fully resistant variant was dominant. Additionally, for monoclonal antibody cocktails, the vast majority of usage occurred against variants for which one of the mAbs within the cocktail was ineffective. Given the high costs of these drugs and their potential side effects, it would be important to consider a frequent review of the appropriateness of these drugs and timely communication when the benefit/risk balance is no longer favorable. Full article
(This article belongs to the Special Issue COVID-19: Antibody-Antigen Interactions of SARS-CoV-2)
Show Figures

Figure 1

16 pages, 2866 KiB  
Article
Complete Genomes of Theileria orientalis Chitose and Buffeli Genotypes Reveal within Species Translocations and Differences in ABC Transporter Content
by Jerald Yam, Daniel R. Bogema, Melinda L. Micallef, Steven P. Djordjevic and Cheryl Jenkins
Pathogens 2022, 11(7), 801; https://doi.org/10.3390/pathogens11070801 - 15 Jul 2022
Cited by 5 | Viewed by 3160
Abstract
Theileria orientalis causes losses to cattle producers in Eastern Asia, Oceania and, more recently, North America. One pathogenic genotype (Ikeda) has been sequenced to the chromosomal level, while only draft genomes exist for globally distributed Chitose and Buffeli genotypes. To provide an accurate [...] Read more.
Theileria orientalis causes losses to cattle producers in Eastern Asia, Oceania and, more recently, North America. One pathogenic genotype (Ikeda) has been sequenced to the chromosomal level, while only draft genomes exist for globally distributed Chitose and Buffeli genotypes. To provide an accurate comparative gene-level analysis and help further understand their pathogenicity, we sequenced isolates of the Chitose and Buffeli genotypes of T. orientalis using long-read sequencing technology. A combination of several long-read assembly methods and short reads produced chromosomal-level assemblies for both Fish Creek (Chitose) and Goon Nure (Buffeli) isolates, including the first complete and circular apicoplast genomes generated for T. orientalis. Comparison with the Shintoku (Ikeda) reference sequence showed both large and small translocations in T. orientalis Buffeli, between chromosomes 2 and 3 and chromosomes 1 and 4, respectively. Ortholog clustering showed expansion of ABC transporter genes in Chitose and Buffeli. However, differences in several genes of unknown function, including DUF529/FAINT-domain-containing proteins, were also identified and these genes were more prevalent in Ikeda and Chitose genotypes. Phylogenetics and similarity measures were consistent with previous short-read genomic analysis. The generation of chromosomal sequences for these highly prevalent T. orientalis genotypes will also support future studies of population genetics and mixed genotype infections. Full article
(This article belongs to the Special Issue Bovine Theileriosis Caused by the Theileria orientalis Group)
Show Figures

Figure 1

11 pages, 1515 KiB  
Article
Co-Circulation of Different Hepatitis E Virus Genotype 3 Subtypes in Pigs and Wild Boar in North-East Germany, 2019
by Grit Priemer, Filip Cierniak, Carola Wolf, Rainer G. Ulrich, Martin H. Groschup and Martin Eiden
Pathogens 2022, 11(7), 773; https://doi.org/10.3390/pathogens11070773 - 6 Jul 2022
Cited by 14 | Viewed by 2902
Abstract
Hepatitis E is a major cause of acute liver disease in humans worldwide. The infection is caused by hepatitis E virus (HEV) which is transmitted in Europe to humans primarily through zoonotic foodborne transmission from domestic pigs, wild boar, rabbits, and deer. HEV [...] Read more.
Hepatitis E is a major cause of acute liver disease in humans worldwide. The infection is caused by hepatitis E virus (HEV) which is transmitted in Europe to humans primarily through zoonotic foodborne transmission from domestic pigs, wild boar, rabbits, and deer. HEV belongs to the family Hepeviridae, and possesses a positive-sense, single stranded RNA genome. This agent usually causes an acute self-limited infection in humans, but in people with low immunity, e.g., immunosuppressive therapy or underlying liver diseases, the infection can evolve to chronicity and is able to induce a variety of extrahepatic manifestations. Pig and wild boar have been identified as the primary animal reservoir in Europe, and consumption of raw and undercooked pork is known to pose a potential risk of foodborne HEV infection. In this study, we analysed pig and wild boar liver, faeces, and muscle samples collected in 2019 in Mecklenburg-Western Pomerania, north-east Germany. A total of 393 animals of both species were investigated using quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR), conventional nested RT-PCR and sequence analysis of amplification products. In 33 animals, HEV RNA was detected in liver and/or faeces. In one individual, viral RNA was detected in muscle tissue. Sequence analysis of a partial open reading frame 1 region demonstrated a broad variety of genotype 3 (HEV-3) subtypes. In conclusion, the study demonstrates a high, but varying prevalence of HEV RNA in swine populations in Mecklenburg-Western Pomerania. The associated risk of foodborne HEV infection needs the establishment of sustainable surveillance and treatment strategies at the interface between humans, animals, and the environment within a One Health framework. Full article
(This article belongs to the Special Issue Zoonotic Hepatitis E Virus: A Focus on Animals, Food and Environment)
Show Figures

Figure 1

36 pages, 2756 KiB  
Review
Polyphenols: Bioavailability, Microbiome Interactions and Cellular Effects on Health in Humans and Animals
by Michael B. Scott, Amy K. Styring and James S. O. McCullagh
Pathogens 2022, 11(7), 770; https://doi.org/10.3390/pathogens11070770 - 5 Jul 2022
Cited by 36 | Viewed by 5937
Abstract
Polyphenolic compounds have a variety of functions in plants including protecting them from a range of abiotic and biotic stresses such as pathogenic infections, ionising radiation and as signalling molecules. They are common constituents of human and animal diets, undergoing extensive metabolism by [...] Read more.
Polyphenolic compounds have a variety of functions in plants including protecting them from a range of abiotic and biotic stresses such as pathogenic infections, ionising radiation and as signalling molecules. They are common constituents of human and animal diets, undergoing extensive metabolism by gut microbiota in many cases prior to entering circulation. They are linked to a range of positive health effects, including anti-oxidant, anti-inflammatory, antibiotic and disease-specific activities but the relationships between polyphenol bio-transformation products and their interactions in vivo are less well understood. Here we review the state of knowledge in this area, specifically what happens to dietary polyphenols after ingestion and how this is linked to health effects in humans and animals; paying particular attention to farm animals and pigs. We focus on the chemical transformation of polyphenols after ingestion, through microbial transformation, conjugation, absorption, entry into circulation and uptake by cells and tissues, focusing on recent findings in relation to bone. We review what is known about how these processes affect polyphenol bioactivity, highlighting gaps in knowledge. The implications of extending the use of polyphenols to treat specific pathogenic infections and other illnesses is explored. Full article
(This article belongs to the Special Issue Modulation of Gut Microbiota & Microbiome in Pigs)
Show Figures

Figure 1

12 pages, 942 KiB  
Article
Adaptation and Diagnostic Potential of a Commercial Cat Interferon Gamma Release Assay for the Detection of Mycobacterium bovis Infection in African Lions (Panthera leo)
by Rachiel Gumbo, Tashnica T. Sylvester, Wynand J. Goosen, Peter E. Buss, Lin-Mari de Klerk-Lorist, O. Louis van Schalkwyk, Alicia McCall, Robin M. Warren, Paul D. van Helden, Michele A. Miller and Tanya J. Kerr
Pathogens 2022, 11(7), 765; https://doi.org/10.3390/pathogens11070765 - 4 Jul 2022
Cited by 7 | Viewed by 3174
Abstract
Mycobacterium bovis (M. bovis) infection in wildlife, including lions (Panthera leo), has implications for individual and population health. Tools for the detection of infected lions are needed for diagnosis and disease surveillance. This study aimed to evaluate the Mabtech [...] Read more.
Mycobacterium bovis (M. bovis) infection in wildlife, including lions (Panthera leo), has implications for individual and population health. Tools for the detection of infected lions are needed for diagnosis and disease surveillance. This study aimed to evaluate the Mabtech Cat interferon gamma (IFN-γ) ELISABasic kit for detection of native lion IFN-γ in whole blood samples stimulated using the QuantiFERON® TB Gold Plus (QFT) platform as a potential diagnostic assay. The ELISA was able to detect lion IFN-γ in mitogen-stimulated samples, with good parallelism, linearity, and a working range of 15.6–500 pg/mL. Minimal matrix interference was observed in the recovery of domestic cat rIFN-γ in lion plasma. Both intra- and inter-assay reproducibility had a coefficient of variation less than 10%, while the limit of detection and quantification were 7.8 pg/mL and 31.2 pg/mL, respectively. The diagnostic performance of the QFT Mabtech Cat interferon gamma release assay (IGRA) was determined using mycobacterial antigen-stimulated samples from M. bovis culture-confirmed infected (n = 8) and uninfected (n = 4) lions. A lion-specific cut-off value (33 pg/mL) was calculated, and the sensitivity and specificity were determined to be 87.5% and 100%, respectively. Although additional samples should be tested, the QFT Mabtech Cat IGRA could identify M. bovis-infected African lions. Full article
Show Figures

Figure 1

19 pages, 2518 KiB  
Article
Insight into Trichinella britovi Infection in Pigs: Effect of Various Infectious Doses on Larvae Density and Spatial Larvae Distribution in Carcasses and Comparison of the Detection of Anti-T. britovi IgG of Three Different Commercial ELISA Tests and Immunoblot Assay
by Michał Gondek, Sylwia Grzelak, Renata Pyz-Łukasik, Przemysław Knysz, Monika Ziomek and Justyna Bień-Kalinowska
Pathogens 2022, 11(7), 735; https://doi.org/10.3390/pathogens11070735 - 28 Jun 2022
Cited by 4 | Viewed by 2181
Abstract
There is limited information available on the Trichinella britovi (T. britovi) muscle larvae (ML) distribution in pig muscle and the humoral immune response of pigs infected with moderate doses of this parasite; therefore, this study investigated the infectivity of a Polish [...] Read more.
There is limited information available on the Trichinella britovi (T. britovi) muscle larvae (ML) distribution in pig muscle and the humoral immune response of pigs infected with moderate doses of this parasite; therefore, this study investigated the infectivity of a Polish strain of T. britovi for pigs, the antibody response of this host to various doses of T. britovi, and the efficiency of three different commercial ELISA kits and an immunoblot assay at detecting anti-T. britovi IgG. No significant differences in terms of the infection level of particular muscles or of whole carcasses between pigs infected with 3000 and those infected with 5000 ML of T. britovi were observed. The highest intensity of T. britovi infection was reported in the diaphragm pillars. The larvae of T. britovi showed homogeneous distribution with respect to the muscle side. Statistically, specific IgG antibodies against excretory–secretory (ES) antigens of Trichinella ML were first detected by all ELISA protocols on day 36 post infection; however, individual pig results showed some differences between the three tests applied. A significant increase in the level of anti-T. britovi IgG was observed between days 36 and 41 post infection, and from day 45 until day 62 after T. britovi infection, production of these antibodies reached its plateau phase. No positive correlation was found between the anti-T. britovi IgG level and the larvae density in 15 different muscles. Sera of T. britovi-infected pigs showed reactivity with T. britovi ML ES antigens of 62, 55, and 52 kDa. The results provide novel information on spatial larvae distribution in muscles and the humoral immune response of pigs exposed to two different doses of a Polish strain of T. britovi, extend knowledge on serological diagnostic tools which may be introduced in veterinary practice for the detection of T. britovi infections in pig production, and offer practical solutions for meat hygiene inspectors in the field at sampling sites when examining pig carcasses for Trichinella. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

