E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Special Issue "Smart and Functional Polymers"

A special issue of Molecules (ISSN 1420-3049).

Deadline for manuscript submissions: 30 November 2018

Special Issue Editors

Guest Editor
Dr. Jianxun Ding

Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
Website | E-Mail
Phone: +86 431 8526 2116
Interests: polymer chemistry; self-assembly; nanoparticle; hydrogel; scaffold; biomaterial; controlled drug delivery; immunotherapy; regenerative medicine
Guest Editor
Dr. Yang Li

Laboratory for Biomaterials and Drug Delivery, Boston Children’s Hospital and Harvard Medical School, 300 Longwood Ave., Boston, MA 02115, United States
Website | E-Mail
Phone: +1 857-218-3001
Interests: polymer chemistry; supramolecular self-assembly; nanomedicine; biomaterials; molecular imaging; drug delivery; immunotherapy; cancer surgery
Guest Editor
Dr. Mingqiang Li

Department of Biomedical Engineering, Columbia University, 116th and Broadway, New York, NY 10027, United States
Website | E-Mail
Phone: +1 917-855-8769
Interests: polymer chemistry; polymeric nanomedicine; biomaterials; microfluidics

Special Issue Information

Dear Colleagues,

Polymerization offers a powerful and modular strategy in generating macromolecules and structures with high complexity and versatile functionality. Smart and functional polymers, to which functional groups are chemically attached, have drawn growing interest as they hold considerable promise for a variety of applications. Smart polymers can be constructed via polymerization of functional monomers or post-polymerization modifications. These polymers possess the combination of the physical properties of nanoscale or microscale architectures and physiochemical reactivities of the attached functional groups. Moreover, their ability to form microscopic and macroscopic assemblies in response to external targets or signals renders unique physiochemical properties (e.g., large surface-to-volume ratio, variable composition and size, dynamic association, and reversible phase separation) and tailored functionalities (e.g., enhanced sensitivity and specificity, extraordinary target binding affinity, and tunable surface chemistry) that are absent in small molecules.

Smart and functional polymeric material is an interdisciplinary field that integrates physics, chemistry, material science, engineering, and biology. Over the past decade, the field has experienced rapid progress as a result of the push by unmet needs in various areas. This Special Issue aims to provide a comprehensive collection of the latest advances in the development of synthetic approaches, mechanism underlying structure-property correlations, and current and emerging applications of smart and functional polymers. The issue will cover smart and functional polymers for a diverse range of applications, involving but not limited in synthetic chemistry, analytical chemistry, materials science, environmental science, industrial fabrication, electronics, renewable energy, food science, agriculture, biomedical technology, and healthcare.

Considering your prominent contribution in this very active field of research, we would like to cordially invite you to submit an article to this Special Issue. Short communications, full research articles, and timely reviews are all welcome.

Dr. Jianxun Ding
Dr. Yang Li
Dr. Mingqiang Li
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Polymerization or post-polymerization modification methods
  • Polymer-based supramolecular chemistry
  • Stimuli-responsive polymers
  • Shape memory polymers
  • Self-healing polymers
  • Polymers for industrial catalysis
  • Polymers for water or effluent treatment
  • Polymers for sensing, separation, and purification
  • Polymers for fabrication
  • Renewable polymeric materials used for agriculture
  • Functional polymers used in food science
  • Polymers for information storage, electronics, and energy conversion
  • Functional polymer for diagnosis, imaging, drug delivery, and tissue engineering
  • Polymer with biological activity (e.g., anti-tumor, anti-diabetic or anti-microbial activity)
  • Polymer-based medical device

Published Papers (6 papers)

View options order results:
result details:
Displaying articles 1-6
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle VE-Albumin Core-Shell Nanoparticles for Paclitaxel Delivery to Treat MDR Breast Cancer
Molecules 2018, 23(11), 2760; https://doi.org/10.3390/molecules23112760
Received: 19 September 2018 / Revised: 18 October 2018 / Accepted: 20 October 2018 / Published: 25 October 2018
PDF Full-text (2812 KB) | HTML Full-text | XML Full-text
Abstract
Multi-drug resistance (MDR) presents a serious problem in cancer chemotherapy. In this study, Vitamin E (VE)-Albumin core-shell nanoparticles were developed for paclitaxel (PTX) delivery to improve the chemotherapy efficacy in an MDR breast cancer model. The PTX-loaded VE-Albumin core-shell nanoparticles (PTX-VE NPs) had
[...] Read more.
Multi-drug resistance (MDR) presents a serious problem in cancer chemotherapy. In this study, Vitamin E (VE)-Albumin core-shell nanoparticles were developed for paclitaxel (PTX) delivery to improve the chemotherapy efficacy in an MDR breast cancer model. The PTX-loaded VE-Albumin core-shell nanoparticles (PTX-VE NPs) had small particle sizes (about 100 nm), high drug entrapment efficiency (95.7%) and loading capacity (12.5%), and showed sustained release profiles, in vitro. Docking studies indicated that the hydrophobic interaction and hydrogen bonds play a significant role in the formation of the PTX-VE NPs. The results of confocal laser scanning microscopy analysis demonstrated that the cell uptake of PTX was significantly increased by the PTX-VE NPs, compared with the NPs without VE (PTX NPs). The PTX-VE NPs also exhibited stronger cytotoxicity, compared with PTX NPs with an increased accumulation of PTX in the MCF-7/ADR cells. Importantly, the PTX-VE NPs showed a higher anti-cancer efficacy in MCF-7/ADR tumor xenograft model than the PTX NPs and the PTX solutions. Overall, the VE-Albumin core-shell nanoparticles could be a promising nanocarrier for PTX delivery to improve the chemotherapeutic efficacy of MDR cancer. Full article
(This article belongs to the Special Issue Smart and Functional Polymers)
Figures

