

1 Supplementary Materials

2 Effect of Hydrophobic Polypeptide Length on

3 Performances of Thermo-Sensitive Hydrogels

4	Jiandong Han ^{1,2} , Xingyu Zhao ² , Weiguo Xu ² , Wei Wang ^{1,*} , Yuping Han ^{2,3,*} and Xiangru Feng ^{2,*}
5	¹ Department of Chemistry, Changchun University of Science and Technology, Changchun 130022, P. R.
6	China; jdhan@ciac.ac.cn (H.J.)
7	² Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of
8	Sciences, Changchun 130022, P. R. China; star20012002@163.com (Z.X.); wgxu@ciac.ac.cn (X.W.)
9	³ Department of Urology, China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
10	* Correspondence: weiwanglg@163.com (W.W.); hyp181818@126.com (H.Y.); xrfeng@ciac.ac.cn (F.X.)
11	Received: date; Accepted: date; Published: date
12	

13 Materials and Methods

14 Characterization

15 ¹H NMR spectra of mPEG₄₅-PLAla in deuterated trifluoroacetic acid (CF₃COOD) were 16 conducted on a Bruker AV 300 NMR spectrometer. ¹³C NMR spectral changes of mPEG₄₅-PlAla₃₀ (5.0 17 wt.% in D2O) were investigated as a function of temperature between 20 and 60 °C on a Bruker AV 18 400 NMR spectrometer. The solution temperature was equilibrated for 20 min before measurement. 19 The ellipticity of polymer aqueous solution (0.05 mg mL-1) was obtained on a JASCO J-810 spectrometer as a function of temperature between 10 and 50 °C. DLS measurements were 20 21 determined on a WyattQELS instrument with a vertically polarized He-Ne laser (DAWN EOS, 22 Wyatt Technology) and 90° collected optics. The sample was prepared in aqueous solution at the 23 concentration of 5.0 µg mL⁻¹. The solution was filtered through a 0.45 µm Millipore filter before 24 measurements. FT-IR spectra were recorded on a Bio-Rad Win-IR instrument using potassium

25 bromide method.

26 Synthesis of L-Ala NCA

27 L-alanine (20.0 g, 0.224 mol) and triphosgene (53.4 g, 0.180 mol) were suspended in 400.0 mL of 28 dry THF bubbled with nitrogen flux in a flame-dried three-neck flask. The mixture was stirred at 60 29 °C for 2 h before further bubbling with nitrogen flux for 30 min. After that, the solution was 30 precipitated in 1000.0 mL of *n*-hexane and stored at -20 °C. The supernatant was removed, and the 31 residues were collected and dissolved in 200.0 mL of ethyl acetate, prior to two washings with 100.0 32 mL of ice-cold water and one washing with 100.0 mL of 0.5% NaHCO3 ice-cold aqueous solution. 33 The organic phase was then dried over anhydrous MgSO4 and evaporated to obtain 15.5 g of L-Ala 34 NCA. The yield of L-Ala NCA was 77.5%.

35 Synthesis of mPEG₄₅–PLAla

36 The mPEG45-polypeptide copolymers were synthesized through the ROP of L-Ala NCA using 37 mPEG45-NH2 as macroinitiator. The following was a typical procedure for the preparation of 38 mPEG45-PLAla30: mPEG45-NH2 (2.0 g, 0.001 mol) was dissolved in toluene (150.0 mL) and residual 39 water in the solution was removed by azeotropic distillation. Anhydrous DMF (100.0 mL) and L-Ala 40 NCA (3.2 g, 0.028 mol) were then added to the flask. The reaction mixture was stirred at 25 °C for 41 three days under a dry nitrogen atmosphere. Then the copolymer was purified by precipitation in 42 glacial diethyl ether, followed by filtration. The resulting product was dissolved in DMF and 43 dialyzed in a dialysis bag (molecular weight cut-off (MWCO) = 3500 Da) for three days. The water 44 was changed every six hours to remove the DMF. Then the final product was obtained by 45 lyophilization. The yield of mPEG45-PLAla30 was 73.4%. Similarly, mPEG45-PLAla22 and 46 mPEG₄₅-PLAla₁₄ were synthesized according to the abovementioned protocol by changing the feed 47 amounts of L-Ala NCA, which were 2.4 g (0.021 mol) and 1.6 g (0.014 mol), respectively. The yields 48 of mPEG₄₅-PLAla₂₂ and mPEG₄₅-PLAla₁₄ were 61.1% and 57.7%, respectively.

49 Hydrogel Internal Morphology

50 The internal morphology of the hydrogel was observed using a field emission scanning electron 51 microscope (ESEM, Micrion FEI PHILIPS). After the hydrogel was formed, it was rapidly frozen 52 with liquid nitrogen and lyophilized to acquire a lyophilized gel sample. The lyophilized samples 53 were evenly sprayed with gold after brittle fracture, and the gel internal morphology and pore size 54 were observed under ESEM.

55 Histological Analyses

56 SD rats were sacrificed after the *in vivo* degradation experiment. The hydrogels near the skin 57 were removed and fixed in 4.0% (w/v) PBS-buffered paraformaldehyde overnight and then

58 embedded in paraffin. Paraffin-embedded tissues were sectioned into approximately $5.0 \ \mu m$ slices

and stained with H&E. The histological changes were detected by a microscope (Nikon Eclipse *Ti*,
Optical Apparatus Co., Ardmore, PA).

61 Hemolysis Tests

62 The hemocompatibility level of mPEG₄₅-PLAla₃₀ was determined according to established 63 criteria, ISO 10993-4. Briefly, the fresh rabbit blood was purchased from the Laboratory Animal 64 Center of Jilin University, which was obtained from the heart of a live rabbit. Subsequently, it was 65 diluted by normal saline (NS), and then the red blood cells (RBCs) were isolated from plasma by 66 centrifugation at 2500 rpm for 15 min. After careful washing, the suspension of RBCs at a final 67 concentration of 2.0% (v/v) was added to mPEG45-PLAla30 solution with varied concentrations, 68 mixed by vortex, and then incubated at 37 °C in a thermostatic water bath for 2 h. NS and Triton 69 X-100 ($1 \times 10^4 \,\mu g \,\text{mL}^{-1}$, a surfactant known to lyse RBCs) were used as negative and positive controls, 70 respectively. Then, RBCs were centrifuged at 3000 rpm for 10 min, and then 100.0 µL of the 71 supernatant of each sample was transferred to a 96-well plate. The free hemoglobin in the 72 supernatant was measured with a Bio-Rad 680 microplate reader at 540 nm. The hemolysis ratio of 73 RBCs was calculated using Equation (2).

$$Hemolytic ratio (\%) = (A_{sample} - A_{negative control}) / (A_{positive control} - A_{negative control}) \times 100$$
(1)

Where, Asample, Anegative control, and Apositive control were denoted as the absorbencies of sample, and
 negative and positive controls, respectively.

76