7 pages, 269 KiB  
Article
What Is Anthrax?
by William A. Bower, Katherine A. Hendricks, Antonio R. Vieira, Rita M. Traxler, Zachary Weiner, Ruth Lynfield and Alex Hoffmaster
Pathogens 2022, 11(6), 690; https://doi.org/10.3390/pathogens11060690 - 16 Jun 2022
Cited by 27 | Viewed by 9700
Abstract
Anthrax has been feared for its high mortality in animals and humans for centuries. The etiologic agent is considered a potentially devastating bioweapon, and since 1876―when Robert Koch demonstrated that Bacillus anthracis caused anthrax―it has been considered the sole cause of the disease. [...] Read more.
Anthrax has been feared for its high mortality in animals and humans for centuries. The etiologic agent is considered a potentially devastating bioweapon, and since 1876―when Robert Koch demonstrated that Bacillus anthracis caused anthrax―it has been considered the sole cause of the disease. Anthrax is, however, a toxin-mediated disease. The toxins edema toxin and lethal toxin are formed from protein components encoded for by the pXO1 virulence plasmid present in pathogenic B. anthracis strains. However, other members of the Bacillus cereus group, to which B. anthracis belongs, have recently been shown to harbor the pXO1 plasmid and produce anthrax toxins. Infection with these Bacillus cereus group organisms produces a disease clinically similar to anthrax. This suggests that anthrax should be defined by the exotoxins encoded for by the pXO1 plasmid rather than the bacterial species it has historically been associated with, and that the definition of anthrax should be expanded to include disease caused by any member of the B. cereus group containing the toxin-producing pXO1 plasmid or anthrax toxin genes specifically. Full article
(This article belongs to the Special Issue Anthrax—a Threat beyond Bacillus anthracis)
20 pages, 1750 KiB  
Review
Probiotics as Alternatives to Antibiotics for the Prevention and Control of Necrotic Enteritis in Chickens
by Raveendra R. Kulkarni, Carissa Gaghan, Kaitlin Gorrell, Shayan Sharif and Khaled Taha-Abdelaziz
Pathogens 2022, 11(6), 692; https://doi.org/10.3390/pathogens11060692 - 16 Jun 2022
Cited by 63 | Viewed by 8718
Abstract
Necrotic enteritis (NE) in poultry is an economically important disease caused by Clostridium perfringens type A bacteria. A global trend on restricting the use of antibiotics as feed supplements in food animal production has caused a spike in the NE incidences in chickens, [...] Read more.
Necrotic enteritis (NE) in poultry is an economically important disease caused by Clostridium perfringens type A bacteria. A global trend on restricting the use of antibiotics as feed supplements in food animal production has caused a spike in the NE incidences in chickens, particularly in broiler populations. Amongst several non-antibiotic strategies for NE control tried so far, probiotics seem to offer promising avenues. The current review focuses on studies that have evaluated probiotic effects on C. perfringens growth and NE development. Several probiotic species, including Lactobacillus, Enterococcus, Bacillus, and Bacteroides bacteria as well as some yeast species have been tested in chickens against C. perfringens and NE development. These findings have shown to improve bird performance, reduce C. perfringens colonization and NE-associated pathology. The underlying probiotic mechanisms of NE control suggest that probiotics can help maintain a healthy gut microbial balance by modifying its composition, improve mucosal integrity by upregulating expression of tight-junction proteins, and modulate immune responses by downregulating expression of inflammatory cytokines. Collectively, these studies indicate that probiotics can offer a promising platform for NE control and that more investigations are needed to study whether these experimental probiotics can effectively prevent NE in commercial poultry operational settings. Full article
(This article belongs to the Special Issue Monitoring, Prevention and Control of Infectious Animal Diseases)
Show Figures

Figure 1

22 pages, 2277 KiB  
Article
SARS-CoV-2 Mutant Spectra at Different Depth Levels Reveal an Overwhelming Abundance of Low Frequency Mutations
by Brenda Martínez-González, María Eugenia Soria, Lucía Vázquez-Sirvent, Cristina Ferrer-Orta, Rebeca Lobo-Vega, Pablo Mínguez, Lorena de la Fuente, Carlos Llorens, Beatriz Soriano, Ricardo Ramos-Ruíz, Marta Cortón, Rosario López-Rodríguez, Carlos García-Crespo, Pilar Somovilla, Antoni Durán-Pastor, Isabel Gallego, Ana Isabel de Ávila, Soledad Delgado, Federico Morán, Cecilio López-Galíndez, Jordi Gómez, Luis Enjuanes, Llanos Salar-Vidal, Mario Esteban-Muñoz, Jaime Esteban, Ricardo Fernández-Roblas, Ignacio Gadea, Carmen Ayuso, Javier Ruíz-Hornillos, Nuria Verdaguer, Esteban Domingo and Celia Peralesadd Show full author list remove Hide full author list
Pathogens 2022, 11(6), 662; https://doi.org/10.3390/pathogens11060662 - 8 Jun 2022
Cited by 20 | Viewed by 5098
Abstract
Populations of RNA viruses are composed of complex and dynamic mixtures of variant genomes that are termed mutant spectra or mutant clouds. This applies also to SARS-CoV-2, and mutations that are detected at low frequency in an infected individual can be dominant (represented [...] Read more.
Populations of RNA viruses are composed of complex and dynamic mixtures of variant genomes that are termed mutant spectra or mutant clouds. This applies also to SARS-CoV-2, and mutations that are detected at low frequency in an infected individual can be dominant (represented in the consensus sequence) in subsequent variants of interest or variants of concern. Here we briefly review the main conclusions of our work on mutant spectrum characterization of hepatitis C virus (HCV) and SARS-CoV-2 at the nucleotide and amino acid levels and address the following two new questions derived from previous results: (i) how is the SARS-CoV-2 mutant and deletion spectrum composition in diagnostic samples, when examined at progressively lower cut-off mutant frequency values in ultra-deep sequencing; (ii) how the frequency distribution of minority amino acid substitutions in SARS-CoV-2 compares with that of HCV sampled also from infected patients. The main conclusions are the following: (i) the number of different mutations found at low frequency in SARS-CoV-2 mutant spectra increases dramatically (50- to 100-fold) as the cut-off frequency for mutation detection is lowered from 0.5% to 0.1%, and (ii) that, contrary to HCV, SARS-CoV-2 mutant spectra exhibit a deficit of intermediate frequency amino acid substitutions. The possible origin and implications of mutant spectrum differences among RNA viruses are discussed. Full article
(This article belongs to the Collection SARS-CoV-2 Infection and COVID-19 Disease)
Show Figures

Figure 1

20 pages, 4546 KiB  
Article
Foot-and-Mouth Disease Virus Interserotypic Recombination in Superinfected Carrier Cattle
by Ian Fish, Carolina Stenfeldt, Edward Spinard, Gisselle N. Medina, Paul A. Azzinaro, Miranda R. Bertram, Lauren Holinka, George R. Smoliga, Ethan J. Hartwig, Teresa de los Santos and Jonathan Arzt
Pathogens 2022, 11(6), 644; https://doi.org/10.3390/pathogens11060644 - 3 Jun 2022
Cited by 16 | Viewed by 3729
Abstract
Viral recombination contributes to the emergence of novel strains with the potential for altered host range, transmissibility, virulence, and immune evasion. For foot-and-mouth disease virus (FMDV), cell culture experiments and phylogenetic analyses of field samples have demonstrated the occurrence of recombination. However, the [...] Read more.
Viral recombination contributes to the emergence of novel strains with the potential for altered host range, transmissibility, virulence, and immune evasion. For foot-and-mouth disease virus (FMDV), cell culture experiments and phylogenetic analyses of field samples have demonstrated the occurrence of recombination. However, the frequency of recombination and associated virus–host interactions within an infected host have not been determined. We have previously reported the detection of interserotypic recombinant FMDVs in oropharyngeal fluid (OPF) samples of 42% (5/12) of heterologously superinfected FMDV carrier cattle. The present investigation consists of a detailed analysis of the virus populations in these samples including identification and characterization of additional interserotypic minority recombinants. In every animal in which recombination was detected, recombinant viruses were identified in the OPF at the earliest sampling point after superinfection. Some recombinants remained dominant until the end of the experiment, whereas others were outcompeted by parental strains. Genomic analysis of detected recombinants suggests host immune pressure as a major driver of recombinant emergence as all recombinants had capsid-coding regions derived from the superinfecting virus to which the animals did not have detectable antibodies at the time of infection. In vitro analysis of a plaque-purified recombinant virus demonstrated a growth rate comparable to its parental precursors, and measurement of its specific infectivity suggested that the recombinant virus incurred no penalty in packaging its new chimeric genome. These findings have important implications for the potential role of persistently infected carriers in FMDV ecology and the emergence of novel strains. Full article
(This article belongs to the Special Issue Foot-and-Mouth Disease Virus: Pathogenesis and Persistence)
Show Figures

Figure 1

20 pages, 1630 KiB  
Article
Significance of Mucosa-Associated Microbiota and Its Impacts on Intestinal Health of Pigs Challenged with F18+ E. coli
by Marcos Elias Duarte and Sung Woo Kim
Pathogens 2022, 11(5), 589; https://doi.org/10.3390/pathogens11050589 - 17 May 2022
Cited by 25 | Viewed by 5359
Abstract
The objective of this study was to evaluate the significance of jejunal mucosa-associated microbiota and its impacts on the intestinal health of pigs challenged with F18+ Escherichia coli. Forty-four newly-weaned pigs were allotted to two treatments in a randomized complete [...] Read more.
The objective of this study was to evaluate the significance of jejunal mucosa-associated microbiota and its impacts on the intestinal health of pigs challenged with F18+ Escherichia coli. Forty-four newly-weaned pigs were allotted to two treatments in a randomized complete block design with sex as blocks. Pigs were fed common diets for 28 d. At d 7 post-weaning, pigs were orally inoculated with saline solution or F18+ E. coli. At d 21 post-challenge, feces and blood were collected and pigs were euthanized to collect jejunal tissue to evaluate microbiota and intestinal health parameters. The relative abundance of Firmicutes and Bacteroidetes was lower (p < 0.05) in jejunal mucosa than in feces, whereas Proteobacteria was greater (p < 0.05) in jejunal mucosa. F18+ E. coli increased (p < 0.05) protein carbonyl, Helicobacteraceae, Pseudomonadaceae, Xanthomonadaceae, and Peptostreptococcaceae and reduced (p < 0.05) villus height, Enterobacteriaceae, Campylobacteraceae, Brachyspiraceae, and Caulobacteraceae in jejunal mucosa, whereas it reduced (p < 0.05) Spirochaetaceae and Oscillospiraceae in feces. Collectively, jejunal mucosa-associated microbiota differed from those in feces. Compared with fecal microbiota, the change of mucosa-associated microbiota by F18+ E. coli was more prominent, and it was mainly correlated with increased protein carbonyl and reduced villus height in jejunal mucosa impairing the intestinal health of nursery pigs. Full article
(This article belongs to the Special Issue Modulation of Gut Microbiota & Microbiome in Pigs)
Show Figures