Graphical abstract

Open AccessFeature PaperArticle Immobilizing Polyether Imidazole Ionic Liquids on ZSM-5 Zeolite for the Catalytic Synthesis of Propylene Carbonate from Carbon Dioxide
Molecules 2018, 23(10), 2710; https://doi.org/10.3390/molecules23102710
Received: 21 September 2018 / Revised: 15 October 2018 / Accepted: 20 October 2018 / Published: 21 October 2018
PDF Full-text (2811 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Traditional ionic liquids (ILs) catalysts suffer from the difficulty of product purification and can only be used in homogeneous catalytic systems. In this work, by reacting ILs with co-catalyst (ZnBr2), we successfully converted three polyether imidazole ionic liquids (PIILs), i.e., HO-[Poly-epichlorohydrin-methimidazole]Cl
[...] Read more.
Traditional ionic liquids (ILs) catalysts suffer from the difficulty of product purification and can only be used in homogeneous catalytic systems. In this work, by reacting ILs with co-catalyst (ZnBr2), we successfully converted three polyether imidazole ionic liquids (PIILs), i.e., HO-[Poly-epichlorohydrin-methimidazole]Cl (HO-[PECH-MIM]Cl), HOOC-[Poly-epichlorohydrin-methimidazole]Cl (HOOC-[PECH-MIM]Cl), and H2N-[Poly-epichlorohydrin-methimidazole]Cl (H2N-[PECH-MIM]Cl), to three composite PIIL materials, which were further immobilized on ZSM-5 zeolite by chemical bonding to result in three immobilized catalysts, namely ZSM-5-HO-[PECH-MIM]Cl/[ZnBr2], ZSM-5-HOOC-[PECH-MIM]Cl/[ZnBr2], and ZSM-5-H2N-[PECH-MIM]Cl/[ZnBr2]. Their structures, thermal stabilities, and morphologies were fully characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The amount of composite PIIL immobilized on ZSM-5 was determined by elemental analysis. Catalytic performance of the immobilized catalysts was evaluated through the catalytic synthesis of propylene carbonate (PC) from CO2 and propylene oxide (PO). Influences of reaction temperature, time, and pressure on catalytic performance were investigated through the orthogonal test, and the effect of catalyst circulation was also studied. Under an optimal reaction condition (130 °C, 2.5 MPa, 0.75 h), the composite catalyst, ZSM-5-HOOC- [PECH-MIM]Cl/[ZnBr2], exhibited the best catalytic activity with a conversion rate of 98.3% and selectivity of 97.4%. Significantly, the immobilized catalyst could still maintain high heterogeneous catalytic activity even after being reused for eight cycles. Full article
(This article belongs to the Special Issue Smart and Functional Polymers)
Figures

Graphical abstract

Open AccessArticle Ultrasensitive (Co)polymers Based on Poly(methacrylamide) Structure with Fining-Tunable pH Responsive Value
Molecules 2018, 23(8), 1870; https://doi.org/10.3390/molecules23081870
Received: 25 June 2018 / Revised: 12 July 2018 / Accepted: 15 July 2018 / Published: 27 July 2018
PDF Full-text (1911 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Novel pH responsive copolymers with tertiary amine groups were prepared by free radical polymerization with 2-(dialkylamino)ethyl methacrylate monomers. These polymers were pH sensitive with the ability to be responsively fine-tuned in aqueous solution, which was proven through titration, transmittance measurements, and proton nuclear
[...] Read more.
Novel pH responsive copolymers with tertiary amine groups were prepared by free radical polymerization with 2-(dialkylamino)ethyl methacrylate monomers. These polymers were pH sensitive with the ability to be responsively fine-tuned in aqueous solution, which was proven through titration, transmittance measurements, and proton nuclear magnetic resonance spectroscopy. The polymers were soluble in water at low pH values, induced by electrostatic repulsion between amine groups, and aggregated above their pKa value due to the hydrophobic effect of the alkyls. The pH responsive values were precisely tuned from 7.4 to 4.8 by increasing the hydrophobic monomer ratio. Our work provides a novel approach for the development of ultrasensitive pH-responsive polymers for application in biomedical materials. Full article
(This article belongs to the Special Issue Smart and Functional Polymers)
Figures

