Postulation of Specific Disease Resistance Genes in Cereals: A Widely Used Method and Its Detailed Description
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Pathogen Isolates
2.2. Testing Procedure
2.3. Evaluation
3. Detailed Remarks
3.1. Preparation of Material, Host Varieties and Isolates of the Pathogen
3.2. Test Design
3.3. Phenotyping
3.4. Postulation of Genes of Specific Resistance
4. Conclusions
5. Critical Assessment of Leaf Segment Tests Compared to Testing of Whole Plants
5.1. Advantages
- Minimum seed and greenhouse space needed for testing varieties;
- Saving inoculum of isolates and its simple preparation;
- Easy control of the quantity and quality of applied inoculum;
- Leaf segments are oriented horizontally, which allows optimal settling and even distribution of the inoculum;
- Elimination of false heterogeneous responses within variety–isolate interactions resulting from uneven germination and leaf development on pot-grown plants after inoculation;
- In tests of whole plants, the second leaves that often form after inoculation hinder during evaluation;
- Faster, less laborious and more comfortable scoring for the evaluator with easier use of an illuminated lens;
- Rapid finding of variety–isolate interactions that require re-scoring.
5.2. Disadvantage
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, G.M.; Brennan, J.P. Estimating disease losses to the Australian barley industry. Australas. Plant Pathol. 2010, 39, 85–96. [Google Scholar] [CrossRef]
- Dreiseitl, A. Differences in powdery mildew epidemics in spring and winter barley based on 30-year variety trials. Ann. Appl. Biol. 2011, 159, 49–57. [Google Scholar] [CrossRef]
- Dreiseitl, A. Specific resistance of barley to powdery mildew, its use and beyond. A concise critical review. Genes 2020, 11, 971. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.K.M.; Jørgensen, J.H. A catalogue of mildew resistance genes in European barley varieties. In Integrated Control of Cereal Mildews: Virulence and Their Change, Proceedings of the Second European Workshop on Integrated Control of Cereal Mildews, Risø National Laboratory, Roskilde, Denmark, 23–25 January 1990; Jørgensen, J.H., Ed.; Risø National Laboratory: Roskilde, Denmark, 1991; pp. 263–286. [Google Scholar]
- Dreiseitl, A. Genes for resistance to powdery mildew in European barley cultivars registered in the Czech Republic from 2011 to 2015. Plant Breed. 2017, 136, 351–356. [Google Scholar] [CrossRef]
- Biffen, R.H. Studies in the inheritance of disease resistance. J. Agric. Sci. 1907, 2, 109–128. [Google Scholar] [CrossRef] [Green Version]
- Flor, H.H. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 1971, 9, 275–296. [Google Scholar] [CrossRef]
- Dreiseitl, A. A novel way to identify specific powdery mildew resistance genes in hybrid barley cultivars. Sci. Rep. 2020, 10, 18930. [Google Scholar] [CrossRef]
- Hartl, L.; Weiss, H.; Zeller, F.J.; Jahoor, A. Use of PFLP markers for the identification of alleles of the Pm3 locus confering powdery mildew resistance in wheat (Triticum aestivum L.). Theor. Appl. Genet. 1993, 86, 959–963. [Google Scholar] [CrossRef]
- Dreiseitl, A.; Steffenson, B.J. Postulation of leaf rust resistance genes in Czech and Slovak barley cultivars and breeding lines. Plant Breed. 2000, 119, 211–214. [Google Scholar] [CrossRef]
- Singh, D.; Park, R.F.; McIntosh, R.A. Postulation of leaf (brown) rust resistance genes in 70 wheat cultivars grown in the United Kingdom. Euphytica 2001, 120, 205–218. [Google Scholar] [CrossRef]
- Dreiseitl, A. A novel resistance against powdery mildew found in winter barley cultivars. Plant Breed. 2019, 138, 840–845. [Google Scholar] [CrossRef]