Figure 1

13 pages, 928 KiB  
Article
Proteomic Characterization of the Oral Pathogen Filifactor alocis Reveals Key Inter-Protein Interactions of Its RTX Toxin: FtxA
by Kai Bao, Rolf Claesson, Peter Gehrig, Jonas Grossmann, Jan Oscarsson and Georgios N. Belibasakis
Pathogens 2022, 11(5), 590; https://doi.org/10.3390/pathogens11050590 - 17 May 2022
Cited by 8 | Viewed by 2987
Abstract
Filifactor alocis is a Gram-positive asaccharolytic, obligate anaerobic rod that has been isolated from a variety of oral infections including periodontitis, peri-implantitis, and odontogenic abscesses. As a newly emerging pathogen, its type strain has been investigated for pathogenic properties, yet little is known [...] Read more.
Filifactor alocis is a Gram-positive asaccharolytic, obligate anaerobic rod that has been isolated from a variety of oral infections including periodontitis, peri-implantitis, and odontogenic abscesses. As a newly emerging pathogen, its type strain has been investigated for pathogenic properties, yet little is known about its virulence variations among strains. We previously screened the whole genome of nine clinical oral isolates and a reference strain of F. alocis, and they expressed a novel RTX toxin, FtxA. In the present study, we aimed to use label-free quantification proteomics to characterize the full proteome of those ten F. alocis strains. A total of 872 proteins were quantified, and 97 among them were differentially expressed in FtxA-positive strains compared with the negative strains. In addition, 44 of these differentially expressed proteins formed 66 pairs of associations based on their predicted functions, which included clusters of proteins with DNA repair/mediated transformation and catalytic activity-related function, indicating different biosynthetic activities among strains. FtxA displayed specific interactions with another six intracellular proteins, forming a functional cluster that could discriminate between FtxA-producing and non-producing strains. Among them were FtxB and FtxD, predicted to be encoded by the same operon as FtxA. While revealing the broader qualitative and quantitative proteomic landscape of F. alocis, this study also sheds light on the deeper functional inter-relationships of FtxA, thus placing this RTX family member into context as a major virulence factor of this species. Full article
Show Figures

Figure 1

27 pages, 2454 KiB  
Review
Scratching the Itch: Updated Perspectives on the Schistosomes Responsible for Swimmer’s Itch around the World
by Eric S. Loker, Randall J. DeJong and Sara V. Brant
Pathogens 2022, 11(5), 587; https://doi.org/10.3390/pathogens11050587 - 16 May 2022
Cited by 15 | Viewed by 8847
Abstract
Although most studies of digenetic trematodes of the family Schistosomatidae dwell on representatives causing human schistosomiasis, the majority of the 130 identified species of schistosomes infect birds or non-human mammals. The cercariae of many of these species can cause swimmer’s itch when they [...] Read more.
Although most studies of digenetic trematodes of the family Schistosomatidae dwell on representatives causing human schistosomiasis, the majority of the 130 identified species of schistosomes infect birds or non-human mammals. The cercariae of many of these species can cause swimmer’s itch when they penetrate human skin. Recent years have witnessed a dramatic increase in our understanding of schistosome diversity, now encompassing 17 genera with eight more lineages awaiting description. Collectively, schistosomes exploit 16 families of caenogastropod or heterobranch gastropod intermediate hosts. Basal lineages today are found in marine gastropods and birds, but subsequent diversification has largely taken place in freshwater, with some reversions to marine habitats. It seems increasingly likely that schistosomes have on two separate occasions colonized mammals. Swimmer’s itch is a complex zoonotic disease manifested through several different routes of transmission involving a diversity of different host species. Swimmer’s itch also exemplifies the value of adopting the One Health perspective in understanding disease transmission and abundance because the schistosomes involved have complex life cycles that interface with numerous species and abiotic components of their aquatic environments. Given the progress made in revealing their diversity and biology, and the wealth of questions posed by itch-causing schistosomes, they provide excellent models for implementation of long-term interdisciplinary studies focused on issues pertinent to disease ecology, the One Health paradigm, and the impacts of climate change, biological invasions and other environmental perturbations. Full article
(This article belongs to the Special Issue Advances in Avian Schistosomes and Cercarial Dermatitis)
Show Figures

Figure 1

13 pages, 1611 KiB  
Review
Phage ImmunoPrecipitation Sequencing (PhIP-Seq): The Promise of High Throughput Serology
by Charles Kevin Tiu, Feng Zhu, Lin-Fa Wang and Ruklanthi de Alwis
Pathogens 2022, 11(5), 568; https://doi.org/10.3390/pathogens11050568 - 11 May 2022
Cited by 15 | Viewed by 7867
Abstract
Phage ImmunoPrecipitation Sequencing (PhIP-Seq) is a high throughput serological technology that is revolutionizing the manner in which we track antibody profiles. In this review, we mainly focus on its application to viral infectious diseases. Through the pull-down of patient antibodies using peptide-tile-expressing T7 [...] Read more.
Phage ImmunoPrecipitation Sequencing (PhIP-Seq) is a high throughput serological technology that is revolutionizing the manner in which we track antibody profiles. In this review, we mainly focus on its application to viral infectious diseases. Through the pull-down of patient antibodies using peptide-tile-expressing T7 bacteriophages and detection using next-generation sequencing (NGS), PhIP-Seq allows the determination of antibody repertoires against peptide targets from hundreds of proteins and pathogens. It differs from conventional serological techniques in that PhIP-Seq does not require protein expression and purification. It also allows for the testing of many samples against the whole virome. PhIP-Seq has been successfully applied in many infectious disease investigations concerning seroprevalence, risk factors, time trends, etiology of disease, vaccinology, and emerging pathogens. Despite the inherent limitations of this technology, we foresee the future expansion of PhIP-Seq in both investigative studies and tracking of current, emerging, and novel viruses. Following the review of PhIP-Seq technology, its limitations, and applications, we recommend that PhIP-Seq be integrated into national surveillance programs and be used in conjunction with molecular techniques to support both One Health and pandemic preparedness efforts. Full article
(This article belongs to the Special Issue Sero-Epidemiology of Natural Infections and Vaccination)
Show Figures

Figure 1

10 pages, 1043 KiB  
Article
RAPD-PCR-Based Fingerprinting Method as a Tool for Epidemiological Analysis of Trueperella pyogenes Infections
by Ilona Stefańska, Ewelina Kwiecień, Małgorzata Górzyńska, Agnieszka Sałamaszyńska-Guz and Magdalena Rzewuska
Pathogens 2022, 11(5), 562; https://doi.org/10.3390/pathogens11050562 - 10 May 2022
Cited by 15 | Viewed by 5685
Abstract
In this study, a Random Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) method for genetic typing of Trueperella pyogenes, an opportunistic bacterial pathogen, was designed. The method optimization was performed for 37 clinical T. pyogenes strains isolated from various infections in different animal [...] Read more.
In this study, a Random Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) method for genetic typing of Trueperella pyogenes, an opportunistic bacterial pathogen, was designed. The method optimization was performed for 37 clinical T. pyogenes strains isolated from various infections in different animal species. Optimal conditions for reliable and reproducible DNA fingerprinting were determined according to the modified Taguchi method. The developed method was assessed regarding its typeability, reproducibility, and discriminatory power using the Hunter’s and Gatsons’ index of discrimination. A high degree of genetic diversity was shown between the studied strains, which represented 31 genotypes. The generated RAPD profiles were relatively complex and simultaneously easy to interpret due to the wide size range of amplicons. The discriminatory index of the designed method was sufficiently high; thus, only strains epidemiologically related displayed identical RAPD genotypes. In conclusion, the DNA fingerprinting of T. pyogenes by the developed RAPD-PCR method is a reliable typing tool that may allow a better understanding of the epidemiology as well as pathogenesis of infections caused by this pathogen. Full article
(This article belongs to the Special Issue Monitoring, Prevention and Control of Infectious Animal Diseases)
Show Figures

Figure 1

14 pages, 1310 KiB  
Article
Wild Bird Densities and Landscape Variables Predict Spatial Patterns in HPAI Outbreak Risk across The Netherlands
by Janneke Schreuder, Henrik J. de Knegt, Francisca C. Velkers, Armin R. W. Elbers, Julia Stahl, Roy Slaterus, J. Arjan Stegeman and Willem F. de Boer
Pathogens 2022, 11(5), 549; https://doi.org/10.3390/pathogens11050549 - 6 May 2022
Cited by 17 | Viewed by 4830
Abstract
Highly pathogenic avian influenza viruses’ (HPAIVs) transmission from wild birds to poultry occurs globally, threatening animal and public health. To predict the HPAI outbreak risk in relation to wild bird densities and land cover variables, we performed a case-control study of 26 HPAI [...] Read more.
Highly pathogenic avian influenza viruses’ (HPAIVs) transmission from wild birds to poultry occurs globally, threatening animal and public health. To predict the HPAI outbreak risk in relation to wild bird densities and land cover variables, we performed a case-control study of 26 HPAI outbreaks (cases) on Dutch poultry farms, each matched with four comparable controls. We trained machine learning classifiers to predict outbreak risk with predictors analyzed at different spatial scales. Of the 20 best explaining predictors, 17 consisted of densities of water-associated bird species, 2 of birds of prey, and 1 represented the surrounding landscape, i.e., agricultural cover. The spatial distribution of mallard (Anas platyrhynchos) contributed most to risk prediction, followed by mute swan (Cygnus olor), common kestrel (Falco tinnunculus) and brant goose (Branta bernicla). The model successfully distinguished cases from controls, with an area under the receiver operating characteristic curve of 0.92, indicating accurate prediction of HPAI outbreak risk despite the limited numbers of cases. Different classification algorithms led to similar predictions, demonstrating robustness of the risk maps. These analyses and risk maps facilitate insights into the role of wild bird species and support prioritization of areas for surveillance, biosecurity measures and establishments of new poultry farms to reduce HPAI outbreak risks. Full article
(This article belongs to the Collection Advanced Research on Avian Influenza Virus (AIV))
Show Figures