Graphical abstract

Open AccessArticle Effect of Hydrophobic Polypeptide Length on Performances of Thermo-Sensitive Hydrogels
Molecules 2018, 23(5), 1017; https://doi.org/10.3390/molecules23051017
Received: 12 April 2018 / Revised: 19 April 2018 / Accepted: 21 April 2018 / Published: 26 April 2018
PDF Full-text (1997 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Thermosensitive gels are commonly used as drug carriers in medical fields, mainly due to their convenient processing and easy functionalization. However, their overall performance has been severely affected by their unsatisfying biocompatibility and biodegradability. To this end, we synthesized poly(l-alanine) (PLAla)-based
[...] Read more.
Thermosensitive gels are commonly used as drug carriers in medical fields, mainly due to their convenient processing and easy functionalization. However, their overall performance has been severely affected by their unsatisfying biocompatibility and biodegradability. To this end, we synthesized poly(l-alanine) (PLAla)-based thermosensitive hydrogels with different degrees of polymerization by ring-opening polymerization. The obtained mPEG45−PLAla copolymers showed distinct transition temperatures and degradation abilities. It was found that slight changes in the length of hydrophobic side groups had a decisive effect on the gelation behavior of the polypeptide hydrogel. Longer hydrophobic ends led to a lower gelation temperature of gel at the same concentration, which implied better gelation capability. The hydrogels showed rapid gelling, enhanced biocompatibility, and better degradability. Therefore, this thermosensitive hydrogel is a promising material for biomedical application. Full article
(This article belongs to the Special Issue Smart and Functional Polymers)
Figures

Figure 1

Review

Jump to: Research

Open AccessReview A Perspective on Reversibility in Controlled Polymerization Systems: Recent Progress and New Opportunities
Molecules 2018, 23(11), 2870; https://doi.org/10.3390/molecules23112870
Received: 15 October 2018 / Revised: 1 November 2018 / Accepted: 2 November 2018 / Published: 3 November 2018
PDF Full-text (5920 KB) | HTML Full-text | XML Full-text
Abstract
The field of controlled polymerization is growing and evolving at unprecedented rates, facilitating polymer scientists to engineer the structure and property of polymer materials for a variety of applications. However, the lack of degradability, particularly in vinyl polymers, is a general concern not
[...] Read more.
The field of controlled polymerization is growing and evolving at unprecedented rates, facilitating polymer scientists to engineer the structure and property of polymer materials for a variety of applications. However, the lack of degradability, particularly in vinyl polymers, is a general concern not only for environmental sustainability, but also for biomedical applications. In recent years, there has been a significant effort to develop reversible polymerization approaches in those well-established controlled polymerization systems. Reversible polymerization typically involves two steps, including (i) forward polymerization, which converts small monomers into macromolecule; and (ii) depolymerization, which is capable of regenerating original monomers. Furthermore, recycled monomers can be repolymerized into new polymers. In this perspective, we highlight recent developments of reversible polymerization in those controlled polymerization systems and offer insight into the promise and utility of reversible polymerization systems. More importantly, the current challenges and future directions to solve those problems are discussed. We hope this perspective can serve as an “initiator” to promote continuing innovations in this fairly new area. Full article
(This article belongs to the Special Issue Smart and Functional Polymers)
Figures

Graphical abstract

Open AccessReview Smart and Functional Conducting Polymers: Application to Electrorheological Fluids
Molecules 2018, 23(11), 2854; https://doi.org/10.3390/molecules23112854
Received: 10 September 2018 / Revised: 14 October 2018 / Accepted: 21 October 2018 / Published: 2 November 2018
PDF Full-text (11121 KB) | HTML Full-text | XML Full-text
Abstract
Electro-responsive smart electrorheological (ER) fluids consist of electrically polarizing organic or inorganic particles and insulating oils in general. In this study, we focus on various conducting polymers of polyaniline and its derivatives and copolymers, along with polypyrrole and poly(ionic liquid), which are adopted
[...] Read more.
Electro-responsive smart electrorheological (ER) fluids consist of electrically polarizing organic or inorganic particles and insulating oils in general. In this study, we focus on various conducting polymers of polyaniline and its derivatives and copolymers, along with polypyrrole and poly(ionic liquid), which are adopted as smart and functional materials in ER fluids. Their ER characteristics, including viscoelastic behaviors of shear stress, yield stress, and dynamic moduli, and dielectric properties are expounded and appraised using polarizability measurement, flow curve testing, inductance-capacitance-resistance meter testing, and several rheological equations of state. Furthermore, their potential industrial applications are also covered. Full article
(This article belongs to the Special Issue Smart and Functional Polymers)
Figures

Graphical abstract

Back to Top