- Czembor, J.H.; Johnston, M.R. Resistance to powdery mildew in selections from Tunisian landraces of barley. Plant Breed. 1999, 118, 503–509. [Google Scholar] [CrossRef]
- Czembor, J.H.; Czembor, H.J. Powdery mildew resistance in selections from Moroccan barley landraces. Phytoparasitica 2000, 28, 65–78. [Google Scholar] [CrossRef]
- Dreiseitl, A.; Platz, G. Powdery mildew resistance genes in barley varieties grown in Australia. Crop Pasture Sci. 2012, 63, 997–1006. [Google Scholar] [CrossRef]
- Dreiseitl, A. Heterogeneity of powdery mildew resistance revealed in accessions of the ICARDA wild barley collection. Front. Plant Sci. 2017, 8, 202. [Google Scholar] [CrossRef]
- Piechota, U.; Słowacki, P.; Czembor, P.C. Identification of a novel recessive gene for resistance to powdery mildew (Blumeria graminis f. sp. hordei) in barley (Hordeum vulgare). Plant Breed. 2020, 139, 730–742. [Google Scholar] [CrossRef]
- Dreiseitl, A. Powdery mildew resistance phenotypes of wheat gene bank accessions. Biology 2021, 10, 846. [Google Scholar] [CrossRef]
- Dreiseitl, A. Frequency of powdery mildew resistances in spring barley cultivars evaluated in Czech variety trials. Plant Protect. Sci. 2012, 48, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Dreiseitl, A. Resistance of ‘Roxana’ to powdery mildew and its presence in some European spring barley cultivars. Plant Breed. 2011, 130, 419–422. [Google Scholar] [CrossRef]
- Dreiseitl, A.; Zavřelová, M. Identification of barley powdery mildew resistances in gene bank accessions and the use of gene diversity for verifying seed purity and authenticity. PLoS ONE 2018, 13, e0208719. [Google Scholar] [CrossRef]
- Dreiseitl, A. Virulence frequency to powdery mildew resistances in winter barley cultivars. Czech J. Genet. Plant Breed. 2008, 44, 160–166. [Google Scholar] [CrossRef] [Green Version]
- Dreiseitl, A. Pathogenic divergence of Central European and Australian populations of Blumeria graminis f. sp. hordei. Ann. Appl. Biol. 2014, 165, 364–372. [Google Scholar] [CrossRef]
- Dreiseitl, A. Genotype heterogeneity in accessions of a winter barley core collection assessed on postulated specific powdery mildew resistance genes. Agronomy 2021, 11, 513. [Google Scholar] [CrossRef]
- Leng, Y.; Zhao, M.; Fiedler, J.; Dreiseitl, A.; Chao, S.; Li, X.; Zhong, J. Molecular mapping of loci conferring susceptibility to spot blotch and resistance to powdery mildew in barley using the sequencing-based genotyping approach. Phytopathology 2020, 110, 440–446. [Google Scholar] [CrossRef]
- Bettgenhaeuser, J.; Hernández-Pinzón, I.; Dawson, A.M.; Gardiner, M.; Green, P.; Taylor, J.; Smoker, M.; Ferguson, J.N.; Emmrich, P.; Hubbard, A.; et al. The barley immune receptor Mla recognizes multiple pathogens and contributes to host range dynamics. Nat. Commun. 2021, 12, 6915. [Google Scholar] [CrossRef]
- Kølster, P.; Munk, L.; Stølen, O.; Løhde, J. Near-isogenic barley lines with genes for resistance to powdery mildew. Crop Sci. 1986, 26, 903–907. [Google Scholar] [CrossRef]
- Torp, J.; Jensen, H.P.; Jørgensen, J.H. Powdery Mildew Resistance Genes in 106 Northwest European Spring Barley Cultivars. Year-Book, 1978; Royal Veterinary and Agricultural University: Copenhagen, Denmark, 1978; pp. 75–102. [Google Scholar]
- Dreiseitl, A.; Nesvadba, Z. Powdery mildew resistance genes in single-plant progenies derived from accessions of a winter barley core collection. Plants 2021, 10, 1998. [Google Scholar] [CrossRef]
- Nover, I. Untersuchungen mit einer für den Resistenzträger ‘Lyallpur 3645’ virulenten Rasse von Erysiphe graminis DC. f. sp. hordei Marchal. Arch. Pflanzenschutz 1972, 8, 439–445. [Google Scholar] [CrossRef]
- Kosman, E.; Chen, X.; Dreiseitl, A.; McCallum, B.; Lebeda, A.; Ben-Yehuda, P.; Gultyaeva, E.; Manisterski, J. Functional variation of plant-pathogen interactions: New concept and methods for virulence data analyses. Phytopathology 2019, 109, 1324–1330. [Google Scholar] [CrossRef]