Figure 1

9 pages, 864 KiB  
Article
Efficacy and Safety of Bulevirtide plus Tenofovir Disoproxil Fumarate in Real-World Patients with Chronic Hepatitis B and D Co-Infection
by Toni Herta, Magdalena Hahn, Melanie Maier, Janett Fischer, Johannes Niemeyer, Mario Hönemann, Albrecht Böhlig, Florian Gerhardt, Aaron Schindler, Jonas Schumacher, Thomas Berg, Johannes Wiegand and Florian van Bömmel
Pathogens 2022, 11(5), 517; https://doi.org/10.3390/pathogens11050517 - 27 Apr 2022
Cited by 26 | Viewed by 4239
Abstract
Background: The hepatitis B and D virus (HBV/HDV) hepatocyte entry inhibitor bulevirtide (BLV) has been available in Europe since July 2020, after the registrational trial MYR202. Real-life data on the efficacy and safety of BLV are sparse. Methods: We have analysed the course [...] Read more.
Background: The hepatitis B and D virus (HBV/HDV) hepatocyte entry inhibitor bulevirtide (BLV) has been available in Europe since July 2020, after the registrational trial MYR202. Real-life data on the efficacy and safety of BLV are sparse. Methods: We have analysed the course of treatment with BLV (2 mg/day) plus tenofovir disoproxil fumarate (TDF) (245 mg/day) in patients with chronic hepatitis delta (CHD). Virologic (≥2 log reduction in HDV RNA or suppression of HDV RNA below the lower limit of detection) and biochemical (normalisation of serum ALT) treatment responses after 24 weeks were defined according to the MYR202 trial. Results: Seven patients were recruited (four with liver cirrhosis Child–Pugh A). After 24 weeks, a virologic response was observed in five of seven and a biochemical response was seen in three of six patients with elevated serum ALT at baseline. Extended treatment data > 48 weeks were available in three cases: two presented with continuous virologic and biochemical responses and in one individual an HDV-RNA breakthrough was observed. Adverse effects were not recorded. Conclusions: The first real-life data of the approved dosage of 2 mg of BLV in combination with TDF confirm the safety, tolerability, and efficacy of the registrational trial MYR202 for a treatment period of 24 weeks and beyond. Full article
Show Figures

Figure 1

24 pages, 3103 KiB  
Review
SARS-CoV-2: An Overview of the Genetic Profile and Vaccine Effectiveness of the Five Variants of Concern
by Raluca Dumache, Alexandra Enache, Ioana Macasoi, Cristina Adriana Dehelean, Victor Dumitrascu, Alexandra Mihailescu, Roxana Popescu, Daliborca Vlad, Cristian Sebastian Vlad and Camelia Muresan
Pathogens 2022, 11(5), 516; https://doi.org/10.3390/pathogens11050516 - 26 Apr 2022
Cited by 13 | Viewed by 4492
Abstract
With the onset of the COVID-19 pandemic, enormous efforts have been made to understand the genus SARS-CoV-2. Due to the high rate of global transmission, mutations in the viral genome were inevitable. A full understanding of the viral genome and its possible changes [...] Read more.
With the onset of the COVID-19 pandemic, enormous efforts have been made to understand the genus SARS-CoV-2. Due to the high rate of global transmission, mutations in the viral genome were inevitable. A full understanding of the viral genome and its possible changes represents one of the crucial aspects of pandemic management. Structural protein S plays an important role in the pathogenicity of SARS-CoV-2, mutations occurring at this level leading to viral forms with increased affinity for ACE2 receptors, higher transmissibility and infectivity, resistance to neutralizing antibodies and immune escape, increasing the risk of infection and disease severity. Thus, five variants of concern are currently being discussed, Alpha, Beta, Gamma, Delta and Omicron. In the present review, a comprehensive summary of the following critical aspects regarding SARS-CoV-2 has been made: (i) the genomic characteristics of SARS-CoV-2; (ii) the pathological mechanism of transmission, penetration into the cell and action on specific receptors; (iii) mutations in the SARS-CoV-2 genome; and (iv) possible implications of mutations in diagnosis, treatment, and vaccination. Full article
Show Figures

Figure 1

12 pages, 1196 KiB  
Article
Viral Etiological Agent(s) of Respiratory Tract Infections in Symptomatic Individuals during the Second Wave of COVID-19 Pandemic: A Single Drive-Thru Mobile Collection Site Study
by Aleksandra Kozinska, Karolina Wegrzynska, Magdalena Komiazyk, Jaroslaw Walory, Izabela Wasko and Anna Baraniak
Pathogens 2022, 11(4), 475; https://doi.org/10.3390/pathogens11040475 - 15 Apr 2022
Cited by 12 | Viewed by 4304
Abstract
One of the tools to contain the SARS-CoV-2 pandemic was to increase the number of performed tests and to improve the access to diagnostics. To this effect, mobile collection sites (MCSs) were established. This study was performed on samples collected at the MCS [...] Read more.
One of the tools to contain the SARS-CoV-2 pandemic was to increase the number of performed tests and to improve the access to diagnostics. To this effect, mobile collection sites (MCSs) were established. This study was performed on samples collected at the MCS between November 2020 and March 2021. We aimed to confirm/exclude SARS-CoV-2, differentiate SARS-CoV-2 variants, and detect other respiratory pathogens. SARS-CoV-2 and other respiratory viruses were identified by RT-qPCRs. A total of 876 (46.35%) SARS-CoV-2 positive specimens in the diagnostic tests were identified. The wild-type variant was determined in 667 (76.14%) samples; the remaining 209 (23.86%) samples specimens were identified as Alpha variant. A total of 51 (5.6%) non-SARS-CoV-2 cases were detected in retrospective studies. These accounted for 33 cases of mono-infection including rhinovirus (RV), human adenovirus (HAdV), human metapneumovirus (HMPV), enterovirus (EV), and influenza virus, and 18 cases of co-infection (SARS-CoV-2 with RV or HAdV or HMPV, and RV with EV). Our research shows that the results obtained from the MCS have value in epidemiological studies, reflecting national trends on a micro scale. Although the spread of COVID-19 is a major public health concern, SARS-CoV-2 is not the only pathogen responsible for respiratory infections. Full article
Show Figures

Figure 1

12 pages, 1531 KiB  
Article
Ecological Niche Model of Bacillus cereus Group Isolates Containing a Homologue of the pXO1 Anthrax Toxin Genes Infecting Metalworkers in the United States
by Mark A. Deka, Chung K. Marston, Julia Garcia-Diaz, Rahsaan Drumgoole and Rita M. Traxler
Pathogens 2022, 11(4), 470; https://doi.org/10.3390/pathogens11040470 - 14 Apr 2022
Cited by 3 | Viewed by 4970
Abstract
While Bacillus cereus typically causes opportunistic infections in humans, within the last three decades, severe and fatal infections caused by isolates of the B. cereus group harboring anthrax toxin genes have been reported in the United States. From 1994 to 2020, seven cases [...] Read more.
While Bacillus cereus typically causes opportunistic infections in humans, within the last three decades, severe and fatal infections caused by isolates of the B. cereus group harboring anthrax toxin genes have been reported in the United States. From 1994 to 2020, seven cases of anthrax-like illness resulting from these isolates have been identified. With one exception, the cases have occurred in the Gulf States region of the United States among metalworkers. We aimed to develop an ecological niche model (ENM) to estimate a spatial area conducive to the survival of these organisms based on the presence of known human infections and environmental variables. The estimated ecological niche for B. cereus was modeled with the maximum entropy algorithm (Maxent). Environmental variables contributing most to the model were soil characteristics (cation exchange capacity, carbon content, soil pH), temperature, enhanced vegetation index (EVI), and land surface temperature (LST). Much of the suitable environments were located throughout the Gulf Coast Plain, Texas Backland Prairies, East Central Texas Plains, Edwards Plateau, Cross Timbers, Mississippi Alluvial Plain, and Central Great Plains. These findings may provide additional guidance to narrow potential risk areas to efficiently communicate messages to metalworkers and potentially identify individuals who may benefit from the anthrax vaccine. Full article
(This article belongs to the Special Issue Anthrax—a Threat beyond Bacillus anthracis)
Show Figures

Figure 1

14 pages, 348 KiB  
Article
No Correlation between Biofilm-Forming Capacity and Antibiotic Resistance in Environmental Staphylococcus spp.: In Vitro Results
by Matthew Gavino Donadu, Marco Ferrari, Vittorio Mazzarello, Stefania Zanetti, Ivan Kushkevych, Simon K.-M. R. Rittmann, Anette Stájer, Zoltán Baráth, Dóra Szabó, Edit Urbán and Márió Gajdács
Pathogens 2022, 11(4), 471; https://doi.org/10.3390/pathogens11040471 - 14 Apr 2022
Cited by 18 | Viewed by 4070
Abstract
The production of biofilms is a critical factor in facilitating the survival of Staphylococcus spp. in vivo and in protecting against various environmental noxa. The possible relationship between the antibiotic-resistant phenotype and biofilm-forming capacity has raised considerable interest. The purpose of the study [...] Read more.
The production of biofilms is a critical factor in facilitating the survival of Staphylococcus spp. in vivo and in protecting against various environmental noxa. The possible relationship between the antibiotic-resistant phenotype and biofilm-forming capacity has raised considerable interest. The purpose of the study was to assess the interdependence between biofilm-forming capacity and the antibiotic-resistant phenotype in 299 Staphylococcus spp. (S. aureus n = 143, non-aureus staphylococci [NAS] n = 156) of environmental origin. Antimicrobial susceptibility testing and detection of methicillin resistance (MR) was performed. The capacity of isolates to produce biofilms was assessed using Congo red agar (CRA) plates and a crystal violet microtiter-plate-based (CV-MTP) method. MR was identified in 46.9% of S. aureus and 53.8% of NAS isolates (p > 0.05), with resistance to most commonly used drugs being significantly higher in MR isolates compared to methicillin-susceptible isolates. Resistance rates were highest for clindamycin (57.9%), erythromycin (52.2%) and trimethoprim-sulfamethoxazole (51.1%), while susceptibility was retained for most last-resort drugs. Based on the CRA plates, biofilm was produced by 30.8% of S. aureus and 44.9% of NAS (p = 0.014), while based on the CV-MTP method, 51.7% of S. aureus and 62.8% of NAS were identified as strong biofilm producers, respectively (mean OD570 values: S. aureus: 0.779±0.471 vs. NAS: 1.053±0.551; p < 0.001). No significant differences in biofilm formation were observed based on MR (susceptible: 0.824 ± 0.325 vs. resistant: 0.896 ± 0.367; p = 0.101). However, pronounced differences in biofilm formation were identified based on rifampicin susceptibility (S: 0.784 ± 0.281 vs. R: 1.239 ± 0.286; p = 0.011). The mechanistic understanding of the mechanisms Staphylococcus spp. use to withstand harsh environmental and in vivo conditions is crucial to appropriately address the therapy and eradication of these pathogens. Full article
(This article belongs to the Special Issue Staphylococcus Infections in Humans and Animals)
14 pages, 2626 KiB  
Article
Predicting Bovine Respiratory Disease Risk in Feedlot Cattle in the First 45 Days Post Arrival
by Hector A. Rojas, Brad J. White, David E. Amrine and Robert L. Larson
Pathogens 2022, 11(4), 442; https://doi.org/10.3390/pathogens11040442 - 6 Apr 2022
Cited by 9 | Viewed by 2769
Abstract
Bovine respiratory disease (BRD) is the leading cause of morbidity in feedlot cattle. The ability to accurately identify the expected BRD risk of cattle would allow managers to detect high-risk animals more frequently. Five classification models were built and evaluated towards predicting the [...] Read more.
Bovine respiratory disease (BRD) is the leading cause of morbidity in feedlot cattle. The ability to accurately identify the expected BRD risk of cattle would allow managers to detect high-risk animals more frequently. Five classification models were built and evaluated towards predicting the expected BRD risk (high/low) of feedlot cattle within the first 45 days on feed (DOF) and incorporate an economic analysis to determine the potential health cost advantage when using a predictive model compared with standard methods. Retrospective data from 10 U.S. feedlots containing 1733 cohorts representing 188,188 cattle with known health outcomes were classified into high- (≥15% BRD morbidity) or low- (<15%) BRD risk in the first 45 DOF. Area under the curve was calculated from the test dataset for each model and ranged from 0.682 to 0.789. The economic performance for each model was dependent on the true proportion of high-risk cohorts in the population. The decision tree model displayed a greater potential economic advantage compared with standard procedures when the proportion of high-risk cohorts was ≤45%. Results illustrate that predictive models may be useful at delineating cattle as high or low risk for disease and may provide economic value relative to standard methods. Full article
Show Figures

Figure 1

13 pages, 1427 KiB  
Article
Pathophysiology of Acute Kidney Injury in Malaria and Non-Malarial Febrile Illness: A Prospective Cohort Study
by Michael T. Hawkes, Aleksandra Leligdowicz, Anthony Batte, Geoffrey Situma, Kathleen Zhong, Sophie Namasopo, Robert O. Opoka, Kevin C. Kain and Andrea L. Conroy
Pathogens 2022, 11(4), 436; https://doi.org/10.3390/pathogens11040436 - 3 Apr 2022
Cited by 17 | Viewed by 5404
Abstract
Acute kidney injury (AKI) is a life-threatening complication. Malaria and sepsis are leading causes of AKI in low-and-middle-income countries, but its etiology and pathogenesis are poorly understood. A prospective observational cohort study was conducted to evaluate pathways of immune and endothelial activation in [...] Read more.
Acute kidney injury (AKI) is a life-threatening complication. Malaria and sepsis are leading causes of AKI in low-and-middle-income countries, but its etiology and pathogenesis are poorly understood. A prospective observational cohort study was conducted to evaluate pathways of immune and endothelial activation in children hospitalized with an acute febrile illness in Uganda. The relationship between clinical outcome and AKI, defined using the Kidney Disease: Improving Global Outcomes criteria, was investigated. The study included 967 participants (mean age 1.67 years, 44.7% female) with 687 (71.0%) positive for malaria by rapid diagnostic test and 280 (29.1%) children had a non-malarial febrile illness (NMFI). The frequency of AKI was higher in children with NMFI compared to malaria (AKI, 55.0% vs. 46.7%, p = 0.02). However, the frequency of severe AKI (stage 2 or 3 AKI) was comparable (12.1% vs. 10.5%, p = 0.45). Circulating markers of both immune and endothelial activation were associated with severe AKI. Children who had malaria and AKI had increased mortality (no AKI, 0.8% vs. AKI, 4.1%, p = 0.005), while there was no difference in mortality among children with NMFI (no AKI, 4.0% vs. AKI, 4.6%, p = 0.81). AKI is a common complication in children hospitalized with acute infections. Immune and endothelial activation appear to play central roles in the pathogenesis of AKI. Full article
(This article belongs to the Special Issue Pathology of Severe Malaria)
Show Figures

Figure 1

16 pages, 1022 KiB  
Review
The History of Live Attenuated Centrin Gene-Deleted Leishmania Vaccine Candidates
by Greta Volpedo, Parna Bhattacharya, Sreenivas Gannavaram, Thalia Pacheco-Fernandez, Timur Oljuskin, Ranadhir Dey, Abhay R. Satoskar and Hira L. Nakhasi
Pathogens 2022, 11(4), 431; https://doi.org/10.3390/pathogens11040431 - 2 Apr 2022
Cited by 25 | Viewed by 16434
Abstract
Leishmaniasis, caused by an infection of the Leishmania protozoa, is a neglected tropical disease and a major health problem in tropical and subtropical regions of the world, with approximately 350 million people worldwide at risk and 2 million new cases occurring annually. Current [...] Read more.
Leishmaniasis, caused by an infection of the Leishmania protozoa, is a neglected tropical disease and a major health problem in tropical and subtropical regions of the world, with approximately 350 million people worldwide at risk and 2 million new cases occurring annually. Current treatments for leishmaniasis are not highly efficacious and are associated with high costs, especially in low- and middle-income endemic countries, and high toxicity. Due to a surge in the incidence of leishmaniases worldwide, the development of new strategies such as a prophylactic vaccine has become a high priority. However, the ability of Leishmania to undermine immune recognition has limited our efforts to design safe and efficacious vaccines against leishmaniasis. Numerous antileishmanial vaccine preparations based on DNA, subunit, and heat-killed parasites with or without adjuvants have been tried in several animal models but very few have progressed beyond the experimental stage. However, it is known that people who recover from Leishmania infection can be protected lifelong against future infection, suggesting that a successful vaccine requires a controlled infection to develop immunologic memory and subsequent long-term immunity. Live attenuated Leishmania parasites that are non-pathogenic and provide a complete range of antigens similarly to their wild-type counterparts could evoke such memory and, thus, would be effective vaccine candidates. Our laboratory has developed several live attenuated Leishmania vaccines by targeted centrin gene disruptions either by homologous recombination or, more recently, by using genome editing technologies involving CRISPR-Cas9. In this review, we focused on the sequential history of centrin gene-deleted Leishmania vaccine development, along with the characterization of its safety and efficacy. Further, we discussed other major considerations regarding the transition of dermotropic live attenuated centrin gene-deleted parasites from the laboratory to human clinical trials. Full article
(This article belongs to the Special Issue Leishmania & Leishmaniasis)
Show Figures

Figure 1

14 pages, 2761 KiB  
Article
Impact of Vaccination on Rotavirus Genotype Diversity: A Nearly Two-Decade-Long Epidemiological Study before and after Rotavirus Vaccine Introduction in Sicily, Italy
by Floriana Bonura, Leonardo Mangiaracina, Chiara Filizzolo, Celestino Bonura, Vito Martella, Max Ciarlet, Giovanni M. Giammanco and Simona De Grazia
Pathogens 2022, 11(4), 424; https://doi.org/10.3390/pathogens11040424 - 31 Mar 2022
Cited by 21 | Viewed by 3416
Abstract
Sicily was the first Italian region to introduce rotavirus (RV) vaccination with the monovalent G1P[8] vaccine Rotarix® in May 2012. In this study, the seasonal distribution and molecular characterization of RV strains detected over 19 years were compared to understand the effect [...] Read more.
Sicily was the first Italian region to introduce rotavirus (RV) vaccination with the monovalent G1P[8] vaccine Rotarix® in May 2012. In this study, the seasonal distribution and molecular characterization of RV strains detected over 19 years were compared to understand the effect of Rotarix® on the evolutionary dynamics of human RVs. A total of 7846 stool samples collected from children < 5 years of age, hospitalized with acute gastroenteritis, were tested for RV detection and genotyping. Since 2013, vaccine coverage has progressively increased, while the RV prevalence decreased from 36.1% to 13.3% with a loss of seasonality. The local distribution of RV genotypes changed over the time possibly due to vaccine introduction, with a drastic reduction in G1P[8] strains replaced by common and novel emerging RV strains, such as equine-like G3P[8] in the 2018–2019 season. Comparison of VP7 and VP4 amino acid (aa) sequences with the cognate genes of Rotarix® and RotaTeq® vaccine strains showed specific aa changes in the antigenic epitopes of VP7 and of the VP8* portion of VP4 of the Italian RV strains. Molecular epidemiological surveillance data are required to monitor the emergence of novel RV strains and ascertain if these strains may affect the efficacy of RV vaccines. Full article
(This article belongs to the Special Issue Pediatric Gastroenteritis and Related Viral Infections)
Show Figures

Figure 1

15 pages, 7421 KiB  
Article
Population Genetic Structure and Hybridization of Schistosoma haematobium in Nigeria
by Amos Mathias Onyekwere, Olivier Rey, Jean-François Allienne, Monday Chukwu Nwanchor, Moses Alo, Clementina Uwa and Jerome Boissier
Pathogens 2022, 11(4), 425; https://doi.org/10.3390/pathogens11040425 - 31 Mar 2022
Cited by 21 | Viewed by 3682
Abstract
Background: Schistosomiasis is a major poverty-related disease caused by dioecious parasitic flatworms of the genus Schistosoma with a health impact on both humans and animals. Hybrids of human urogenital schistosome and bovine intestinal schistosome have been reported in humans in several of Nigeria’s [...] Read more.
Background: Schistosomiasis is a major poverty-related disease caused by dioecious parasitic flatworms of the genus Schistosoma with a health impact on both humans and animals. Hybrids of human urogenital schistosome and bovine intestinal schistosome have been reported in humans in several of Nigeria’s neighboring West African countries. No empirical studies have been carried out on the genomic diversity of Schistosoma haematobium in Nigeria. Here, we present novel data on the presence and prevalence of hybrids and the population genetic structure of S. haematobium. Methods: 165 Schistosoma-positive urine samples were obtained from 12 sampling sites in Nigeria. Schistosoma haematobium eggs from each sample were hatched and each individual miracidium was picked and preserved in Whatman® FTA cards for genomic analysis. Approximately 1364 parasites were molecularly characterized by rapid diagnostic multiplex polymerase chain reaction (RD-PCR) for mitochondrial DNA gene (Cox1 mtDNA) and a subset of 1136 miracidia were genotyped using a panel of 18 microsatellite markers. Results: No significant difference was observed in the population genetic diversity (p > 0.05), though a significant difference was observed in the allelic richness of the sites except sites 7, 8, and 9 (p < 0.05). Moreover, we observed two clusters of populations: west (populations 1–4) and east (populations 7–12). Of the 1364 miracidia genotyped, 1212 (89%) showed an S. bovis Cox1 profile and 152 (11%) showed an S. haematobium cox1 profile. All parasites showed an S. bovis Cox1 profile except for some at sites 3 and 4. Schistosoma miracidia full genotyping showed 59.3% of the S. bovis ITS2 allele. Conclusions: This study provides novel insight into hybridization and population genetic structure of S. haematobium in Nigeria. Our findings suggest that S. haematobium x S. bovis hybrids are common in Nigeria. More genomic studies on both human- and animal-infecting parasites are needed to ascertain the role of animals in schistosome transmission. Full article
(This article belongs to the Special Issue Schistosomiasis: Host-Pathogen Biology)
Show Figures