- Dreiseitl, A.; Jørgensen, J.H. Powdery mildew resistance in Czech and Slovak barley cultivars. Plant Breed. 2000, 119, 203–209. [Google Scholar] [CrossRef]
- Dreiseitl, A. Great pathotype diversity and reduced virulence complexity in a Central European population of Blumeria graminis f. sp. hordei in 2015–2017. Eur. J. Plant Pathol. 2019, 53, 801–811. [Google Scholar] [CrossRef]
- Dreiseitl, A.; Wang, J. Virulence and diversity of Blumeria graminis f.sp. hordei in East China. Eur. J. Plant Pathol. 2007, 117, 357–368. [Google Scholar] [CrossRef]
- Lillemo, M.; Skinnes, H.; Brown, J.K.M. Race specific resistance to powdery mildew in Scandinavian wheat cultivars, breeding lines and introduced genotypes with partial resistance. Plant Breed. 2010, 129, 297–303. [Google Scholar] [CrossRef]
- Mebrate, S.A.; Dehne, H.W.; Pillen, K.; Oerke, E.C. Postulation of seedling leaf rust resistance genes in selected Ethiopian and German bread wheat cultivars. Crop Sci. 2008, 48, 507–516. [Google Scholar] [CrossRef]
- Randhawa, M.; Bansal, U.; Lillemo, M.; Miah, H.; Bariana, H. Postulation of rust resistance genes in Nordic spring wheat genotypes and identification of widely effective sources of resistance against the Australian rust flora. J. Appl. Genet. 2016, 57, 453–465. [Google Scholar] [CrossRef]
- Kankwatsa, P.; Park, R.F.; Singh, D. African wheat germplasm—A valuable resource for resistance to rust diseases. Plant Pathol. 2019, 68, 1308–1319. [Google Scholar] [CrossRef]
- Xu, X.D.; Feng, J.; Lin, R.M.; Hussain, K.; Xu, S.C.; Lin, F. Postulation of stripe rust resistance genes in 44 Chinese wheat cultivars. Int. J. Agric. Biol. 2011, 13, 665–670. [Google Scholar]
- Cabral, A.L.; Park, R.F. Seedling resistance to Puccinia coronata f. sp. avenae in Avena strigosa, A. barbata and A. sativa. Euphytica 2014, 196, 385–395. [Google Scholar] [CrossRef]
- Czembor, J.H. Resistance to powdery mildew in selections from Moroccan barley landraces. Euphytica 2002, 125, 397–409. [Google Scholar] [CrossRef]
Infection Response | Mycelium Growth | Sporulation | Chlorosis/Necrosis |
---|---|---|---|
0 | None | None | − |
0–1 | None | None | + |
1 | Weak | None | + |
1–2 | Weak | Weak | + |
2 | Moderate | Weak | + |
2–3 | Moderate | Moderate | + |
3 | Strong | Moderate | + |
3–4 | Strong | Strong | + |
4 | Strong | Strong | − |
Barley | Ml | Blumeria graminis f. sp. hordei Isolates and Year of Their Collection | |||||
---|---|---|---|---|---|---|---|
Genotype | Resistance | Ch-3-33 1 | U-54 | I-16 | I-167 | MNb | E-6 |
Gene(s) | 2003 | 2005 | 2012 | 2009 | 2016 | 2011 | |
Bowman | none | 4 | 4 | 4 | 4 | 4 | 4 |
P01 | a12 | 0 | 0 | 4 | 4 | 0 | 4 |
P17 | k12 | 2 | 4 | 2 | 4 | 4 | 4 |
P21 | g2 | 0 | 4 | 4 | 0 | 0 | 4 |
Lumar | a1, k1, g3 | 0 | 0 | 2 | 0 | 0 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dreiseitl, A. Postulation of Specific Disease Resistance Genes in Cereals: A Widely Used Method and Its Detailed Description. Pathogens 2022, 11, 284. https://doi.org/10.3390/pathogens11030284
Dreiseitl A. Postulation of Specific Disease Resistance Genes in Cereals: A Widely Used Method and Its Detailed Description. Pathogens. 2022; 11(3):284. https://doi.org/10.3390/pathogens11030284
Chicago/Turabian StyleDreiseitl, Antonín. 2022. "Postulation of Specific Disease Resistance Genes in Cereals: A Widely Used Method and Its Detailed Description" Pathogens 11, no. 3: 284. https://doi.org/10.3390/pathogens11030284
APA StyleDreiseitl, A. (2022). Postulation of Specific Disease Resistance Genes in Cereals: A Widely Used Method and Its Detailed Description. Pathogens, 11(3), 284. https://doi.org/10.3390/pathogens11030284