Figure 1

14 pages, 550 KiB  
Review
Welder’s Anthrax: A Review of an Occupational Disease
by Marie A. de Perio, Katherine A. Hendricks, Chad H. Dowell, William A. Bower, Nancy C. Burton, Patrick Dawson, Caroline A. Schrodt, Johanna S. Salzer, Chung K. Marston, Karl Feldmann, Alex R. Hoffmaster and James M. Antonini
Pathogens 2022, 11(4), 402; https://doi.org/10.3390/pathogens11040402 - 26 Mar 2022
Cited by 12 | Viewed by 12879
Abstract
Since 1997, nine cases of severe pneumonia, caused by species within the B. cereus group and with a presentation similar to that of inhalation anthrax, were reported in seemingly immunocompetent metalworkers, with most being welders. In seven of the cases, isolates were found [...] Read more.
Since 1997, nine cases of severe pneumonia, caused by species within the B. cereus group and with a presentation similar to that of inhalation anthrax, were reported in seemingly immunocompetent metalworkers, with most being welders. In seven of the cases, isolates were found to harbor a plasmid similar to the B. anthracis pXO1 that encodes anthrax toxins. In this paper, we review the literature on the B. cereus group spp. pneumonia among welders and other metalworkers, which we term welder’s anthrax. We describe the epidemiology, including more information on two cases of welder’s anthrax in 2020. We also describe the health risks associated with welding, potential mechanisms of infection and pathological damage, prevention measures according to the hierarchy of controls, and clinical and public health considerations. Considering occupational risk factors and controlling exposure to welding fumes and gases among workers, according to the hierarchy of controls, should help prevent disease transmission in the workplace. Full article
(This article belongs to the Special Issue Anthrax—a Threat beyond Bacillus anthracis)
Show Figures

Figure 1

14 pages, 3794 KiB  
Article
Functional Analysis of Two Affinity cAMP Phosphodiesterases in the Nematode-Trapping Fungus Arthrobotrys oligospora
by Ni Ma, Ke-Xin Jiang, Na Bai, Dong-Ni Li, Ke-Qin Zhang and Jin-Kui Yang
Pathogens 2022, 11(4), 405; https://doi.org/10.3390/pathogens11040405 - 26 Mar 2022
Cited by 8 | Viewed by 3130
Abstract
Phosphodiesterases are essential regulators of cyclic nucleotide signaling with diverse physiological functions. Two phosphodiesterases, PdeH and PdeL, have been identified from yeast and filamentous fungi. Here, the orthologs of PdeH and PdeL were characterized in a typical nematode-trapping fungus Arthrobotrys oligospora by gene [...] Read more.
Phosphodiesterases are essential regulators of cyclic nucleotide signaling with diverse physiological functions. Two phosphodiesterases, PdeH and PdeL, have been identified from yeast and filamentous fungi. Here, the orthologs of PdeH and PdeL were characterized in a typical nematode-trapping fungus Arthrobotrys oligospora by gene disruption and phenotypic comparison. Deletion of AopdeH caused serious defects in mycelial growth, conidiation, stress response, trap formation, and nematicidal efficiency compared to the wild-type strain. In contrast, these phenotypes have no significant difference in the absence of AopdeL. In addition, deletion of AopdeH and AopdeL resulted in a remarkable increase in cAMP level during vegetative growth and trap formation, and the number of autophagosomes was decreased in ΔAopdeH and ΔAopdeL mutants, whereas their volumes considerably increased. Moreover, metabolomic analyses revealed that many metabolites were downregulated in ΔAopdeH mutant compared to their expression in the wild-type strain. Our results indicate that AoPdeH plays a crucial role in mycelial growth, conidiation, stress response, secondary metabolism, and trap formation. In contrast, AoPdeL only plays a minor role in hyphal and conidial morphology, autophagy, and trap formation in A. oligospora. This work expands the roles of phosphodiesterases and deepens the understanding of the regulation of trap formation in nematode-trapping fungi. Full article
(This article belongs to the Special Issue Microbe-Nematode Interactions)
Show Figures

Figure 1

17 pages, 3930 KiB  
Article
Mucosal Antibody Response to SARS-CoV-2 in Paediatric and Adult Patients: A Longitudinal Study
by Renee W. Y. Chan, Kate C. C. Chan, Grace C. Y. Lui, Joseph G. S. Tsun, Kathy Y. Y. Chan, Jasmine S. K. Yip, Shaojun Liu, Michelle W. L. Yu, Rita W. Y. Ng, Kelvin K. L. Chong, Maggie H. Wang, Paul K. S. Chan, Albert M. Li and Hugh Simon Lam
Pathogens 2022, 11(4), 397; https://doi.org/10.3390/pathogens11040397 - 24 Mar 2022
Cited by 21 | Viewed by 5420
Abstract
Background: SARS-CoV-2 enters the body through inhalation or self-inoculation to mucosal surfaces. The kinetics of the ocular and nasal mucosal-specific-immunoglobulin A(IgA) responses remain under-studied. Methods: Conjunctival fluid (CF, n = 140) and nasal epithelial lining fluid (NELF, n = 424) obtained by paper [...] Read more.
Background: SARS-CoV-2 enters the body through inhalation or self-inoculation to mucosal surfaces. The kinetics of the ocular and nasal mucosal-specific-immunoglobulin A(IgA) responses remain under-studied. Methods: Conjunctival fluid (CF, n = 140) and nasal epithelial lining fluid (NELF, n = 424) obtained by paper strips and plasma (n = 153) were collected longitudinally from SARS-CoV-2 paediatric (n = 34) and adult (n = 47) patients. The SARS-CoV-2 spike protein 1(S1)-specific mucosal antibody levels in COVID-19 patients, from hospital admission to six months post-diagnosis, were assessed. Results: The mucosal antibody was IgA-predominant. In the NELF of asymptomatic paediatric patients, S1-specific IgA was induced as early as the first four days post-diagnosis. Their plasma S1-specific IgG levels were higher than in symptomatic patients in the second week after diagnosis. The IgA and IgG levels correlated positively with the surrogate neutralization readout. The detectable NELF “receptor-blocking” S1-specific IgA in the first week after diagnosis correlated with a rapid decline in viral load. Conclusions: Early and intense nasal S1-specific IgA levels link to a rapid decrease in viral load. Our results provide insights into the role of mucosal immunity in SARS-CoV-2 exposure and protection. There may be a role of NELF IgA in the screening and diagnosis of SARS-CoV-2 infection. Full article
(This article belongs to the Special Issue Viral Pathogenesis and Immunity)
Show Figures

Figure 1

13 pages, 16959 KiB  
Article
Characterization of Salmonella enterica Contamination in Pork and Poultry Meat from São Paulo/Brazil: Serotypes, Genotypes and Antimicrobial Resistance Profiles
by Vasco T. M. Gomes, Luisa Z. Moreno, Ana Paula S. Silva, Siddhartha Thakur, Roberto M. La Ragione, Alison E. Mather and Andrea M. Moreno
Pathogens 2022, 11(3), 358; https://doi.org/10.3390/pathogens11030358 - 16 Mar 2022
Cited by 20 | Viewed by 7311
Abstract
Salmonellosis is a zoonosis of major relevance to global public health. Here we present the assessment of Salmonella enterica contamination in pork and poultry meat sold at retail markets in São Paulo, Brazil. A total of 780 meat samples (386 poultry meat and [...] Read more.
Salmonellosis is a zoonosis of major relevance to global public health. Here we present the assessment of Salmonella enterica contamination in pork and poultry meat sold at retail markets in São Paulo, Brazil. A total of 780 meat samples (386 poultry meat and 394 pork samples) were collected from 132 markets. From these, 57 samples (7.3%) were positive for S. enterica isolation, including 32 (8.3%) poultry meat and 25 (6.3%) pork samples. S. enterica isolates were further characterized for serotyping, antimicrobial resistance and genotyping by amplified fragment length polymorphism and pulsed field gel electrophoresis. Antimicrobial resistance analysis demonstrated two main profiles: pork isolates were more resistant to macrolides, β-lactams, tetracycline, phenicols, and fluoroquinolones, and poultry meat isolates presented higher resistance to fluoroquinolones, sulfonamides, tetracycline, and β-lactams. A total of 72.4% of poultry meat isolates were identified as S. Heidelberg, while most of pork isolates were S. Typhimurium (31.7%) and S. Give (16.7%). Genotyping resulted in most clusters consisting exclusively of pork or poultry meat, no cross-contamination was detected, and a tendency to differentiate isolates according to their serotypes and markets of origin. High resistance rates to critically important antimicrobials reinforce the importance of controlling Salmonella contamination in meat production chains. Full article
Show Figures

Figure 1

19 pages, 4452 KiB  
Article
InfectionCMA: A Cell MicroArray Approach for Efficient Biomarker Screening in In Vitro Infection Assays
by Ana C. Magalhães, Sara Ricardo, Ana C. Moreira, Mariana Nunes, Margarida Tavares, Ricardo J. Pinto, Maria Salomé Gomes and Luisa Pereira
Pathogens 2022, 11(3), 313; https://doi.org/10.3390/pathogens11030313 - 3 Mar 2022
Cited by 4 | Viewed by 3204
Abstract
The recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has forced the scientific community to acquire knowledge in real-time, when total lockdowns and the interruption of flights severely limited access to reagents as the global pandemic became established. This unique reality made [...] Read more.
The recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has forced the scientific community to acquire knowledge in real-time, when total lockdowns and the interruption of flights severely limited access to reagents as the global pandemic became established. This unique reality made researchers aware of the importance of designing efficient in vitro set-ups to evaluate infectious kinetics. Here, we propose a histology-based method to evaluate infection kinetics grounded in cell microarray (CMA) construction, immunocytochemistry and in situ hybridization techniques. We demonstrate that the chip-like organization of the InfectionCMA has several advantages, allowing side-by-side comparisons between diverse cell lines, infection time points, and biomarker expression and cytolocalization evaluation in the same slide. In addition, this methodology has the potential to be easily adapted for drug screening. Full article
(This article belongs to the Special Issue Pathogen-Host Interactions in Viral Infections)
Show Figures

Figure 1

18 pages, 1493 KiB  
Review
Molecular and Clinical Prognostic Biomarkers of COVID-19 Severity and Persistence
by Gethsimani Papadopoulou, Eleni Manoloudi, Nikolena Repousi, Lemonia Skoura, Tara Hurst and Timokratis Karamitros
Pathogens 2022, 11(3), 311; https://doi.org/10.3390/pathogens11030311 - 2 Mar 2022
Cited by 24 | Viewed by 4446
Abstract
The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), poses several challenges to clinicians, due to its unpredictable clinical course. The identification of laboratory biomarkers, specific cellular, and molecular mediators of immune response could contribute to the prognosis [...] Read more.
The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), poses several challenges to clinicians, due to its unpredictable clinical course. The identification of laboratory biomarkers, specific cellular, and molecular mediators of immune response could contribute to the prognosis and management of COVID-19 patients. Of utmost importance is also the detection of differentially expressed genes, which can serve as transcriptomic signatures, providing information valuable to stratify patients into groups, based on the severity of the disease. The role of biomarkers such as IL-6, procalcitonin, neutrophil–lymphocyte ratio, white blood cell counts, etc. has already been highlighted in recently published studies; however, there is a notable amount of new evidence that has not been summarized yet, especially regarding transcriptomic signatures. Hence, in this review, we assess the latest cellular and molecular data and determine the significance of abnormalities in potential biomarkers for COVID-19 severity and persistence. Furthermore, we applied Gene Ontology (GO) enrichment analysis using the genes reported as differentially expressed in the literature in order to investigate which biological pathways are significantly enriched. The analysis revealed a number of processes, such as inflammatory response, and monocyte and neutrophil chemotaxis, which occur as part of the complex immune response to SARS-CoV-2. Full article
(This article belongs to the Special Issue Pathogen-Host Interactions in Viral Infections)
Show Figures

Figure 1

19 pages, 857 KiB  
Review
Pathogenesis of the Pseudomonas aeruginosa Biofilm: A Review
by Felipe Francisco Tuon, Leticia Ramos Dantas, Paula Hansen Suss and Victoria Stadler Tasca Ribeiro
Pathogens 2022, 11(3), 300; https://doi.org/10.3390/pathogens11030300 - 27 Feb 2022
Cited by 247 | Viewed by 40840
Abstract
Pseudomonas aeruginosa is associated with several human infections, mainly related to healthcare services. In the hospital, it is associated with resistance to several antibiotics, which poses a great challenge to therapy. However, one of the biggest challenges in treating P. aeruginosa infections is [...] Read more.
Pseudomonas aeruginosa is associated with several human infections, mainly related to healthcare services. In the hospital, it is associated with resistance to several antibiotics, which poses a great challenge to therapy. However, one of the biggest challenges in treating P. aeruginosa infections is that related to biofilms. The complex structure of the P. aeruginosa biofilm contributes an additional factor to the pathogenicity of this microorganism, leading to therapeutic failure, in addition to escape from the immune system, and generating chronic infections that are difficult to eradicate. In this review, we address several molecular aspects of the pathogenicity of P. aeruginosa biofilms. Full article
(This article belongs to the Special Issue Pseudomonas aeruginosa Pathogenesis)
Show Figures

Figure 1

12 pages, 1014 KiB  
Article
Anti-RBD IgA and IgG Response and Transmission in Breast Milk of Anti-SARS-CoV-2 Vaccinated Mothers
by Felicia Trofin, Eduard Vasile Nastase, Luminita Smaranda Iancu, Daniela Constantinescu, Corina Maria Cianga, Catalina Lunca, Ramona Gabriela Ursu, Petru Cianga and Olivia Simona Dorneanu
Pathogens 2022, 11(3), 286; https://doi.org/10.3390/pathogens11030286 - 24 Feb 2022
Cited by 19 | Viewed by 4952
Abstract
The appearance of the severe acute respiratory syndrome virus-2 (SARS-CoV-2) has had a significant impact on the balance of public health and social life. The data available so far show that newborns and young children do not develop severe forms of COVID-19, but [...] Read more.
The appearance of the severe acute respiratory syndrome virus-2 (SARS-CoV-2) has had a significant impact on the balance of public health and social life. The data available so far show that newborns and young children do not develop severe forms of COVID-19, but a small proportion of them will still need hospitalization. Even though young children represent an important vector of the infection, vaccination at such a young age was not yet considered. Thus, the question of whether potentially protective antibodies against SARS-CoV-2 could be provided to them via breast milk or across the placenta, as “passive immunity”, still stands. Materials and Methods: Between January–July 2021, we have conducted a prospective study that aimed to measure the immunoglobulin (Ig) A and IgG anti-SARS-CoV-2 titers in the breast milk of 28 vaccinated lactating mothers, sampled at 30 and 60 days after the second dose of the anti-SARS-CoV-2 Pfizer or Moderna mRNA vaccines. Anti-RBD reactive IgA and IgG antibodies were detected and quantified by a sandwich enzyme-linked immunosorbent assay. Results: Anti-RBD IgA and IgG were present in all breast milk samples, both in the first and in the second specimens, without a significant difference between those two. The anti-RBD IgA titers were approximately five-times higher than the anti-RBD IgG ones. The anti-RBD IgA and IgG titers were correlated with the infants’ age, but they were not correlated with the vaccine type or mother’s age. The anti-RBD IgA excreted in milk were inversely correlated with the parity number. Conclusions: Anti-SARS-CoV-2 IgA and IgG can be found in the milk secretion of mothers vaccinated with mRNA vaccines and, presumably, these antibodies should offer protection to the newborn, considering that the antibodies’ titers did not decrease after 60 days. The antibody response is directly proportional to the breastfed child’s age, but the amount of anti-RBD IgA decreases with the baby’s rank. The antibody response did not depend on the vaccine type, or on the mother’s age. Full article
(This article belongs to the Collection SARS-CoV-2 Infection and COVID-19 Disease)
Show Figures

Figure 1

9 pages, 2595 KiB  
Article
Postulation of Specific Disease Resistance Genes in Cereals: A Widely Used Method and Its Detailed Description
by Antonín Dreiseitl
Pathogens 2022, 11(3), 284; https://doi.org/10.3390/pathogens11030284 - 23 Feb 2022
Cited by 8 | Viewed by 2337
Abstract
Cultivation of resistant varieties is an environmentally friendly and inexpensive method of crop protection. Numerous alleles of specific disease resistance occur in cereals and other crops, and knowledge of their presence in individual varieties has wide utilization in research and practice. Postulation based [...] Read more.
Cultivation of resistant varieties is an environmentally friendly and inexpensive method of crop protection. Numerous alleles of specific disease resistance occur in cereals and other crops, and knowledge of their presence in individual varieties has wide utilization in research and practice. Postulation based on phenotyping host—pathogen interactions and the gene-for-gene model is a common way of identifying these genes. The same technique and design of tests are used for postulating virulence when pathogen populations are studied. Powdery mildews caused by different formae speciales of Blumeria graminis (Bg) are important cereal diseases. In this contribution, experimental methods are described that use a model organism Bg f. sp. hordei, which can be employed for other cereal mildews and possibly rusts. It includes illustrations and a summary of our long-term practical experience. It also critically evaluates the benefits of leaf segment tests compared with screening whole plants. Full article
Show Figures

Figure 1

14 pages, 1192 KiB  
Article
Survival and Detection of Bivalve Transmissible Neoplasia from the Soft-Shell Clam Mya arenaria (MarBTN) in Seawater
by Rachael M. Giersch, Samuel F. M. Hart, Satyatejas G. Reddy, Marisa A. Yonemitsu, María J. Orellana Rosales, Madelyn Korn, Brook M. Geleta, Peter D. Countway, José A. Fernández Robledo and Michael J. Metzger
Pathogens 2022, 11(3), 283; https://doi.org/10.3390/pathogens11030283 - 23 Feb 2022
Cited by 15 | Viewed by 5243
Abstract
Many pathogens can cause cancer, but cancer itself does not normally act as an infectious agent. However, transmissible cancers have been found in a few cases in nature: in Tasmanian devils, dogs, and several bivalve species. The transmissible cancers in dogs and devils [...] Read more.
Many pathogens can cause cancer, but cancer itself does not normally act as an infectious agent. However, transmissible cancers have been found in a few cases in nature: in Tasmanian devils, dogs, and several bivalve species. The transmissible cancers in dogs and devils are known to spread through direct physical contact, but the exact route of transmission of bivalve transmissible neoplasia (BTN) has not yet been confirmed. It has been hypothesized that cancer cells from bivalves could be released by diseased animals and spread through the water column to infect/engraft into other animals. To test the feasibility of this proposed mechanism of transmission, we tested the ability of BTN cells from the soft-shell clam (Mya arenaria BTN, or MarBTN) to survive in artificial seawater. We found that MarBTN cells are highly sensitive to salinity, with acute toxicity at salinity levels lower than those found in the native marine environment. BTN cells also survive longer at lower temperatures, with 50% of cells surviving greater than 12 days in seawater at 10 °C, and more than 19 days at 4 °C. With one clam donor, living cells were observed for more than eight weeks at 4 °C. We also used qPCR of environmental DNA (eDNA) to detect the presence of MarBTN-specific DNA in the environment. We observed release of MarBTN-specific DNA into the water of laboratory aquaria containing highly MarBTN-diseased clams, and we detected MarBTN-specific DNA in seawater samples collected from MarBTN-endemic areas in Maine, although the copy numbers detected in environmental samples were much lower than those found in aquaria. Overall, these data show that MarBTN cells can survive well in seawater, and they are released into the water by diseased animals. These findings support the hypothesis that BTN is spread from animal-to-animal by free cells through seawater. Full article
Show Figures

Graphical abstract

22 pages, 1016 KiB  
Review
Adaptive Cellular Immunity against African Swine Fever Virus Infections
by Alexander Schäfer, Giulia Franzoni, Christopher L. Netherton, Luise Hartmann, Sandra Blome and Ulrike Blohm
Pathogens 2022, 11(2), 274; https://doi.org/10.3390/pathogens11020274 - 20 Feb 2022
Cited by 46 | Viewed by 7647
Abstract
African swine fever virus (ASFV) remains a threat to global pig populations. Infections with ASFV lead to a hemorrhagic disease with up to 100% lethality in Eurasian domestic and wild pigs. Although myeloid cells are the main target cells for ASFV, T cell [...] Read more.
African swine fever virus (ASFV) remains a threat to global pig populations. Infections with ASFV lead to a hemorrhagic disease with up to 100% lethality in Eurasian domestic and wild pigs. Although myeloid cells are the main target cells for ASFV, T cell responses are impacted by the infection as well. The complex responses remain not well understood, and, consequently, there is no commercially available vaccine. Here, we review the current knowledge about the induction of antiviral T cell responses by cells of the myeloid lineage, as well as T cell responses in infected animals, recent efforts in vaccine research, and T cell epitopes present in ASFV. Full article
(This article belongs to the Special Issue Innate and Adaptive Immunity against Porcine Viruses)
Show Figures

Figure 1

14 pages, 1624 KiB  
Systematic Review
Long-Term Sequelae of COVID-19: A Systematic Review and Meta-Analysis of One-Year Follow-Up Studies on Post-COVID Symptoms
by Qing Han, Bang Zheng, Luke Daines and Aziz Sheikh
Pathogens 2022, 11(2), 269; https://doi.org/10.3390/pathogens11020269 - 19 Feb 2022
Cited by 426 | Viewed by 25067
Abstract
Emerging evidence has shown that COVID-19 survivors could suffer from persistent symptoms. However, it remains unclear whether these symptoms persist over the longer term. This study aimed to systematically synthesise evidence on post-COVID symptoms persisting for at least 12 months. We searched PubMed [...] Read more.
Emerging evidence has shown that COVID-19 survivors could suffer from persistent symptoms. However, it remains unclear whether these symptoms persist over the longer term. This study aimed to systematically synthesise evidence on post-COVID symptoms persisting for at least 12 months. We searched PubMed and Embase for papers reporting at least one-year follow-up results of COVID-19 survivors published by 6 November 2021. Random-effects meta-analyses were conducted to estimate pooled prevalence of specific post-COVID symptoms. Eighteen papers that reported one-year follow-up data from 8591 COVID-19 survivors were included. Fatigue/weakness (28%, 95% CI: 18–39), dyspnoea (18%, 95% CI: 13–24), arthromyalgia (26%, 95% CI: 8–44), depression (23%, 95% CI: 12–34), anxiety (22%, 95% CI: 15–29), memory loss (19%, 95% CI: 7–31), concentration difficulties (18%, 95% CI: 2–35), and insomnia (12%, 95% CI: 7–17) were the most prevalent symptoms at one-year follow-up. Existing evidence suggested that female patients and those with more severe initial illness were more likely to suffer from the sequelae after one year. This study demonstrated that a sizeable proportion of COVID-19 survivors still experience residual symptoms involving various body systems one year later. There is an urgent need for elucidating the pathophysiologic mechanisms and developing and testing targeted interventions for long-COVID patients. Full article
(This article belongs to the Special Issue Emerging and/or Zoonotic Viral Infections)
Show Figures

Figure 1

25 pages, 435 KiB  
Review
Methods of Inactivation of Highly Pathogenic Viruses for Molecular, Serology or Vaccine Development Purposes
by Simon Elveborg, Vanessa M. Monteil and Ali Mirazimi
Pathogens 2022, 11(2), 271; https://doi.org/10.3390/pathogens11020271 - 19 Feb 2022
Cited by 64 | Viewed by 18358
Abstract
The handling of highly pathogenic viruses, whether for diagnostic or research purposes, often requires an inactivation step. This article reviews available inactivation techniques published in peer-reviewed journals and their benefits and limitations in relation to the intended application. The bulk of highly pathogenic [...] Read more.
The handling of highly pathogenic viruses, whether for diagnostic or research purposes, often requires an inactivation step. This article reviews available inactivation techniques published in peer-reviewed journals and their benefits and limitations in relation to the intended application. The bulk of highly pathogenic viruses are represented by enveloped RNA viruses belonging to the Togaviridae, Flaviviridae, Filoviridae, Arenaviridae, Hantaviridae, Peribunyaviridae, Phenuiviridae, Nairoviridae and Orthomyxoviridae families. Here, we summarize inactivation methods for these virus families that allow for subsequent molecular and serological analysis or vaccine development. The techniques identified here include: treatment with guanidium-based chaotropic salts, heat inactivation, photoactive compounds such as psoralens or 1.5-iodonaphtyl azide, detergents, fixing with aldehydes, UV-radiation, gamma irradiation, aromatic disulfides, beta-propiolacton and hydrogen peroxide. The combination of simple techniques such as heat or UV-radiation and detergents such as Tween-20, Triton X-100 or Sodium dodecyl sulfate are often sufficient for virus inactivation, but the efficiency may be affected by influencing factors including quantity of infectious particles, matrix constitution, pH, salt- and protein content. Residual infectivity of the inactivated virus could have disastrous consequences for both laboratory/healthcare personnel and patients. Therefore, the development of inactivation protocols requires careful considerations which we review here. Full article
12 pages, 1727 KiB  
Article
SARS-CoV-2 Infects Primary Neurons from Human ACE2 Expressing Mice and Upregulates Genes Involved in the Inflammatory and Necroptotic Pathways
by Hussin A. Rothan, Pratima Kumari, Shannon Stone, Janhavi P. Natekar, Komal Arora, Tabassum T. Auroni and Mukesh Kumar
Pathogens 2022, 11(2), 257; https://doi.org/10.3390/pathogens11020257 - 17 Feb 2022
Cited by 27 | Viewed by 4953
Abstract
Transgenic mice expressing human angiotensin-converting enzyme 2 under the cytokeratin 18 promoter (K18-hACE2) have been extensively used to investigate the pathogenesis and tissue tropism of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Neuroinvasion and the replication of SARS-CoV-2 within the central nervous system [...] Read more.
Transgenic mice expressing human angiotensin-converting enzyme 2 under the cytokeratin 18 promoter (K18-hACE2) have been extensively used to investigate the pathogenesis and tissue tropism of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Neuroinvasion and the replication of SARS-CoV-2 within the central nervous system (CNS) of K18-hACE2 mice is associated with increased mortality; although, the mechanisms by which this occurs remain unclear. In this study, we generated primary neuronal cultures from K18-hACE2 mice to investigate the effects of a SARS-CoV-2 infection. We also evaluated the immunological response to SARS-CoV-2 infection in the CNS of K18-hACE2 mice and mouse neuronal cultures. Our data show that neuronal cultures obtained from K18-hACE2 mice are permissive to SARS-CoV-2 infection and support productive virus replication. Furthermore, SARS-CoV-2 infection upregulated the expression of genes involved in innate immunity and inflammation, including IFN-α, ISG-15, CXCL10, CCL2, IL-6 and TNF-α, in the neurons and mouse brains. In addition, we found that SARS-CoV-2 infection of neurons and mouse brains activates the ZBP1/pMLKL-regulated necroptosis pathway. Together, our data provide insights into the neuropathogenesis of SARS-CoV-2 infection in K18-hACE2 mice. Full article
(This article belongs to the Section Emerging Pathogens)
Show Figures

Figure 1

13 pages, 2108 KiB  
Article
Evaluation of Serological Markers in Alveolar Echinococcosis Emphasizing the Correlation of PET-CTI Tracer Uptake with RecEm18 and Echinococcus-Specific IgG
by Julian Frederic Hotz, Lynn Peters, Silke Kapp-Schwörer, Frauke Theis, Nina Eberhardt, Andreas Essig, Beate Grüner and Jürgen Benjamin Hagemann
Pathogens 2022, 11(2), 239; https://doi.org/10.3390/pathogens11020239 - 12 Feb 2022
Cited by 16 | Viewed by 2905
Abstract
Human alveolar echinococcosis (AE), which is caused by the cestode Echinococcus (E.) multilocularis, is an epidemiologically relevant issue in modern medicine and still poses a diagnostic and therapeutic challenge. Since diagnosis mainly relies on imaging procedures and serological testing, we [...] Read more.
Human alveolar echinococcosis (AE), which is caused by the cestode Echinococcus (E.) multilocularis, is an epidemiologically relevant issue in modern medicine and still poses a diagnostic and therapeutic challenge. Since diagnosis mainly relies on imaging procedures and serological testing, we retrospectively and comparatively analyzed the performance of an Echinococcus IgG screening ELISA, whole serum IgE, and two specific confirmatory ELISA platforms using the defined E. multilocularis antigens Em2-Em18 (Em2+) and recombinant Em18 (recEm18). With special emphasis on the clinical usefulness of recEm18, we correlated the laboratory results with clinical characteristics and imaging findings in a large and well-characterized cohort of N = 124 AE patients, who were followed over several years after either surgical plus subsequent pharmacological treatment or pharmacotherapy alone. All patients had routinely received PET-CTI every two years. Our data reveal strong correlations for both Echinococcus IgG and recEm18 with tracer uptake in PET-CTI and parasitic lesion size and number, suggesting additional clinical usefulness of recEm18 for certain constellations only, while IgG and Em2+ still appear reasonable and sensitive screening methods for initial diagnosis of AE. With this study, we aim to contribute to further optimizing medical care of AE patients. For instance, it might be reasonable to consider the replacement of some PET-CTI follow-ups by imaging procedures with less radiation exposure or serological means alone. Further studies that clarify the correlation of serological markers with ultrasound criteria might be particularly useful, and further retrospective as well as prospective investigations are justified in this context. Full article
(This article belongs to the Special Issue Alveolar Echinococcosis: Joining Hands to Tackle a Lethal Parasitosis)
Show Figures

Figure 1

16 pages, 643 KiB  
Review
Fungal Colonization and Infections—Interactions with Other Human Diseases
by Shanmuga S. Mahalingam, Sangeetha Jayaraman and Pushpa Pandiyan
Pathogens 2022, 11(2), 212; https://doi.org/10.3390/pathogens11020212 - 6 Feb 2022
Cited by 27 | Viewed by 8451
Abstract
Candida albicans is a commensal fungus that asymptomatically colonizes the skin and mucosa of 60% of healthy individuals. Breaches in the cutaneous and mucosal barriers trigger candidiasis that ranges from asymptomatic candidemia and mucosal infections to fulminant sepsis with 70% mortality rates. Fungi [...] Read more.
Candida albicans is a commensal fungus that asymptomatically colonizes the skin and mucosa of 60% of healthy individuals. Breaches in the cutaneous and mucosal barriers trigger candidiasis that ranges from asymptomatic candidemia and mucosal infections to fulminant sepsis with 70% mortality rates. Fungi influence at least several diseases, in part by mechanisms such as the production of pro-carcinogenic agents, molecular mimicking, and triggering of the inflammation cascade. These processes impact the interactions among human pathogenic and resident fungi, the bacteriome in various organs/tissues, and the host immune system, dictating the outcomes of invasive infections, metabolic diseases, and cancer. Although mechanistic investigations are at stages of infancy, recent studies have advanced our understanding of host–fungal interactions, their role in immune homeostasis, and their associated pathologies. This review summarizes the role of C. albicans and other opportunistic fungi, specifically their association with various diseases, providing a glimpse at the recent developments and our current knowledge in the context of inflammatory-bowel disease (IBD), cancers, and COVID-19. Two of the most common human diseases where fungal interactions have been previously well-studied are cancer and IBD. Here we also discuss the emerging role of fungi in the ongoing and evolving pandemic of COVID-19, as it is relevant to current health affairs. Full article
Show Figures

Figure 1

Back to TopTop